Complex Analysis Math 220B

Midterm Exam (sample)

Problem 1.

How many roots of the equation $z^{4}+z^{3}-4 z+1=0$ are in the ring $1<|z|<4$?

Problem 2.
Find a conformal mapping of the domain U to the unit disc, where

$$
U=\{|z|>1, z \notin I\}, \quad I=[1,2] \subset \mathbb{R}
$$

Problem 3.
Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ and $f: \mathbb{H} \rightarrow \mathbb{H}$ be analytic. Prove that

$$
\left|\frac{f(z)-f(i)}{f(z)-\overline{f(i)}}\right| \leq\left|\frac{z-i}{z+i}\right|, \quad z \in \mathbb{H} .
$$

Problem 4.

Let $f(z)$ be holomorphic in the unit disc \mathbb{D} and continuous on the closed disc $\overline{\mathbb{D}}$. Suppose $f\left(e^{i \theta}\right)=e^{i e^{i \theta}}$ for $0<\theta<\frac{\pi}{4}$. Prove $f(z) \equiv e^{i z}$ on \mathbb{D}.

Problem 5.

Let \mathbb{D} be the unit disc, and suppose that $f: \mathbb{D} \rightarrow \mathbb{D} \backslash\{0\}$ is analytic and $f(0)=\frac{1}{2}$. Prove that $\left|f\left(\frac{1}{2}\right)\right| \geq \frac{1}{8}$.

