Chapter 6, problems 20, 22, 23, 24, and these problems:

Problem 1.

Let $U \neq \mathbb{C}$ be a simply connected domain in \mathbb{C} . Let $f : U \to U$ be a conformal mapping that fixes two distinct points in U (i.e. there are $p, q \in U$ such that f(p) = p and f(q) = q). Show that $f(z) \equiv z$.

Problem 2.

Let $\{f_{\alpha}\}_{\alpha \in A}$ be a family of holomorphic functions on the unit disc *D* such that

$$\forall z \in D \ \forall f \in \{f_{\alpha}\} \ \mathbf{Re}f(z) \neq \mathbf{Im}f(z).$$

Prove that $\{f_{\alpha}\}_{\alpha \in A}$ is a normal family.

Problem 3.

Show that there is a holomorphic function defined in the set

$$\Omega = \{ z \in \mathbb{C} \mid |z| > 4 \}$$

whose derivative is

$$\frac{z}{(z-1)(z-2)(z-3)}$$

Is there a holomorphic function on Ω whose derivative is

$$\frac{z^2}{(z-1)(z-2)(z-3)}?$$