Chapter 7, problems 30, 31, 38, 39, and these problems:

Problem 1.

Let $f_n : D(0,1) \to D(0,1) \setminus \{0\}$ be holomorphic functions with $f_n(0) = \frac{1}{n}$ $(n = 1, 2, 3, \dots)$ Prove $\sum_{n=1}^{\infty} f_n(z)^3$ converges uniformly and absolutely on any compact subset *K* in D(0, 1/2).

Problem 2.

Set $U = \{z = x + iy \mid y > 0, -1 < x < 1\}$. Suppose $f : \overline{U} \to \mathbb{C}$ is continuous and holomorphic in U. Suppose also that for any real $x \in (-1, 1)$ we have $f(x) = x^{2018}$. Prove that $f(z) = z^{2018}$ for all $z \in U$.

Problem 3.

Let $I \subset \mathbb{R} \subset \mathbb{C}$ be the closed interval [0, 1/2].

- a) Construct a conformal mapping of $\mathbb{C}\setminus I$ to $\mathbb{D}\setminus\{0\}$.
- b) Prove that $\mathbb{D}\setminus I$ is not conformally equivalent to $\mathbb{D}\setminus\{0\}$.