Chapter 7, problems 41, 48, 50, 69 (in all these problems assume that the functions are continuous), and these problems:

Problem 1.

Let \mathcal{F} be a family of analytic functions on Δ for which there exists M > 0 such that

$$\int_{\Delta} |f(z)| dx \, dy \le M \text{ for all } f \in \mathcal{F}.$$

Show that \mathcal{F} is a normal family.

Problem 2.

Let *f* and *g* be analytic on a bounded domain *D* and continuous on its closure. Show that |f(z)| + |g(z)| attains its maximum on the boundary of *D*.

Problem 3.

Let f(z) be holomorphic in the unit disc \mathbb{D} and continuous on the closed disc $\overline{\mathbb{D}}$. Suppose $f(e^{i\theta}) = e^{ie^{i\theta}}$ for $0 < \theta < \frac{\pi}{4}$. Prove $f(z) \equiv e^{iz}$ on \mathbb{D} .