Complex Analysis Math 220B

Midterm Exam (Sample)

Problem 1.

Describe those polynomials $a+b x+c y+d x^{2}+e x y+f y^{2}$ with real coefficients that are the real parts of entire functions.

Problem 2.

Find explicitly a conformal mapping of the domain

$$
\{z \in \mathbb{C}||z|>1, \operatorname{Re} z>\operatorname{Im} z\}
$$

to the unit disc.

Problem 3.

TRUE or FALSE: An open connected domain $U \subset \mathbb{C}$ is simply connected if and only if for any non-vanishing holomorphic function $f: U \rightarrow \mathbb{C}$ there exists a holomorphic function $g: U \rightarrow \mathbb{C}$ such that $(g(z))^{2018}=f(z)$ for all $z \in U$. Explain your answer.

Problem 4.

Let U be a bounded, connected, open subset of \mathbb{C}, and let f be a non-constant continuous function on \bar{U} which is holomorphic on U. Assume that $|f(z)|=1$ for z on the boundary of U.
(a) Show that 0 is in the range of f.
(b) Show that f maps U onto the unit disc.

Problem 5.

Suppose a continuous function $u: \mathbb{C} \rightarrow \mathbb{R}$ has the following property:

$$
u(x+i y)=\frac{1}{4}(u(x+a+i y)+u(x-a+i y)+u(x+i(y+a))+u(x+i(y-a)))
$$

for all $a \in \mathbb{C}$. Does it imply that u is harmonic?

