Midterm Exam (Sample)

Problem 1.

Describe those polynomials $a + bx + cy + dx^2 + exy + fy^2$ with real coefficients that are the real parts of entire functions.

Problem 2.

Find explicitly a conformal mapping of the domain

 $\{z\in\mathbb{C}\mid \ |z|>1,\ \operatorname{Re}z>\operatorname{Im}z\}$

to the unit disc.

Problem 3.

TRUE or FALSE: An open connected domain $U \subset \mathbb{C}$ is simply connected if and only if for any non-vanishing holomorphic function $f : U \to \mathbb{C}$ there exists a holomorphic function $g : U \to \mathbb{C}$ such that $(g(z))^{2018} = f(z)$ for all $z \in U$. Explain your answer.

Problem 4.

Let *U* be a bounded, connected, open subset of \mathbb{C} , and let *f* be a non-constant continuous function on \overline{U} which is holomorphic on *U*. Assume that |f(z)| = 1 for *z* on the boundary of *U*.

(a) Show that 0 is in the range of f.

(b) Show that f maps U onto the unit disc.

Problem 5.

Suppose a continuous function $u : \mathbb{C} \to \mathbb{R}$ has the following property:

$$u(x+iy) = \frac{1}{4}(u(x+a+iy) + u(x-a+iy) + u(x+i(y+a)) + u(x+i(y-a)))$$

for all $a \in \mathbb{C}$. Does it imply that u is harmonic?