## Complex Analysis Math 220C

## Final Exam (sample)

## Problem 1.

Denote $f(z)=z+1, g(z)=-\frac{1}{z+i}$.
a) Show that for any $\left\{n_{1}, m_{1}, n_{2}, m_{2}, \ldots, n_{k}, m_{k}\right\}, n_{i}, m_{i} \geq 0$, the composition

$$
F_{\left(n_{1}, m_{1}, n_{2}, m_{2}, \ldots, n_{k}, m_{k}\right)}=f^{n_{1}} \circ g^{m_{1}} \circ \ldots f^{n_{k}} \circ g^{m_{k}}
$$

has no singularities in the unit disc $\mathbb{D}$;
b) Prove that the collection of all maps $F_{\left(n_{1}, m_{1}, n_{2}, m_{2}, \ldots, n_{k}, m_{k}\right)} \|_{\mathbb{D}}: \mathbb{D} \rightarrow \mathbb{C}$, $k \geq 1, n_{i}, m_{i} \geq 0$, is a normal family.

## Problem 2.

Let $f(z)$ be a polynomial of degree $d \geq 2$. Prove that there exists a conformal automorphism $\varphi$ of the complex plane $\mathbb{C}$ such that $\varphi \circ f \circ \varphi^{-1}$ is a polynomial of the form

$$
z^{d}+a_{2} z^{d-2}+a_{3} z^{d-3}+\ldots+a_{d} .
$$

## Problem 3.

TRUE or FALSE: If $f(z)$ is an entire function that takes every complex value, then $g(z)=f(z)+z$ also takes every complex value.

## Problem 4.

Let $\mathbb{D}$ be the unit disc, and suppose $f: \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic function that has two distinct fixed points. Prove that $g(z) \equiv z$.

## Problem 5.

Consider the function $f(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{\sqrt{n}}$.
a) Find the radius of convergence of the series that defines $f$;
b) Using the fact that $\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-n x^{2}} d x$, show that

$$
f(z)=\frac{2 z}{\sqrt{\pi}} \int_{0}^{\infty} \frac{d x}{e^{x^{2}}-z} ;
$$

c) Does $f$ allow analytic continuation to a domain larger than the disc of convergence of the series $\sum_{n=1}^{\infty} \frac{z^{n}}{\sqrt{n}}$ ?

