Complex Analysis, HW \# 3

Chapter 10, problems 18, 19, 20, 21, and these problems:

Problem 1.

We proved that Weierstrass \wp-function (doubly periodic with periods 1 and i) satisfies the differential equation

$$
\left(\wp^{\prime}(z)\right)^{2}=4(\wp(z))^{3}-C_{1} \wp(z)+C_{2}
$$

Show that $C_{1}=60 \sum_{(m, n) \neq(0,0)} \frac{1}{(m+i n)^{4}}$.

Problem 2.

Find $\zeta(2)$.
Hint: This problem is known as the Basel Problem; you can present any proof, not necessarily using complex analysis.

Problem 3.

The Dirichlet η-function (alternating zeta function) is defined as $\eta(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{z}}$. Find a closed form expression for $\eta(z)$ using ζ-function.

