Chapter 6, problems 11, 17, 18, 21, and these problems:

Problem 1.

Suppose $f \in \operatorname{Aut} \widehat{\mathbb{C}}$ is a linear-fractional transformation that has two distinct fixed points *a* and *b*. Prove that f'(a)f'(b) = 1.

Problem 2.

Set f(z) = z/2, g(z) = z/3. Prove that there is no conformal change of coordinates $\phi : \mathbb{C} \to \mathbb{C}$ such that $g \circ \phi(z) = \phi \circ f(z)$ for all $z \in \mathbb{C}$, but there exists a homeomorphism $h : \mathbb{C} \to \mathbb{C}$ (i.e. continuous change of coordinates) such that $g \circ h(z) = h \circ f(z)$ for all $z \in \mathbb{C}$.

Problem 3.

Suppose $f : \mathbb{D} \to \mathbb{D}$ is holomorphic, and f(0) = 0. Prove that either f is a rotation of the unit disc, or the sequence of iterates $\{f^n\}$ converge to zero uniformly on compact subsets of \mathbb{D} .