Complex Analysis, HW \# 5

Chapter 6, problems 11, 17, 18, 21, and these problems:

Problem 1.

Suppose $f \in$ Aut $\widehat{\mathbb{C}}$ is a linear-fractional transformation that has two distinct fixed points a and b. Prove that $f^{\prime}(a) f^{\prime}(b)=1$.

Problem 2.

Set $f(z)=z / 2, g(z)=z / 3$. Prove that there is no conformal change of coordinates $\phi: \mathbb{C} \rightarrow \mathbb{C}$ such that $g \circ \phi(z)=\phi \circ f(z)$ for all $z \in \mathbb{C}$, but there exists a homeomorphism $h: \mathbb{C} \rightarrow \mathbb{C}$ (i.e. continuous change of coordinates) such that $g \circ h(z)=h \circ f(z)$ for all $z \in \mathbb{C}$.

Problem 3.

Suppose $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic, and $f(0)=0$. Prove that either f is a rotation of the unit disc, or the sequence of iterates $\left\{f^{n}\right\}$ converge to zero uniformly on compact subsets of \mathbb{D}.

