Complex Analysis, HW \# 6

Problem 1.

Show that any polynomial $f(z)=a z^{2}+b z+d, a \neq 0$, is conjugate to a map $f_{c}(z)=z^{2}+c$ for some $c \in \mathbb{C}$.

Problem 2.

Let $f(z)=z^{d}+a_{1} z^{d-1}+\ldots+a_{d}$. Show that is $f(w)=0$, then $|w| \leq 2 \max _{j}\left|a_{j}\right|^{1 / j}$.

Problem 3.

Suppose $f(z)$ is a polynomial, $\operatorname{deg} f \geq 2$. Let Ω_{∞} be the basis of attraction of ∞ (which is a superattracting fixed point). Show that

$$
F(f)=\Omega_{\infty} \cup\left(\widehat{\mathbb{C}} \backslash \overline{\Omega_{\infty}}\right)
$$

Problem 4.

Let $\left\{p_{0}, p_{1}, \ldots, p_{m-1}\right\}, m \geq 2$, be an attracting periodic orbit of a rational map f. Prove that all these points belong to different connected components of $F(f)$.

Problem 5.

Let g be an automorphism of the unit disc \mathbb{D}. Assume that g has no fixed points in \mathbb{D}. Prove that g^{n} converge (uniformly on compact sets) to a constant function. Hint: g can be extended continuously to $\overline{\mathbb{D}}$, and any continuous map of the closed disc to itself must have at least one fixed point.

Problem 6.

Let $g: \mathbb{D} \rightarrow \mathbb{D}$ be a holomorphic map. Assume that g admits a fixed point a in \mathbb{D} which is not attractive. Show that g is an automorphism of \mathbb{D}.

Problem 7.

TRUE or FALSE: If $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a rational map, $\operatorname{deg} f \geq 2$, then for any $z \in J(f)$ its orbit $\left\{z, f(z), f^{2}(z), \ldots\right\}$ is dense in $J(f)$.

