Complex Analysis Math 220C

Midterm Exam (Sample)

Problem 1.

Here is a "counterexample" to the Little Picard Theorem. Consider the function $f(z)=e^{e^{z}}$. Since exponential function does not have zeros, the function f also does not have zeros. At the same time, since $e^{z} \neq 0$, the function $f(z)=\exp \left(e^{z}\right)$ does not take the value $\exp (0)=1$. Therefore, $f(z) \notin\{0,1\}$ for all $z \in \mathbb{C}$. What is the problem with this argument?

Problem 2.

Suppose $f: \mathbb{C} \rightarrow \overline{\mathbb{C}}$ is meromorphic doubly periodic function with periods 1 and i, i.e.

$$
f(z+1)=f(z), \quad f(z+i)=f(z)
$$

for all $z \in \mathbb{C}$. Let $\Pi=\{z=x+i y \mid 0<x<1,0<y<1\}$. Suppose also that f has two simple poles in Π, and is holomorphic at al other points of Π and on $\partial \Pi$.
a) Prove that the sum of residues of f at those two poles is equal to zero;
b) Can one omit the condition that the poles are simple?

Problem 3.

Let f be a bounded analytic function in the upper half-plane \mathbb{H}. Suppose that $f(i n)=e^{-n}$ for all $n \in \mathbb{N}$. Find $f(1+i)$. (You need to explain why the value that you found is the only possible.)

Problem 4.

Suppose f is holomorphic in the unit disk, and $f(2 z)=2 f(z) f^{\prime}(z)$ whenever $|z|<1 / 2$. Prove that f is the restriction to the unit disk of some entire function.

Problem 5.

a) Show that there exists a holomorphic function f in a neighborhood of 0 such that $f(0)=0$ and $f(z)=z+(1 / 2) f^{2}(z)$.
b) Show that f admits unrestricted analytic continuation in $\mathbb{C} \backslash\{1 / 2\}$.
c) Is there a holomorphic function g on $\mathbb{C} \backslash\{1 / 2\}$ that coincides with f in a neighborhood of 0 ? Justify your answer.

