LINEAR ALGEBRA MATH 6G, SUMMER 2012

Practice Final Exam

Problem 1.

Find a basis in the linear subspace in \mathbb{R}^4 spanned by vectors [1, 2, 3, 4], [4, 3, 2, 1], [1, 1, 1, 1], and [-2, 0, 2, 4].

Problem 2.

Find the coordinate vector of the polynomial $p(x) = x^2 + x^3$ relative to the ordered basis $B = ((x-1)^3, (x-1)^2, (x-1), 1)$ of the vector space P_3 .

Problem 3.

Suppose
$$A=\begin{bmatrix}a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3\end{bmatrix}$$
 and $\det A\neq 0$. Find the unique solution of the system $A\bar{x}=\bar{w}$, where $\bar{w}=\begin{bmatrix}2c_1\\2c_2\\2c_3\end{bmatrix}$.

system
$$A\bar{x}=\bar{w}$$
, where $\bar{w}=\begin{bmatrix}2c_1\\2c_2\\2c_3\end{bmatrix}$

Problem 4.

Find det A, where

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 1 & 1 \\ 1 & 2 & 3 & 0 & 1 \\ 0 & 3 & 2 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

Problem 5.

Find the area of the triangle in \mathbb{R}^3 with vertices (1,1,1),(1,2,3), and (-5,0,2).

Problem 6.

Let $T: P_3 \to P_3$ be the linear transformation defined by $T(p(x)) = p(x) + \frac{d}{dx}p(x)$. Find the matrix representation of T relative to basis $B = (1, x, x^2, x^3)$.

Problem 7.

TRUE or FALSE: For any value of the parameter $\alpha \in \mathbb{R}$ the matrix $\begin{bmatrix} \alpha & 1 \\ 1 & 0 \end{bmatrix}$ is diagonalizable. Justify your answer.

Problem 8.

Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by

$$T([x_1, x_2, x_3]) = [-3x_1 + 10x_2 - 6x_3, 7x_2 - 6x_3, x_3].$$

Find eigenvalues and eigenvectors of T.