Solution of Homework 5

Problem (4.3):

Solution:

- (a) If f has an essential singularity at P, then $\frac{1}{f}$ has a essential singularity at P.
- (b) If f has an pole at P, then $\frac{1}{f}$ has a removable singularity at P.
- (c) If f has an removable singularity at P, and $\lim_{z\to p} f(z)=0$, then $\frac{1}{f}$ has a pole at p. If f has an pole at P, and $\lim_{z\to p} f(z)\neq 0$, then $\frac{1}{f}$ has a removable singularity at P.

Problem (4.4):

Solution:

 A_1 is closed under $+,\times$. But it is not closed under division. For example, $f_1(z)=1,\ f_2(z)=z,$ then 0 is removable singularity of both f_1 and f_2 . But z=0 is a pole of $\frac{f_1}{f_2}=\frac{1}{z}$.

 A_2 is closed under \times . But it is not closed under addition and division. For example, $f_1(z) = \frac{1}{z}$, $f_2(z) = -\frac{1}{z}$, then 0 is pole of both f_1 and f_2 . But z = 0 is a removable singularity of $f_1(z) + f_2(z) = 0$ and $\frac{f_1}{f_2} = \frac{\frac{1}{z}}{\frac{-1}{z}} = -1$.

 A_3 is not closed under addition, multiplication and division. For example, $f_1(z)=e^{\frac{1}{z}},\,f_2(z)=e^{\frac{-1}{z}}$, then 0 is an essential singularity of both f_1 and f_2 . But z=0 is a removable singularity of $f_1(z)\times f_2(z)=1$. And if $f_1(z)=e^{\frac{1}{z}},\,f_2(z)=-e^{\frac{1}{z}}$, then 0 is an essential singularity of both f_1 and f_2 . But z=0 is a removable singularity of $f_1(z)+f_2(z)=0$ and $\frac{f_1}{f_2}=-1$.

Problem (4.12)

Solution:

For example, $\sum_{n=0}^{\infty} z^n$ is convergent in an annular region $\frac{1}{2} < |z| < 1$, and it is convergent for $\{z: |z| = \frac{1}{2}\}$, but divergent on $\{z: |z| = 1$. So it is an example for that a laurent series can convergent include some of the boundary.

For example, $\sum_{n=0}^{\infty} z^n$ is convergent in an annular region $\frac{1}{2} < |z| < \frac{3}{4}$, and it is convergent for both $\{z: |z| = \frac{1}{2}\}$ and $\{z: |z| = \frac{3}{4}\}$. So it is an example for that a laurent series can convergent include all of the boundary.

For example, $f(z) = \frac{1}{z-\frac{1}{z}} + \frac{1}{z-2}$ is convergent in an annular region $\frac{1}{2} < |z| < |2|$, and it is not convergent for both $\{z: |z| = \frac{1}{2}\}$ and $\{z: |z| = 2\}$. So it is an example for that a laurent series can convergent include none of the boundary.

Problem (4.21)

Solution: We know that P is a nonremovable singularity of f(z), then it is either a pole or essential singularity.

Suppose P is a pole of f(z) with order k, then

$$f(z) = \frac{a_{-k}}{(z-P)^k} + \frac{a_{-k+1}}{(z-P)^{k-1}} + \dots + \frac{a_{-1}}{(z-P)^{-1}} + \sum_{n=0}^{\infty} a_n z^n$$

So we have
$$e^{f(z)} = \sum_{m=0}^{\infty} \frac{f(z)^m}{m!} = \sum_{m=0}^{\infty} \frac{1}{m!} (\sum_{i=-k}^{-1} \frac{a_{-i}}{(z-P)^i} + \sum_{j=0}^{\infty} a_j z^j)^m$$

we can see that there are infinite many nonzero coefficient of $e^{f(z)}$ with negative power.

Suppose P is an essential singularity of f(z), then for any $0 < r < \delta$, $f(D(P,r) \setminus P)$ is dense in \mathbb{C} . So $\forall z \in \mathbb{C}$, there exist $x \in D(f(z),r)$, such that such that $|z-x| < \varepsilon$. Here $x = f(w), w \in D(P,r) \setminus P$. And since e^z is continuous function. then for $\forall \varepsilon_2 > 0$, there exist a $\delta > 0$ such that $|e^{f(x)} - e^z| < \varepsilon_2$. So we prove that then for any $0 < r < \delta$, $e^{f(D(P,r) \setminus P)}$ is dense in \mathbb{C} . Then P is an essential singularity of $e^{f(z)}$.

Problem (4.33)

Solution:

(a) 2i is a pole of $f(z) = \frac{z^2}{(z-2i)(z+3)}$ with order 1, so

$$Res_f(2i) = f(z)(z-2i)|_{z=2i} = -\frac{12}{13} + \frac{8}{13}i$$

(b) -3 is a pole of $f(z) = \frac{z^2+1}{z(z+3)^2}$ with order 2, so

$$Res_f(-3) = \frac{1}{(2-1)!} [f(z)(z+3)^2]'|_{z=-3} = \frac{8}{9}$$

(c) i+1 is a pole of $f(z) = \frac{e^z}{(z-i-1)^3}$ with order 3, so

$$Res_f(i+1) = \frac{1}{(3-1)!} [f(z)(z-i-1)^3]^{(2)}|_{z=i+1} = \frac{1}{2}e^{i+1}$$

(d) 2 is a pole of $f(z) = \frac{z}{(z+1)(z-2)}$ with order 1, so

$$Res_f(2) = f(z)(z-2)|_{z=2} = \frac{2}{3}$$

(e) -i is a pole of $f(z) = \frac{\cot z}{z^2(z+i)}$ with order 2, so

$$Res_f(-i) = \frac{1}{(2-1)!} [f(z)(z+i)^2]'|_{z=-i} = 2icot(-i) - csc^2(-i)$$

(f) 0 is a pole of $f(z) = \frac{\cot z}{z(z+1)}$ with order 2, so

$$Res_f(0) = \frac{1}{(2-1)!} [f(z)z^2]'|_{z=0} = -1$$

(g) 0 is a pole of $f(z) = \frac{\sin z}{z^3(z-2)(z+1)}$ with order 2, so

$$Res_f(0) = \frac{1}{(2-1)!} [f(z)z^2]'|_{z=0} = \frac{1}{4}$$

(h) π is a pole of $f(z) = \frac{cot(z)}{z^2(z+1)}$ with order 1, so

$$Res_f(\pi) = f(z)(z - \pi)|_{z=\pi} = \frac{1}{\pi^2(\pi + 1)}$$

Problem (4.34)

Solution:

(a)

1

(b)

$$1 - \frac{e^{-1}}{\sin 1} - \frac{e^{-\pi}}{-\pi + 1} - \frac{e^{\pi}}{\pi + 1}$$

(c)

$$\frac{1}{28} - \frac{e^2 + e^{-2}}{16(e^2 - e^{-2})}$$

(d)

$$e^{-1} - \frac{1}{2}e^{-2} - \frac{1}{2}$$

(e)

$$\frac{2e^{-3}}{(-3+3i)^3} - \frac{e^{-4}}{(-4+3i)^2}$$

(f)

$$1+2i$$

(g)

$$\frac{e^{-2}}{4}$$

(h)

$$-1 + i$$

(i)

0

Problem (4.40) Solution:

By
$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
, we know that: $e^{z+\frac{1}{z}} = (\sum_{i=0}^{\infty} \frac{z^i}{i!})(\sum_{j=0}^{\infty} \frac{(\frac{1}{z})^j}{j!}) = \sum_{n=0}^{\infty} a_n z^n$

We know that $Res_f(0)=a_{-1}$ So we consider the coefficient of n=i-j=-1, $Res_f(0)=a_{-1}=\sum_{i-j=-1}^{\infty}\frac{1}{i!j!}=\sum_{k=0}^{\infty}\frac{1}{k!(k+1)!}$