Solution of Homework 7

Problem (4.48):
Solution:
\[\int_{0}^{+\infty} \frac{x^{\frac{1}{4}}}{1 + x^3} \, dx = \frac{\pi}{3 \sin(\frac{5\pi}{12})} \]

Problem (4.50):
\[\int_{0}^{+\infty} \frac{1}{1 + x^3} \, dx = \frac{\pi}{3 \sin(\frac{\pi}{3})} = \frac{2\sqrt{3}\pi}{9} \]
Solution:

Problem (4.54)
Solution:
\[\int_{-\infty}^{0} \frac{x^{\frac{1}{3}}}{1 + x^5} \, dx = \frac{\pi}{5 \sin(\frac{4\pi}{15})} \]

Problem (4.56)
Solution:
\[\int_{-\infty}^{+\infty} \frac{x^4}{1 + x^{10}} \, dx = \frac{\pi}{5} \]
Problem (5.2)
Solution:
suppose \(f \) has zeros at \(P_1, P_2, \ldots, P_k \) with order \(\lambda_1, \lambda_2, \ldots, \lambda_k \).
then
\[
\frac{1}{2\pi i} \oint \frac{f'(z)}{f(z)} \cdot g(z) dz = \sum_{i=1}^{k} \text{Res}(\frac{f'(z)}{f(z)} \cdot g(z), P_i) = \sum_{i=1}^{k} \lambda_i g(P_i)
\]

Problem (5.5)
Solution:
For example, let \(f_j(z) = (z - \frac{1}{2})(z - 1 + \frac{1}{j})^{k-\iota} \), then \(f_j(z) \) goes to \(f(z) = (z - \frac{1}{2})(z - 1)^{k-\iota} \) as \(j \to \infty \). \(f_j(z) \) has \(k \) roots in \(D(0,1) \), but \(f(z) \) only has exactly \(\iota \) roots in \(D(0,1) \).
We need to assume that \(f \) has no zeros on \(\partial D(0,1) \), then we can guarantee that \(f \) does have at least \(k \) roots.

Problem (5.8) Solution:
Since \(f(z) \neq 0 \) on \(\partial D(P,r) \) and \(\partial D(P,r) \) is compact, \(|f(z)| \geq \epsilon \) on \(\partial D(P,r) \) for some \(\epsilon > 0 \). Suppose \(|f(z) - g(z)| < \epsilon \) for all \(z \in \partial D(P,r) \), then
\[
|f(z) - g(z)| < |f(z)| + |g(z)|
\]
By Rouche’s theorem, \(f \) and \(g \) have the same number of zeros in \(D(P,r) \) counting multiplicity.