Solution of Homework 5

Problem (7.40):
Solution:
Yes. If \(u_1 \geq u_2 \geq \cdots \) is a decreasing sequence of harmonic functions on a connected open set \(U \subset \mathbb{C} \), then either \(u_j \to \infty \) uniformly on compact sets or there is a harmonic function \(u \) on \(U \) such that \(u_j \to u \) uniformly on compact sets.

Proof: Put \(v_j = -u_j \). Apply the Harnack’s principle.

Problem (7.41):
Solution:
Let \(P = (a, b) \in U \), write out the two variable Taylor expansion of \(f \) at \(P \).

\[
 f(x, y) = f(P) + (x - a)f_x(P) + (y - b)f_y(P) + \frac{1}{2}[(x - a)^2 f_{xx}(P) + 2(x - a)(y - b)f_{xy}(P) + (y - b)^2 f_{yy}(P)] + \text{higher order terms}
\]

Let \(x = a + r \cos \theta, y = b + r \sin \theta \), then we get

\[
 f(P + re^{i\theta}) = f(P) + r \cos \theta f_x(P) + r \sin \theta f_y(P) + \frac{r^2}{2}[(\cos \theta)^2 f_{xx}(P) + 2(\cos \theta)(\sin \theta)f_{xy}(P) + (\sin \theta)^2 f_{yy}(P)] + \text{higher order terms}
\]

\(U \) is open, so there exists \(0 < r < 1 \), s.t \(\overline{D(P, r)} \in U \). Thus since \(f \) is subharmonic,

\[
 f(P) \leq \frac{1}{2\pi} \int_0^{2\pi} f(P + re^{i\theta})d\theta
\]

Put the Taylor expansion above in the subharmonic inequation above, the \(\sin \theta, \cos \theta \) and \(\cos 2\theta \) vanish. Then we have

\[
 f(P) \leq f(P) + 0 + 0 + \frac{r^2}{4}[f_{xx}(P) + f_{yy}(P)] = \frac{r^2}{4}\Delta f(P)
\]
So we get, $\Delta f \geq 0$ on U.

Problem (7.42)
Solution:
Yes. Let $P \in U$ and $K \subset U$ be a compact set containing P. Then there exists $r > 0$ such that $D(P, r) \subset K$. If $f = \lim f_j$, then

$$f(P) = \lim_{j \to \infty} f_j(P)$$

$$\leq \lim_{j \to \infty} \frac{1}{2\pi} \int_0^{2\pi} f_j(P + re^{i\theta})d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \lim_{j \to \infty} f_j(P + re^{i\theta})d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(P + re^{i\theta})d\theta$$

So f is subharmonic.

Problem (7.48)
Solution:
For every point $P \in U$, there is a $D(P, r) \subset U$. Let $\varphi : \overline{D(0, 1)} \to U$ be defined by $\varphi(z) = rz + P$. Then φ is holomorphic from $D(0, 1)$ to
so we have

\[f(P) = f \circ \varphi(0) \leq \frac{1}{2\pi} \int_0^{2\pi} f \circ \varphi(e^{i\theta}) \, d\theta \]

\[= \frac{1}{2\pi} \int_0^{2\pi} \lim_{j \to \infty} f_j(P + re^{i\theta}) \, d\theta \]

\[= \frac{1}{2\pi} \int_0^{2\pi} f(P + re^{i\theta}) \, d\theta \]

So that \(f \) is subharmonic.

\[\square \]

Problem (7.49)

Solution:

For example \(f(x, y) = -x^2 \), then \(f^2(x, y) = x^4 \). Since \(\Delta f = -2 < 0 \), then \(f \) is not subharmonic.

And \(\Delta f^2 = 12x^2 \geq 0 \), so that \(f^2 \) is subharmonic.

\[\square \]

Problem (7.69)

Solution:

(a)

Let \(\overline{D(P, r)} \subset U \), and let \(h \) be harmonic on a neighborhood of \(\overline{D(P, r)} \), such that \(f \leq h \) on \(\partial D(P, r) \).

Since \(h \) is harmonic, \(\Delta h = 0 \). Thus for any \(z \in D(P, r) \), \(\Delta (f - h) = \Delta f - \Delta h = \Delta f > 0 \). So \(f - h \) can not have a local maximum. However, \(f - h \) has a maximum on \(\overline{D(P, r)} \). Thus the maximum occurs on \(\partial D(P, r) \).

Then we know that \(\exists w \in \partial D(P, r) \), s.t. \((f - h)(z) \leq (f - h)(w) \) for all \(z \in \overline{D(P, r)} \).

However, \(f(w) \leq h(w) \), so \((f - h)(w) \leq 0 \). So any \(z \in \overline{D(P, r)} \), \((f - h)(z) \leq 0 \) or \(f(z) \leq h(z) \). Thus \(f \) is subharmonic.
(b)
Since f is C^2, $f + \varepsilon |z|^2$ is C^2. Thus by (a), $f + \varepsilon |z|^2$ is subharmonic. Let $D(P, r) \subset U$, Thus

$$f(P) + \varepsilon |P|^2 \leq \frac{1}{2\pi} \int_0^{2\pi} [f(P + re^{i\theta}) + \varepsilon |P + re^{i\theta}|^2]d\theta$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} f(P + re^{i\theta})d\theta + \frac{\varepsilon}{2\pi} \int_0^{2\pi} |P + re^{i\theta}|^2 d\theta$$

Let $\varepsilon \to 0$, Then

$$f(p) \leq \lim_{\varepsilon \to 0} \frac{1}{2\pi} \int_0^{2\pi} f(P + re^{i\theta})d\theta + \lim_{\varepsilon \to 0} \frac{\varepsilon}{2\pi} \int_0^{2\pi} |P + re^{i\theta}|^2 d\theta$$

Then we have

$$f(p) \leq \frac{1}{2\pi} \int_0^{2\pi} f(P + re^{i\theta})d\theta$$

So f is subharmonic.

Problem (7.72) Solution:
By the result from problem 41, we know that $\Delta f \geq 0$. So we have:

$$M'(r) = \frac{d}{dr} \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta})d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{d}{dr} f(re^{i\theta})d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f_r(re^{i\theta})e^{i\theta} d\theta$$

$$= \frac{1}{2\pi} \int_{\partial D(0,r)} f_r(z)\frac{1}{r}dz$$

$$= \frac{1}{2\pi i} \int_{\partial D(0,r)} \nabla f(z) \cdot \overrightarrow{n} \frac{dz}{r}$$

$$= \frac{1}{2\pi i} \int_{D(0,r)} \Delta f(z) dz$$

$$\geq \frac{1}{2\pi i} \int_{D(0,r)} 0 dz$$

$$= 0$$

Then we know $M(r)$ is nondecreasing function of r.■