ERgodic Theory, HW \# 1

Homework will not be collected or graded. Nevertheless, please, make sure that you understand how to solve the problems. Interaction between students is strongly encouraged.

Problem 1.

Prove that if $f: M \rightarrow M$ preserves the measure μ then, given any $k \geq 2$, the iterate f^{k} also preserves μ. Is the converse true?

Problem 2.

Prove that for any finite sequence of digits there exists a power of 2 that starts with this sequence.

Problem 3.

Let $F:(M, \mu) \rightarrow(M, \mu)$ and $G:(N, \nu) \rightarrow(N, \nu)$ be measure preserving maps. How would you define $f \times g: M \times N \rightarrow M \times N$? Prove that it preserve the measure $\mu \times \nu$. Is it true that if both F and G are ergodic, then $F \times G$ is also ergodic?

Problem 4.

Consider expending maps

$$
\begin{gathered}
E_{2}: S^{1} \rightarrow S^{1}, E_{2}(x)=2 x(\bmod 1), \quad \text { and } \\
E_{3}: S^{1} \rightarrow S^{1}, E_{3}(x)=3 x(\bmod 1) .
\end{gathered}
$$

Denote by F the product map, $F: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, F=E_{2} \times E_{3}$. Is it possible to find a point $x \in \mathbb{T}$ such that $\omega(x)$ is homeomorphic to a circle? To a Cantor set? To a product of a circle and a Cantor set?

Problem 5.

Define the map $T:[0,1] \rightarrow[0,1]$ by $T(x)=4 x(1-x)$. Define the measure μ by

$$
\mu(B)=\frac{1}{\pi} \int_{B} \frac{1}{\sqrt{x(1-x)}} d x
$$

a) Check that μ is a probability measure;
b) Show that T preserves μ.

