Homework will not be collected or graded. Nevertheless, please, make sure that you understand how to solve the problems. Interaction between students is strongly encouraged.

Problem 1.

Is it possible to find a topological conjugacy between $\sigma_2 : \Sigma_2 \to \Sigma_2$ and $\sigma_3 : \Sigma_3 \to \Sigma_3$? Semiconjugacy?

Problem 2.

Set $B = \{(x, y) | |x| < 1, |y| < 1\}$ and consider a map $h : B \times S^1 \to B \times S^1$, $h(x, y, \phi) = (10x, \frac{y}{10}, \phi)$. Let $k : B \times S^1 \to B \times S^1$ be C^1 -close to h.

a) Prove that $\cap_{n \in \mathbb{Z}} k^n (B \times S^1)$ is homeomorphic to a circle.

b) Prove that $\bigcap_{n \in \mathbb{Z}} k^n (B \times S^1)$ is a smooth closed curve.

Problem 3.

Consider the following map $\alpha: \Sigma_2^+ \to \Sigma_2^+$,

$$(\alpha(\omega))_i = \begin{cases} 1 - \omega_i, & if \ \omega_i = 1 \ for \ all \ j < i, \\ \omega_i, & otherwise. \end{cases}$$

a) Prove that $\alpha: \Sigma_2^+ \to \Sigma_2^+$ is a homeomorphism of Σ_2^+ .

b) Prove that $\alpha : \Sigma_2^+ \to \Sigma_2^+$ is uniquely ergodic (i.e. has only one Borel probability invariant measure), and describe the invariant measure.

Problem 4.

Which of the following Bernoulli shifts are isomorphic?

a)
$$\sigma_1 : \left(\Sigma_4, \mu_{\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)} \right) \to \left(\Sigma_4, \mu_{\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)} \right);$$

b) $\sigma_2 : \left(\Sigma_3, \mu_{\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)} \right) \to \left(\Sigma_3, \mu_{\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)} \right);$
c) $\sigma_3 : \left(\Sigma_5, \mu_{\left(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)} \right) \to \left(\Sigma_5, \mu_{\left(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)} \right).$

Problem 5.

Let $S \subset \Sigma_2$ be the set of all sequences of zero and ones that do not contain two subsequent zeros.

- a) Show that *S* is an invariant set for the topological Bernoulli shift $\sigma: \Sigma_2 \to \Sigma_2$.
- b) Prove that periodic points of σ are dense in S.
- c) Find the number of periodic points of period N.
- d) Prove that $\sigma: S \to S$ is transitive.