## Ergodic Theory, HW \# 3

Homework will not be collected or graded. Nevertheless, please, make sure that you understand how to solve the problems. Interaction between students is strongly encouraged.

## Problem 1.

Is it possible to find a topological conjugacy between $\sigma_{2}: \Sigma_{2} \rightarrow \Sigma_{2}$ and $\sigma_{3}: \Sigma_{3} \rightarrow \Sigma_{3}$ ? Semiconjugacy?

## Problem 2.

Set $B=\left\{(x, y)| | x|<1,|y|<1\}\right.$ and consider a map $h: B \times S^{1} \rightarrow B \times S^{1}, h(x, y, \phi)=\left(10 x, \frac{y}{10}, \phi\right)$. Let $k: B \times S^{1} \rightarrow B \times S^{1}$ be $C^{1}$-close to $h$.
a) Prove that $\cap_{n \in \mathbb{Z}} k^{n}\left(B \times S^{1}\right)$ is homeomorphic to a circle.
b) Prove that $\cap_{n \in \mathbb{Z}} k^{n}\left(B \times S^{1}\right)$ is a smooth closed curve.

## Problem 3.

Consider the following map $\alpha: \Sigma_{2}^{+} \rightarrow \Sigma_{2}^{+}$,

$$
(\alpha(\omega))_{i}= \begin{cases}1-\omega_{i}, & \text { if } \omega_{i}=1 \text { for all } j<i, \\ \omega_{i}, & \text { otherwise. }\end{cases}
$$

a) Prove that $\alpha: \Sigma_{2}^{+} \rightarrow \Sigma_{2}^{+}$is a homeomorphism of $\Sigma_{2}^{+}$.
b) Prove that $\alpha: \Sigma_{2}^{+} \rightarrow \Sigma_{2}^{+}$is uniquely ergodic (i.e. has only one Borel probability invariant measure), and describe the invariant measure.

## Problem 4.

Which of the following Bernoulli shifts are isomorphic?
a) $\sigma_{1}:\left(\Sigma_{4}, \mu_{\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}\right) \rightarrow\left(\Sigma_{4}, \mu_{\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}\right)$;
b) $\sigma_{2}:\left(\Sigma_{3}, \mu_{\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)}\right) \rightarrow\left(\Sigma_{3}, \mu_{\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)}\right)$;
c) $\sigma_{3}:\left(\Sigma_{5}, \mu_{\left(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)}\right) \rightarrow\left(\Sigma_{5}, \mu_{\left(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)}\right)$.

## Problem 5.

Let $S \subset \Sigma_{2}$ be the set of all sequences of zero and ones that do not contain two subsequent zeros.
a) Show that $S$ is an invariant set for the topological Bernoulli shift $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$.
b) Prove that periodic points of $\sigma$ are dense in $S$.
c) Find the number of periodic points of period $N$.
d) Prove that $\sigma: S \rightarrow S$ is transitive.

