Elementary Analysis 140A

Final Exam SAMPLE

Problem 1.

Prove that for every $n \geq 1, \quad 2^{2^{n}}-1$ is divisible by at least n distinct primes.

Problem 2.

Determine the limit of the sequence $\left\{5-\frac{1}{n}+\frac{1}{n^{2}}\right\}_{n \in \mathbb{N}}$. Prove that the sequence converges to that limit using the definition of sequence convergence.

Problem 3.

If possible, give an example of each of the following. Write "not possible" when appropriate.
a) A sequence $\left\{s_{n}\right\}$ with $\lim \sup s_{n}=+\infty$ and $\liminf s_{n}=0$.
b) A bounded sequence which diverges.
c) A series $\sum a_{n}$ which diverges, but for which the series $\sum a_{n}^{2}$ converges.
d) A continuous but not uniformly continuous function $f:[-2000,2000] \rightarrow \mathbb{R}$.
e) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at exactly one point (and discontinuous at every other point).

Problem 4.

Prove that if the series $\sum a_{n}$ converges absolutely then the series $\sum(-1)^{n} a_{n}^{2}$ also converges.

Problem 5.

Give an example of a metric space (X, d) for which there exists a continuous unbounded function $f: X \rightarrow \mathbb{R}$. Is it possible to take the standard Cantor set as such an example?

Problem 6.

Prove that $e^{-x}=x$ for some $x>0$.

Problem 7.

Prove or Disprove: $f(x)=x^{2} \sin \frac{1}{x^{2}}$ is uniformly continuous on $(0,5)$.

