Elementary Analysis 140A

Midterm Exam 2 Sample ANSWERS

Problem 1.

Find the limits of the following sequences (no proof is required):
$\lim _{n \rightarrow \infty} \frac{n^{3}+n^{2}+n+1}{3 n^{3}+2 n^{2}+n+1}=$
$\lim _{n \rightarrow \infty}(2 n)^{\frac{1}{4 n}}=$
$\lim _{n \rightarrow \infty}\left(n^{1 / n}-\frac{1}{2}\right)^{n}=$
ANSWERS: $\frac{1}{3}, 1,0$

Problem 2.

For each sequence, find the set of subsequential limits:

1) $s_{n}=(-1)^{n}+\frac{1}{2^{n}}$
2) $s_{n}=\cos \left(\frac{\pi}{4}+\frac{n \pi}{2}\right)$
3) $s_{n}=(-1)^{n}+\frac{1}{2^{n}}+\cos \left(\frac{\pi}{4}+\frac{n \pi}{2}\right)$

ANSWERS: 1) $S=\{-1,1\}$; 2) $S=\left\{-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\}$; 3) $S=\left\{-1-\frac{1}{\sqrt{2}}, 1-\frac{1}{\sqrt{2}},-1+\frac{1}{\sqrt{2}}, 1+\frac{1}{\sqrt{2}}\right\}$.

Problem 3.

Prove that the closure of an interior of any closed set $E \subset \mathbb{R}$ is a subset of E. Does it have to coincide with E ?

ANSWER: Since int $E \subset E$, we have $\overline{\operatorname{int} E} \subset \bar{E}=E$. The closure of the interior of E does not have to coincide with E. Consider, for example, the set $E=[0,1] \cup\{3\}$. Then the closure of the interior of E is $[0,1] \neq E$.

Problem 4.

For each of the following sets find its closure:

1) $E=\left\{\left.\frac{1}{n}+\frac{1}{2^{n}} \right\rvert\, n \in \mathbb{N}\right\}$
2) $E=\mathbb{Q} \cap(0,1)$
3) $E=\mathbb{Q} \cap\left\{x \in \mathbb{R} \mid x^{2}<2\right\}$

ANSWERS: 1) $\bar{E}=E \cup\{0\}$, 2) $\bar{E}=[0,1]$, 3) $\bar{E}=[-\sqrt{2}, \sqrt{2}]$.

Problem 5.

Consider a metric space (X, d), where $X=\{x, y, z, u\}$ and $d(x, y)=d(x, z)=d(x, u)=d(y, x)=d(z, x)=d(u, x)=2$, $d(y, z)=d(y, u)=d(z, u)=d(z, y)=d(u, y)=d(u, z)=1$, $d(x, x)=d(y, y)=d(z, z)=d(u, u)=0$.
Check that d is indeed a metric, and prove that (X, d) is a complete metric space.
ANSWER: Solution was presented on the lecture.

