First-order linear differential equations

Definition

\[y' + a(t)y = b(t), \quad y(t) \]

the first order linear (non-homogeneous) differential equation

\[y' + a(t)y = 0 \]

the first order linear homogeneous diff. equation

Example

\[y' + ty + 3y = 0 \quad \times \]

\[y' + ty + t^2 + 1 = 0 \quad \checkmark \]

How to solve

\[y' + a(t)y = 0 \quad \times \]

\[
\frac{y'}{y} = -a(t)
\]

\[
\frac{d}{dt} \ln |y| = -a(t)
\]

\[
\ln |y| = -\int a(t) \, dt + C
\]

\[
|y(t)| = e^{-\int a(t) \, dt + C}
\]

\[
y(t) = Ce^{-\int a(t) \, dt}
\]

general solution of \((*)\)
Example
\[y' = ty \]
\[\frac{y'}{y} = t \]
\[y(t) = ce^{\frac{t^2}{2}} \]

How to solve \(y' + a(t)y = b(t) \)? \(\star \star \star \)

Solve first \(y' + a(t)y = 0 \)
\[y(t) = c \cdot e^{-\int a(t) dt} \]

Let us try to find a solution of \(\star \star \star \) in a form
\[y(t) = \varphi(t) \cdot e^{-\int a(t) dt} \]
\[\varphi'(t) e^{-\int a(t) dt} + \varphi(t) \cdot e^{-\int a(t) dt} \cdot (-a(t)) + \]
\[+ a(t) \varphi(t) e^{-\int a(t) dt} = b(t) \]
\[\varphi'(t) = b(t) \cdot e^{\int a(t) dt} \]
\[\varphi(t) = C + \int b(t) e^{\int a(t) dt} dt \]
\[\varphi(t) = C + G(t) \]
\[y(t) = e^{-\int a(t) dt} \left(C + G(t) \right) \]

("Method of "variation of parameters")
Example

\[y' + y + e^{-t} = 0 \]
\[y' = -y \]
\[y = c e^{-t} \]

Let us try to find the solution of the (non-homogeneous) equation in a form

\[y(t) = \varphi(t) e^{-t} \]
\[\varphi'(t) e^{-t} - (\varphi(t)) e^{-t} + \varphi(t) e^{-t} + t = 0 \]
\[\varphi'(t) = -t e^{-t} \]

\[y(t) = -S + e^{t} dt + c = -(e^{-t} e^{t}) + c = c - (e^{-t} e^{t}) \]
\[y(t) = (c - e^{-t} e^{t}) e^{-t} = c e^{-t} - t + 1 \]

- general solution

Remark

Solutions of a homogeneous linear shift equation from a linear space:

\[y' + a(t) y = 0 \quad y = y(t) \]
\[z' + a(t) z = 0 \quad z = z(t) \]

\[\frac{d}{dt} \left(y + z + a(t) (y + z) \right) = 0 \]
\[(\lambda y)' + a(t) \cdot (\lambda y) = 0 \quad \forall \lambda \in \mathbb{R} \]
Moreover, if

\(z, y \) are solutions of a non-homogeneous equation then

\((z - y)\) is a solution of a homogeneous equation.

In other words, if

\(w(t) \) is a solution of a non-homogeneous equation,

then any its solution \(z(t) \)

can be represented as \(z(t) = w(t) + u(t) \),

where \(u(t) \) is a solution of a homogeneous equation.

\(C'(\mathbb{R}) \)

solutions of a homogeneous equation

\(y' = \frac{dy}{dx} \)

partial solution of a non-homogeneous equation

solutions of a non-homogeneous equation

Example

\[
\begin{align*}
X(t) &= 100 + t \\
\frac{dX}{dt} &= 1 + \frac{4}{100+t} \\
Y(0) &= 0
\end{align*}
\]

Can the bug bite within 2 hours?
Homogeneous equation:

\[y'(t) = \frac{y}{100+t} \]

\[\frac{y'}{y} = \frac{1}{100+t} \]

\[y = C \cdot (100+t) \]

Non-homogeneous equation:

\[y' = 1 + \frac{y}{100+t} \]

\[y(t) = y(t) \cdot \frac{1}{100+t} \]

\[y'(t) + (100+t) + y(t) = 1 + y(t) \]

\[y'(t) = \frac{1}{100+t} \]

\[u(t) = \ln(100+t) + \epsilon \]

\[u(t) = (100+t) \cdot (C + \ln(100+t)) \]

\[y(0) = 0 \]

\[C = \ln 100 \]

\[y(t) = (100+t) \cdot \ln \left(1 + \frac{t}{100}\right) \]

\[y(t) = x \cdot 14 = 100+t \]

\[\ln \left(1 + \frac{t}{100}\right) = 1 \Rightarrow 1 + \frac{t}{100} = e \]

\[t = 100 \cdot (e - 1) \approx 1.7 \cdot 10^3 \text{ min} \]

\[170 \text{ min} > 2 \text{ hours} \]
On linear shift equations of first order with periodic coefficients.

\[y'(t) + a(t) y = 0, \quad a(t+T) = a(t), \quad T > 0, \]

\[
\begin{align*}
 y(t) &= C e^{-\int_{0}^{t} a(t) \, dt} \\
 y(T) &= y(0) e^{-\int_{0}^{T} a(t) \, dt} = \lambda
\end{align*}
\]

If \[\lambda < 1 \] then \[y(t) \to 0 \text{ as } t \to +\infty \]

If \[\lambda > 1 \] then \[y(t) \to \infty \text{ as } t \to +\infty \]

If \[\lambda = 1 \] then \[y(t) \text{ is periodic} \]

\[y' + a(t) y = b(t) = a(t), \quad b(t) \text{ are periodic} \]

If \[\lambda < 0 \] then \[\exists \] periodic solution,

if \[\lambda > 0 \] then all solutions \[\to \text{ periodic} \]

if \[\lambda > 1 \] then all other solutions \[\to \infty \text{ as } t \to +\infty \]