Attacks on Ring Learning with Errors

Kristin E. Lauter

joint work with Yara Elias, Ekin Ozman, and Katherine Stange

UC Irvine, August 31, 2015

Lattice-Based Cryptography

- Post-quantum cryptography
- Ajtai-Dwork: public-key crypto based on a shortest vector problem (1997)
- Hoffstein-Pipher-Silverman: NTRU working in $\mathbb{Z}[X]/(X^N-1)$ (1998) now standardized
- Gentry: Homomorphic encryption using ideal lattices (2009)
- Privacy Applications
 - 1. Medical records
 - 2. Machine learning and outsourced computation
 - 3. Genomic computation

Hard problems in lattices

Setting: A lattice in \mathbb{R}^n with norm. A lattice is given by a (potentially very bad) basis.

- Shortest Vector Problem (SVP): find shortest vector or a vector within factor γ of shortest.
- Gap Shortest Vector Problem (GapSVP): differentiate lattices where shortest vector is of length $< \gamma$ or $> \beta \gamma$.
- Closest Vector Problem (CVP): find vector closest to given vector
- Bounded Distance Decoding (BDD): find closest vector, knowing distance is bounded (unique solution)
- Learning with Errors (Regev, 2005)

Learning with errors

Problem: Find the secret $s \in \mathbb{F}_q^n$ given a linear system that s approximately solves.

 Gaussian elimination amplifies the 'errors', fails to solve the problem.

In other words, find $s \in \mathbb{F}_q^n$ given multiple samples $(a,\langle a,s\rangle+e)\in \mathbb{F}_q^n imes \mathbb{F}_q$ where

- q prime, n a positive integer
- e chosen from error distribution χ

Ideal Lattice Cryptography

Ideal Lattices:

- lattices generated by an ideal in a number ring
- extra symmetries compared to LWE
 - saves space
 - speeds computations

Ring Learning with Errors (Ring-LWE)

Search Ring-LWE (Lyubashevsky-Peikert-Regev, Brakerski-Vaikuntanathan):

- $R = \mathbb{Z}[x]/(f)$, f monic irreducible over \mathbb{Z}
- $R_q = \mathbb{F}_q[x]/(f)$, q prime
- χ an error distribution on R_q
- Given a series of samples $(a, as + e) \in R_q^2$ where
 - 1. $a \in R$ uniformly,
 - 2. $e \in R$ according to χ ,

find s.

Decision Ring-LWE:

 Given samples (a, b), determine if they are LWE-samples or uniform (a, b) ∈ R_a².

Currently proposed: *R* the ring of integers of a cyclotomic field (particularly 2-power-cyclotomics).

Search-to-decision reductions

Search-to-decision reductions:

- LWE (Regev)
- cyclotomic Ring-LWE (Lyubashevsky-Peikert-Regev)
- galois Ring-LWE (Eisenträger-Hallgren-Lauter)

Polynomial embedding: practical

Polynomial embedding: Think of *R* as a lattice via

$$R \hookrightarrow \mathbb{Z}^n \hookrightarrow \mathbb{R}^n$$
, $a_n x^n + \ldots + a_0 \mapsto (a_n, \ldots, a_0)$.

Note: multiplication is 'mixing' on coefficients. Actually work modulo *q*:

$$R_q \hookrightarrow \mathbb{F}_q^n, \quad a_n x^n + \ldots + a_0 \mapsto (a_n \bmod q, \ldots, a_0 \bmod q).$$

Naive sampling: Sample each coordinate as a one-dimensional discretized Gaussian. This leads to a discrete approximation to an *n*-dimensional Gaussian.

Minkowski embedding: theoretical

Minkowski embedding: A number field K of degree n can be embedded into \mathbb{C}^n so that **multiplication and addition are componentwise**:

$$K \mapsto \mathbb{C}^n$$
, $\alpha \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n)$

where α_i are the *n* Galois conjugates of α . Massage into \mathbb{R}^n :

$$\phi: R \hookrightarrow \mathbb{R}^n$$
, $(\underline{\alpha_1, \dots, \alpha_r}, \underbrace{\Re(\alpha_{r+1}), \Im(\alpha_{r+1}), \dots})$.

As usual, then we work modulo q (modulo prime above q). **Sampling:** Discretize a Gaussian, spherical in \mathbb{R}^n under the usual inner product.

Relation to LWE: Each Ring-LWE sample $(a, sa + e) \in R_q^2$ is really n LWE samples $(a_i \mathbf{e}_i, \langle s, a_i \mathbf{e}_i \rangle + e_i) \in (\mathbb{Z}/q\mathbb{Z})^{n+1}$

Distortion of the error distribution

Distortion: A spherical Gaussian in Minkowski embedding is not spherical in polynomial embedding.

Linear transformation:

$$\mathbb{Z}[X]/f(X) \to \phi(R)$$

Spectral norm: The radius of the smallest ball containing the image of the unit ball.

Generic attacks on LWE problem

- Time 2^{O(n log n)}
 - maximum likelihood, or:
 - waiting for a to be a standard basis vector often enough
- Time 2^{O(n)}
 - Blum, Kalai, Wasserman
 - engineer a to be a standard basis vector by linear combinations
- Distinguishing attack (decision) and Decoding attack (search)
 - > polynomial time
 - · relying on BKZ algorithm
 - · used for setting parameters

These apply to Ring-LWE.

Setting parameters

- n, dimension
- q, prime
 - q polynomial in n (security, usability)
- f or a lattice of algebraic integers
- χ, error distribution
 - Poly-LWE in practice
 - Ring-LWE in theory
 - Poly-LWE = Ring-LWE for 2-power cyclotomics
 - Gaussian with small standard deviation σ

Example:
$$n \approx 2^{10}$$
, $q \approx 2^{31}$, $\sigma \approx 8$

Decision Poly-LWE Attack of Eisenträger, Hallgren and Lauter

Potential weakness: $f(1) \equiv 0 \mod q$.

- 1. Ring homomorphism $R_q o \mathbb{F}_q$ by evaluation at 1
- 2. Samples transported to \mathbb{F}_q :

$$(a(1), a(1)s(1) - e(1))$$

- 3. The error e(1) is small if e(x) has small coefficients.
- 4. Search for s(1) exhaustively (try each, see if purported e(1) is small).

Overview of Eisentraeger-Hallgren-Lauter

 $K = \mathbb{Q}(\beta) = \mathbb{Q}[x]/(f(x))$, n = degree of K, $R = \mathcal{O}_K$, q prime Consider the following properties:

- 1. (q) splits completely in K, and $q \nmid [R : \mathbb{Z}[\beta]]$;
- 2. K is Galois over Q;
- 3. the ring of integers of K is generated over \mathbb{Z} by β , $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}(\beta) = \mathbb{Z}[\S]/(\{(\S))$ with $f'(\beta) \mod q$ "small";
- the transformation between the Minkowski embedding of K and the power basis representation of K is given by a scaled orthogonal matrix;
- 5. $f(1) \equiv 0 \pmod{q}$;
- 6. q can be chosen suitably large.

Results: [Eisentraeger-Hallgren-Lauter 2014]

- For (K, q) satisfying conditions (1) and (2), we have a search-to-decision reduction from RLWE_q to RDLWE_q.
- For (K, q) satisfying conditions (3) and (4), we have a reduction from RDLWE_q to PLWE_q.
- For (K, q) satisfying conditions (5) and (6), we have an attack which breaks instances of the PLWE decision problem.

Consequence

- For number fields K satisfying all 6 properties, we would have an attack on the RLWE problem!
- However, this does not happen in general and we don't have any examples of number fields satisfying *all 6 properties*.
- For example, 2-power cyclotomic fields, which are used in practice, don't satisfy property (5).

Extending the [EHL] attack (Elias-L.-Ozman-Stange)

Suppose: CRT decomposition (f splits mod q):

$$R_q \cong \mathbb{F}_q^n$$

with n ring homomorphisms $\phi_i: R_q \to \mathbb{F}_q$, **Question:** Given a distribution χ on R_q , when is the image distribution $\phi_i(\chi)$ distinguishable from uniform in \mathbb{F}_q ?

- EHL: if ϕ_i takes $x \mapsto 1$, then it is distinguishable.
- Other cases with some hope for success on Poly-LWE:
 - φ_i(x) of small order (suggested by Eisenträger-Hallgren-Lauter)
 - $\phi_i(x)$ near 0.
- Are there other more subtle situations?

Small order: small set of errors

Suppose $f(\alpha) \equiv 0 \pmod{q}$ for α of order r modulo q. Then $e(\alpha)$ is limited to

$$(4\sigma n/r)^r$$

possible residues modulo q with high probability (truncate tails of Gaussian). If this is less than q, we have an attack:

- 1. Enumerate and sort S.
- 2. Loop through residues $g \in \mathbb{Z}/q\mathbb{Z}$
 - 2.1 Loop through ℓ samples:
 - 2.1.1 Assume $s(\alpha) = g$, derive assumptive $e(\alpha)$.
 - 2.1.2 If $e(\alpha)$ not in S, throw out guess g, move to next g

Proposition (Elias-Lauter-Ozman-S.)

Runtime is $\tilde{O}(\ell q + nq)$ with implied constant depending on r. If algorithm keeps no guesses, samples are not PLWE. Otherwise, valid PLWE samples with probability

$$1-(|\mathcal{S}|/q)^{\ell}.$$

Small order: small size errors

Suppose one of the following:

- 1. $\alpha = \pm 1$ and $8\sigma\sqrt{n} < q$
- 2. α small order $r \ge 3$, $8\sigma \sqrt{n(\alpha^{r2}-1)}/\sqrt{r(\alpha^2-1)} < q$

Attack:

- 1. Loop through residues $g \in \mathbb{Z}/q\mathbb{Z}$
 - 1.1 Loop through ℓ samples:
 - 1.1.1 Assume $s(\alpha) = g$, derive assumptive $e(\alpha)$.
 - 1.1.2 If $e(\alpha)$ not within q/4 of 0, throw out guess g, move to next g

Proposition (Elias-Lauter-Ozman-Stange)

Runtime is $\tilde{O}(\ell q)$ with absolute implied constant. If algorithm keeps no guesses, samples are not PLWE. Otherwise, valid PLWE samples with probability

$$1-(1/2)^{\ell}$$
.

Desired properties for search Ring-LWE attack

For Poly-LWE attack

- 1. $f(1) \equiv 0 \pmod{q}$; or
- 2. $f(-1) \equiv 0 \pmod{q}$; or
- 3. small order root α of f modulo q

For moving the attack to Ring-LWE

spectral norm is small

For search-to-decision reduction

- 1. Galois; and
- 2. q splits

Condition for weak Ring-LWE instances

- $\sigma =$ parameter for the Gaussian in Minkowski embedding
- M = change of basis matrix from Minkowski embedding of R to its polynomial basis.

Theorem (Elias-Lauter-Ozman-Stange)

Let K be a number field with:

- 1. ring of integers $\mathbb{Z}[\beta]$
- 2. q prime such that min poly of β has root 1 modulo q
- 3. spectral norm $\rho(M)$ satisfies

$$\rho < \frac{q}{4\sqrt{2\pi}\sigma n}$$

Then Ring-LWE decision can be solved in time $\widetilde{O}(\ell q)$ with probability $1 - 2^{-\ell}$ using ℓ samples.

Provably weak Ring-LWE family

Theorem (Elias-Lauter-Ozman-Stange)

Let $f = x^n + q - 1$ be such that

- 1. *q prime, q* − 1 *squarefree*
- 2. n is a power of a prime p
- 3. $\mathbf{p}^2 \nmid ((1-q)^n (1-q))$
- 4. $\tau > 1$ where

$$\tau := \frac{q \det(M)^{1/n}}{4\sqrt{\pi}\sigma n(q-1)^{1/2-1/2n}}$$

Then Ring-LWE decision can be solved in time $\widetilde{O}(\ell q)$ with probability $1-2^{-\ell}$ using ℓ samples.

Cyclotomic invulnerability

Proposition (Elias-Lauter-Ozman-Stange)

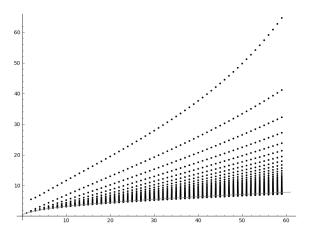
The roots of the m-th cyclotomic polynomial have order m modulo every split prime q.

Cyclotomic vulnerability

Use f the minimal polynomial of $\zeta_{2^k}+1$. **Example:** $k=11,\ q=45592577\approx 2^{32}$ **Properties:**

- 1. Galois,
- 2. q splits completely,
- 3. has root -1 modulo q,
- 4. spectral norm is unmanageably large.

Heuristics for $x^n + ax + b$



Polynomials $f(x) = x^{32} + ax + b$, $-60 \le a, b \le 60$, plotted on a $\max\{a,b\} - by - \rho'$ plane (ρ' is *normalized* spectral norm). Grey line is $y = \sqrt{x}$.

Experimentally, examples cluster around $\rho' = \sqrt{\max\{a, b\}}$.

Successful attacks

Thinkpad X220 laptop, Sage Mathematics Software

case	f	q	W	τ	sampls per run	successful runs	time per run
PLWE	$x^{1024} + 2^{31} - 2$	$2^{31} - 1$	3.192	N/A	40	1 of 1	13.5 h
Ring	<i>x</i> ¹²⁸ +524288 <i>x</i> +524285	524287	8.00	N/A	20	8 of 10	24 s
Ring	$x^{192} + 4092$	4093	8.87	0.0136	20	1 of 10	25 s
Ring	$x^{256} + 8190$	8191	8.35	0.0152	20	2 of 10	44 s

Number Theory Questions

- 1. When is a Gaussian on R_q distinguishable from uniform in its image in \mathbb{F}_q ?
 - Poly-LWE or Ring-LWE (Minkowski Gaussian)
- 2. Are there fields of cryptographic size which are Galois and monogenic? (other than the cyclotomic number fields and their maximal real subfields?)
- 3. What is the distribution of elements of small order among residues modulo *q*? What is the smallest residue modulo a prime *q* which has order exactly *r*?