Polynomial Chains in Gentry-Szydlo Algorithm

Setting

- R ring of integers in m-th cyclotomic field K
- n degree of K
- v element of R
- <v> ideal generated by v as lattice in HNF
- v complex conjugate
- vv norm of v in real subfield

Short Multiple Lemma

- "Implicit Lattice Reduction"
- For vectors v in R
- Given v v and HNF of v, <v>
- We can produce a multiple of v
 - -w=va
 - a is 'LLL short' = norm $\leq 2^{(n-1)/2}$ sqrt(n)
 - Poly time in bit length of v and dim(R)

Congruence Lemma

- P prime =1 mod m
- v not zero divisor of R_p
- v^{P-1}=1 mod P in R
- For elements a with small coefs, |a| <P/2
- Knowledge of: a v^{P-1} mod P reveals a

Small Primes Euclidean Lemma

- {p_i} bunch of small primes
- P and P' both =1 mod 2m
- GCD (P-1, P'-1)=2m
- Knowledge of v^{P-1} and v^{P'-1} gives v^{2m} mod {p_i}
- Suppose product of primes > 2 | v^{2m} |
- v^{2m} computable exactly in R

2m-th root Lemma

- Knowledge of v^{2m} gives v
- v defined up to 2m-th root of 1
- Describe proof later

Strategy for extracting v

- Choose big primes P P' bigger than LLL bound
 - $= 1 \mod 2m$ and GCD (P-1, P'-1)=2m
 - Avoid P's where v zero divisor in R_p
 - Computing v^{P-1} is futile as $P > 2^n$
- For P, P' create special chains of polynomials using Short Multiple Lemma
 - Reasonable sized coefs
- Calculate v^{P-1} and v^{P'-1} mod {p_i} for small primes using Congruence Lemma
- Calculate v^{2m} then v up to root of 1

Defining Chains for P

- Goal allow expressions with v^{P-1} mod small primes
 - Motivated by square and multiply
- Write P-1 in binary as $k_0 + 2k_1 + 4k_2 \dots 2^r k_r$
- Each term will encode a bit k_{r-i} and an unknown v_i with known norm $v_i \tilde{v}_i$ and ideal $\langle v_i \rangle$
- These v_i build up information about v^{P-1}
- $w_1=v^{(k_{r-1})} v^2 \tilde{v}_1$ comes with $v_1 \tilde{v}_1$ and $\langle v_1 \rangle$
- $w_2=v^{(k_{r-2})} v_1^2 \tilde{v}_2$ comes with $v_2 \tilde{v}_2$ and $\langle v_2 \rangle$
-
- $w_r = v^{(k_0)} v_{r-1}^2 \tilde{v}_r$ comes with $v_r \tilde{v}_r$ and $\langle v_r \rangle$

Computing terms

- First term needs w_1 and $v_1\tilde{v}_1$ and $\langle v_1 \rangle$
- Use known ideal <v> and v\(\tilde{v}\)
- Create $\langle v^{(k_{r-1}+2)} \rangle$ and $v^{(k_{r-1}+2)} \tilde{v}^{(k_{r-1}+2)}$
- Short Multiple Lemma gives w₁ in R
- $w_1 = v^{(k_{r-1})} v^2 \tilde{v}_1$ where \tilde{v}_1 is short-ish
 - Try again if \tilde{v}_1 is a zero divisor in R_p
- Divide out terms of $w_1w_1^{\sim}$ to get $v_1\tilde{v}_1$
- Divide out ideal terms <w₁> to get <v₁>

General terms

- i-th term for i>1 needs w_i and $v_i\tilde{v}_i$ and $\langle v_i \rangle$
- Use known ideal $\langle v_{i-1} \rangle$ and $v_{i-1} \tilde{v}_{i-1}$
- Create $\langle v_{i-1} \rangle (k_{r-i} + 2) \rangle \& v_{i-1} \langle (k_{r-i} + 2) \tilde{v}_{i-1} \rangle (k_{r-i} + 2)$
- Short Multiple Lemma gives w_i in R
- $w_i = v^{\wedge}(k_{r-i}) v^2 \tilde{v}_i$ where \tilde{v}_i is short
- Divide out terms of $w_i w_i^{\sim}$ to get $v_i \tilde{v}_i$
- Divide out ideal terms <w_i> to get <v_i>

Using Chain

- Want $v^{P-1} \tilde{v}_r \mod P$ (or another prime)
- Set $x_1=w_1=v^{(2+k_{r-1})} \tilde{v}_1$ ($v^{\text{some bits}}$ times fudge)
 - Exponent of v has 2 most significant bits of P-1
- Set $x_2 = x_1^2 w_2 / (v_1 \tilde{v}_1)^2 \mod P$
- = $(v^{(2+k_{r-1})} \tilde{v}_1)^2 v^{(k_{r-2})} v_1^2 \tilde{v}_2 / (v_1 \tilde{v}_1)^2$
- = $v^{(4+2k_{r-1}+k_{r-2})} \tilde{v}_2$
 - Exponent of v has 3 most significant bits of P-1
- Continue so $x_r = v^{P-1} \tilde{v}_r \mod P$
- This = $\tilde{v}_r \mod P$.
- Since \tilde{v}_r is snall get \tilde{v}_r exactly in R
- Details Make sure didn't divide by 0

Reuse for small primes

- Let q be a prime where no $v_i \tilde{v}_i$ are zero divisors in R_q
- Same chain gives v^{P-1} v

 _r mod q
- Divide by known \tilde{v}_r to get v^{P-1} mod q
- Choose many primes {p_i} with product> |v^{2m}|
- Small Primes Euclidean Lemma gives v^{2m}
- 2m-th root Lemma gives v
- Done!

2m-th root Lemma Details

- v^{2m} defines v up to a 2m-th root of 1
- Embedding into C at a root defines v uniquely
- Compute ratios v(s)/v(s^b) efficiently.
 - Take large Q= 2mc-b. $v(x)^Q=v(x^Q)$ in R_q
 - Compute $(v^{2m})^c = v^Q v^b = v(x^{-b}) v^b \mod Q$
 - Since Q large get $z_{-b} = v(x^{-b}) v^b$ in R
- Let s be m-th root of 1.
- Take v^{2m}(s) and take an m-th root v(s) in Complex
 - $v(s^{-b}) = z_{-b}(s)/v(s)^{b}$
- Use all n values v(s^b) to find coefs of v using
 - Using linear algebra

Another Look at GS result

- Often work in Z[X]/ (X^N-1) Ring instead of R
 - N prime
 - Decompose as R + Z
 - Finding f from ff[~] in Z is easy!
- Neglected {a_i} (coordinate embedding)
 - Unitary Matrix

GS focus on Lattice

- GS says given {a_i f} and f*f~ you can recover f and all the a_i's up to a unit u |uu~ =1
- Two easily derivable quantites
- 1. Note from $\{a_i, f\}$ and f^*f^* we easily obtain $\{a_i, a_i^*\}$ in R
- Const term CT($a_i a_j^{\sim}$)= dot product < a_i , a_j >
 - That is Gram Matrix $A_{ij} = CT(a_i a_j^{\sim})$
 - Threw away other terms of $a_i a_i^{\sim}$
- 2. Since we have polys {a_i f}, we can define x a_i
 - Map x: a_i -> Sum $(g_{i,i} a_i)$, define $g_{i,i}$
 - Take x a_i f in Ideal, find $g_{i,i}$ so it equals Sum (g_i,j) a_i f
- This is rest of information thrown out in Gram

Gram + Group versus GS classic

- Let's focus on a₁ and get all the a₁ a_i~
- X^e –th term of $a_1 a_j^{\sim} = CT(x^{-e} a_1 a_j^{\sim})$
- Use group law to mult $x^{-e} = x^{N-e}$ by a_1
 - $-x^{-e}a_1 = Sum(h_i a_i)$ for easily computable integers h_i
- X^e –th term of a₁ a_j~
 - = CT (Sum $(h_i a_i) a_i^{\sim})$
 - = Sum (h_i CT($a_1 a_i^{\sim}$)) = Sum (h_i A_{ii})
 - Gram + Group = $(a_1 a_1^{\sim}) \& \{a_1 a_i^{\sim}\}$ [ideal $<a_1>$ This is GS!
- Gram and Group Law will recover basis (mod rotation)
- Hendrik will generalize!

Information Lost in Gram

- Let a_i be vectors spanning L
 - Matrix A, AU U unimodular, different basis.
- Signed Permutation of coordinates
 - O A permutation of coords.
- Lattices Z^N equiv if B = O A U
- Gram $A = A^T A$
 - Gram (OA) = Gram (A)
- Group Law rigidifies lattice nails down signed permutation

Factoring Gram Matrices

Shortest vectors in orthogonal lattices

Flavors of Lattices

- Subset of Z^N integral basis presented
- Positive Definite Quadratic Form (PDQF).
 - Span of N independent real valued vectors (basis).
 - Discrete Subgroup of R^{N.}
 - Gram Matrix of some basis: $G = A *A^T$. (A has real coefs)
- Gram Matrix with Integral Entries.
 - (more restrictive class).
- Gram of a Basis with Integral Entries.
 - (even more restrictive class).
- Det. 1 Gram of a Basis with Integral Entries.

Lattice Problems

- Standard Problem Formulation.
 - Given L find Shortest vector (SVP).
 - Given L,v find Closest vector (CVP).
 - Approaches : LLL & Schnorr variants.
- Presentation & Conditions affect hardness
 - Standard: Know a **Basis** (Embed into R^N).
 - Alternate: Know Gram matrix of Basis.
 - Conveys less information.
 - LLL & Schnorr use Gram data
 - If an Integral Basis Exists, may be hard to find!

The Orthogonal Lattice

- A lattice isomorphic to \mathbf{Z}^N is called *Orthogonal*, or *Trivial*, or *Standard*
- An easy case: Suppose L presented as span of integer-valued basis of vectors {v_i}.
 - Arrange Basis in columns as *Unimodular* Matrix U
 - Gaussian elimination for all shortest vectors!

Orthogonal Lattice Problem

- Harder Case: L is not presented with basis matrix.
- L: span of N *unknown* integer vectors $\{v_i\}$, only specified by Gram Matrix: $G = U^TU$.
 - Only have geometric data: dot products $\{v_i \cdot v_j\}$.
- **Problem** (OLP): <u>Given Gram matrix of det. 1, G of integer-valued basis of L, find L's short vectors.</u>
 - Given U^TU find U'=OU, O signed permutation matrix
 - Also called Embedding Prob., Gram Factorization Prob.
- Exponential lattice reduction (using G) recovers U.
 - Seems generally Infeasible!
 - This is a less studied special case though

Example of Averaging

- Old variants GGH, NTRUSign. Z[x]/(x^N-1)
 - Let A be private basis (with columns \mathbf{v}_i).
 - Let M = AU be public basis U unimodular.
 - Suppose 'transcript' consists of vectors s:
 - $-s = Ab = \sum b_i \mathbf{v}_i$ where the b_i are <u>uniformly</u> distributed.
- Avg($s_j s_j^T$)= A avg($b_j b_j^T$) $A^T = \lambda AA^T$.
 - Where λ is a constant.
- Define $G = M^T (AA^T)^{-1} M = U^T U$
- G is Gram matrix of rows spanned by U.
 - Recovering OU produces AO⁻¹- reordered basis

Approach – Embedding in Z^N.

- Interest in 'factoring' $G = U^T U$.
- Standard LLL /BKZ small dimension only
- Attempt to embed v_i in Z. (know one exists).
- Postulate tool 'Lattice Distinguisher'.
 - Consider Oracle Algorithms.
 - Discuss feasibility; use of Theta Functions to help realize Oracle.
 - With Oracle, we can recover v_i coordinates (mod sign, order).

Lattice Isomorphism

- We need a definition to distinguish:
 - A and B lattices bases define isomorphic lattices if B = O A
 - Decisional Problem maybe hard
- Easy cases for non-isomorphism:.
 - Determinant differs.
 - Only one of the 2 contains vectors v: $|v|^2 = n_0$.
 - Theta functions differ

Orthogonal Lattice Theorem

- Suppose we have oracle to decide if Lattices defined by Gram matrices G₁, G₂ are isomorphic
- Then there is an oracle algorithm that will produce U'=OU in polynomial time from G=U^TU

Example - HNF

- With *integral* basis can be easy to distinguish.
- Isomorphism class distinguished by HNF.
- Example of non-isomorphic L's. (v's in rows)

```
      Lattice 1
      Lattice 2
      .

      111000...
      1111111110...

      020000...
      0200000000...

      002000...
      0020000000...

      000200...
      0002000000...
```

Auxiliary Lattice

- Define AUX: span v_1 , $\{2v_i\}$ (i=1,...N).
 - Gram matrix easy to make
- For embedding {v_i} into Z^N
 - Span{2 v_i }, ~ span (2 I), with HNF:

- AUX contains 2L, with index 2.
 - We know shape of its HNF

HNF of Aux Lattice

- Very few choices for HNF in embedding
 - Allowing coordinate permutations
- Last vector has Λ 1's for some Λ in {1,..N}
- (using rows for vectors)

```
1111110...
0200000...
0020000...
```

• $\Lambda = \#$ Odd coordinates of v_1 !

First Oracle

- Can form Aux lattice for any vector v.
 - Using given Gram matrix
- Aux lattice is isomorphic to above type.
 - For some Λ in $\{1,2...N\}$.
- Postulate that we can tell which one.
 - Special Case of distinguish / isomorphism problem.
- Formalize as an oracle O: computing:
 - $-\Lambda(v)$ = # odd coordinates of v.

Embedding Basis Vectors

- Start modulo 2.
- Given $\Lambda(v_1)$, write coordinates (mod 2).
 - WLOG assume first coordinates = 1 mod 2
 - We are making inherent coordinate order choices.
 - 11111000000.
- Given $\Lambda(v_2)$, try to write next row.
 - **Q:** For how many coords. are v_1, v_2 both odd?
- Ask Oracle $\Lambda(v_1 + v_2)$, apply linear algebra.
 - A: $\frac{1}{2} \left[\Lambda(v_1) + \Lambda(v_2) \Lambda(v_1 + v_2) \right]$

Oracle Feasibility?

- We have reduced OLP to Oracle existence.
- Easy cases: $\Lambda(v)$ is not $\Lambda(v')$ mod 4.
 - Many witness vectors of given length mod 4.
- General oracle is more difficult.
 - $-L(v) = L(v') \mod 4.$
 - Lattices still may be distinguished via differing number of vectors of given length.

Distinguishing with Lengths

How many vectors of a given length?

#v
$$|v|^2=5$$
 2^5 0
#v $|v|^2=9$ 2^6 (N-5) 2^9

Theta Functions

- Systematic analysis of vector distributions.
- We saw huge differences for very short vectors.
 - But not so useful can't find them.
- The differences persist for larger vectors.
 - Question : How many vectors of length i?
- Theta function: $f(z) = \sum a_i z^{i}$ (z dummy variable).
 - Encoding via coefficients $a_i = \#v \mid |v^2| = a_i$.
 - Usually hard to compute, some easy cases.

Theta Examples

- Direct sum Lattices Multiplicative Theta
- E.g: Trivial Lattice
 - $f(z) = (1 + 2z^1 + 2z^4 + 2z^9 + 2z^{16}...)^N$
 - -2I is $f(z^2)$, previous f.
- Count vectors whose first k entries are odd

$$- f(z) = (2z^1 + 2z^9 + 2z^{25}...)^{N-k} (1 + 2z^4 + 2z^{16}...)^{N-k}$$

Similarly easy for all our special lattices

Using Theta Functions

- Use a very large number of medium length vectors $|v| \le B_0$
 - Assume uniform distribution.
- Use Theta- write probability density funct.
 - Differing Statistical pdf of vectors $|v|^2 \le B_0$.
- Realize oracle using sample pdf.
 - Compare to candidates' pdfs. & get isom. class.

Final Thoughts

- We looked at $G = U^TU$ with no group structure!
 - But knowledge of Z^N isomorphism special
- Reduced to Lattice Distinguishing Problem
 - Interesting in its own right
- Interesting case: many approximate short vectors help find exact shortest vector