Multilinear Maps From Ideal Lattices

Sanjam Garg (IBM)
Joint work with
Craig Gentry (IBM) and Shai Halevi (IBM)
Outline

• Bilinear Maps: Recall and Applications
 • Motivating Multilinear maps

• Our Results

• Definitions of Multi-linear Maps
 • Classical Notion
 • Our Notion

• Our Construction
 • Security
Cryptographic Bilinear Maps
(Weil and Tate Pairings)

Recalling Bilinear Maps and its Applications: Motivating Multilinear Maps
Cryptographic Bilinear Maps

- Bilinear maps are extremely useful in cryptography
 - lots of applications

- As the name suggests allow pairing two things together
Bilinear Maps – Definitions

• Cryptographic bilinear map
 • Groups G_1 and G_2 of order p with generators $g_1, g_2 = e(g_1, g_1)$ and a bilinear map $e : G_1 \times G_1 \rightarrow G_2$ such that

$$\forall a, b \in \mathbb{Z}_p, \quad e(g_1^a, g_1^b) = g_2^{ab}$$

• Instantiation: Weil or Tate pairings over elliptic curves.

CDH is hard
Given g_1^a, g_1^b hard to get g_1^{ab}

DDH is easy
Given g_1^a, g_1^b, T

$$T \equiv g_1^{ab}$$

$$e(g_1^a, g_1^b) = e(g_1, T)$$
Bilinear Maps: "Hard" Problem

• Bilinear Diffie-Hellman: Given

\[g_1, g_1^a, g_1^b, g_1^c \in G_1 \text{ hard to distinguish } e(g_1, g_1^{abc}) = g_2^{abc} \text{ from Random} \]
Non-Interactive Key Agreement \([\text{DH76]}\)

Application 1

- Easy Application: \textbf{Tri-partite key} agreement [Joux00]:
 - Alice, Bob, Carol generate \(a, b, c\) and broadcast \(g_1^a, g_1^b, g_1^c\).
 - They each separately compute the key \(K = e(g_1^a, g_1^b)^{abc}\).

- What if we have more than \textbf{3-parties}? [BS03]
Outline

• Bilinear Maps: Recall and Applications
 • Motivating Multilinear maps

• Our Results

• Definitions of Multi-linear Maps
 • Classical Notion
 • Our Notion

• Our Construction
 • Security
Our Results

• **Candidate approximate** constructions of multi-linear maps

• Lots of Applications:
 • Witness Encryption
 • Indistinguishability Obfuscation
Application 2

Witness Encryption [GGSW13]

[TW87, Rudich89, IOS97, IS91, KMV07, CS02, CCKV08, GOVW12 ...]

Soundness:
Statement is false \implies Semantic Security
Application 3

Indistinguishability Obfuscation

[GGHRSW13]

[Barak et al...]

\[O(C) \]

\[C \]

Obfuscator

\[O(C) \]

Security: Can’t tell if \(C = C_1 \) or \(C_2 \)
As long as \(\forall x \, C_1(x) = C_2(x) \) and \(|C_1| = |C_2| \)
Outline

• Bilinear Maps: Recall and Applications
 • Motivating Multilinear maps
• Our Results
• Definitions of Multi-linear Maps
 • Classical Notion
 • Our Notion
• Our Construction
 • Security
Cryptographic Multi-linear Maps

Definitions: Classical notion and our Approximate variant
Multilinear Maps: Classical Notion

- Cryptographic n-multilinear map (for groups)
 - Groups G_1, \ldots, G_n of order p with generators g_1, \ldots, g_n
 - Family of maps:
 \[e_{i,k} : G_i \times G_k \rightarrow G_{i+k} \text{ for } i + k \leq n, \text{ where} \]
 \[e_{i,k}(g_i^a, g_k^b) = g_{i+k}^{ab} \quad \forall a, b \in \mathbb{Z}_p. \]
- And at least the "discrete log" problems in each G_i is "hard".
 - And hopefully the generalization of Bilinear DH
Getting to our Notion

- Our visualization of (traditional) Bilinear Maps
- Step by step I will make changes to get our notion of Bilinear Maps
- At each step provide Extension to Multi-linear Maps
Bilinear Maps: Our visualization

\[
\begin{array}{ccc}
Z_p & G_1 & G_2 \\
1 & g_1^1 & g_2^1 \\
2 & g_1^2 & g_2^2 \\
\vdots & \vdots & \vdots \\
p & g_1^p & g_2^p \\
\end{array}
\]
Bilinear Maps: Our visualization

Sampling

\[Z_p \]

\[\begin{array}{ccc}
G_1 & & G_2 \\
1 & g^1_1 & \vdots \ & g^1_2 \\
2 & g^2_1 & \vdots \ & g^2_2 \\
\vdots & \vdots & \ddots & \vdots \\
p & g^p_1 & \vdots & g^p_2 \\
\end{array} \]

It was easy to sample uniformly from \(Z_p \).
Bilinear Maps: Our visualization
Equality Checking

<table>
<thead>
<tr>
<th>\mathbb{Z}_p</th>
<th>G_1</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>g_1^1</td>
<td>g_2^1</td>
</tr>
<tr>
<td>2</td>
<td>g_1^2</td>
<td>g_2^2</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>p</td>
<td>g_1^p</td>
<td>g_2^p</td>
</tr>
</tbody>
</table>

Trivial to check if two terms are the same.
Bilinear Maps: Our visualization
Addition

\[Z_p \]
\[1 \]
\[2 \]
\[\vdots \]
\[p \]
\[g_1^3 \]
\[g_1^1 \]
\[g_1^2 \]
\[g_1^p \]

\[G_1 \]
\[g_1^1 \]
\[g_1^2 \]
\[g_1^p \]

\[G_2 \]
\[g_2^1 \]
\[g_2^2 \]
\[g_2^p \]
Bilinear Maps: Our visualization
Multiplication

\[
\begin{array}{ccc}
Z_p & G_1 & G_2 \\
1 & g_1^1 & g_2^1 \\
2 & g_1^2 & g_2^2 \\
\vdots & \vdots & \vdots \\
p & g_1^p & g_2^p \\
\end{array}
\]
Bilinear Maps: Sets
(Our Notion)

\[
\begin{align*}
Z_p & \quad G_1 & \quad G_2 \\
1 & S_0^1 & g_1^1 & S_1^1 & g_2^1 & S_2^1 \\
2 & S_0^2 & g_1^2 & S_1^2 & g_2^2 & S_2^2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
p & S_0^p & g_1^p & S_1^p & g_2^p & S_2^p \\
\end{align*}
\]

Level-0 encodings
Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: "level-i encodings"
- Each set S_i is partitioned into S_i^a for each $a \in R$: "level-i encodings of a".
It was easy to sample uniformly from Z_p.

I should be efficient to sample $\alpha \leftarrow S_0$ such that $\alpha \in S_0^a$ for a uniform α. It may not be uniform in S_0 or S_0^a.

It was easy to sample uniformly from Z_p.
Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: “level-i encodings”
- Each set S_i is partitioned into S_i^a for each $a \in R$: “level-i encodings of a”.
- **Sampling**: Output α such that $\alpha \in S_0^a$ for a uniform α
Bilinear Maps: Equality Checking
(Our Notion)

<table>
<thead>
<tr>
<th>Z_p</th>
<th>G_1</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s_0^1</td>
<td>g_1^1</td>
</tr>
<tr>
<td>2</td>
<td>s_0^2</td>
<td>g_1^2</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>p</td>
<td>s_0^p</td>
<td>g_1^p</td>
</tr>
</tbody>
</table>

Check if two values come from the same set.

It was trivial to check if two terms are the same.
Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: “level-i encodings”
- Each set S_i is partitioned into S_i^a for each $a \in R$: “level-i encodings of a”.
- **Sampling**: Output α such that $\alpha \in S_0^a$ for a random a
- **Equality testing(α, β, i)**: Output 1 iff $\exists a$ such that $\alpha, \beta \in S_i^a$
Bilinear Maps: Addition
(Our Notion)
Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: \textquote{``level-i encodings''}
- Each set S_i is partitioned into S_i^a for each $a \in R$: \textquote{``level-i encodings of a''}.
- Sampling: Output α such that $\alpha \in S_0^a$ for a random a
- Equality testing(α, β, i): Output 1 iff $\exists a$ such that $\alpha, \beta \in S_i^a$
- Addition/Subtraction: There are ops $+$ and $-$ such that:
 - $\forall i \in [n], a, b \in R, \alpha \in S_i^a, \beta \in S_i^b$:
 - We have $\alpha + \beta \in S_i^{a+b}$ and $\alpha - \beta \in S_i^{a-b}$.
Bilinear Maps: Multiplication
(Our Notion)

\[
\begin{align*}
Z_p & \quad G_1 & \quad G_2 \\
1 & S_0^1 & S_1^1 & S_2^1 \\
2 & S_0^2 & S_1^2 & S_2^2 \\
\vdots & \vdots & \vdots & \vdots \\
p & S_0^p & S_1^p & S_2^p \\
S_0 & S_1 & S_2
\end{align*}
\]
Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: “level-i encodings”
- Each set S_i is partitioned into S_i^a for each $a \in R$: “level-i encodings of a”.
- Sampling: Output α such that $\alpha \in S_0^a$ for a random a
- Equality testing(α, β, i): Output 1 iff $\exists a$ such that $\alpha, \beta \in S_i^a$
- Addition/Subtraction: There are ops $+$ and $-$ such that:
 - Multiplication: There is an op \times such that:
 - $\forall i, k$ such that $i + k \leq n$, $\forall a, b \in R, \alpha \in S_i^a, \beta \in S_k^b$:
 - We have $\alpha \times \beta \in S_{i+k}^{ab}$.
Bilinear Maps: **Noisy**
(Our Notion)

All operations are required to work as long as "noise" level remains small.
Multilinear Maps: Our Notion

- **Discrete Log**: Given level-j encoding of a, hard to compute level-$(j-1)$ encoding of a.

- **n-Multilinear DDH**: Given level-1 encodings of $1, a_1, \ldots, a_{n+1}$ and a level-n encoding T distinguish whether T encodes $a_1 \cdots a_{n+1}$ or not.
Outline

• Bilinear Maps: Recall and Applications
 • Motivating Multilinear maps
• Our Results
• Definitions of Multi-linear Maps
 • Classical Notion
 • Our Notion
• Our Construction
 • Security
``Noisy” Multilinear Maps

(Kind of like NTRU-Based FHE, but with Equality Testing)
Our Construction

- We work in polynomial ring $R = \mathbb{Z}[x]/f(x)$
 - E.g., $f(x) = x^n + 1$ (n is a power of two)
 - Also use $R_q = \mathbb{R}/qR = \mathbb{Z}[x]/(f(x), q)$

- Public parameters hide a small $g \in R_q$ and a random (large) $z \in R_q$
 - g defines a principal ideal $I = (g)$ over R
 - The ``scalars'' that we encode are cosets of I (i.e., elements in the quotient ring R/I)
 - e.g., if $|R/I| = p$ is a prime, then we can represent these cosets using the integers $1, 2, \ldots, p$
Our Construction

• $R = \mathbb{Z}[x]/f(x)$ and $R_q = R/qR$

• Small $g \in R_q$ defines a principal ideal $I = (g)$ over R

• A random (large) $z \in R_q$ and c should have small coefficients
Our Construction

- \(R = \mathbb{Z}[x]/f(x) \) and \(R_q = R/qR \)

- Small \(g \in R_q \) defines a principal ideal \(I = (g) \) over \(R \)

\[\begin{align*}
S_0^1 & \quad 1 + I \\
S_0^2 & \quad 2 + I \\
\vdots & \quad \vdots
\end{align*} \]

\[\begin{align*}
S_1^1 & \quad c \\
S_1^2 & \quad \left[\frac{c}{z} \right]_q \\
S_2^1 & \quad \left[\frac{c}{z^2} \right]_q \\
S_2^2 & \quad \vdots
\end{align*} \]

+ and \(\times \)

Addition

If \(c \in s + I, d \in t + I \), are both short then,

\[\left[\frac{c}{z} + \frac{d}{z} \right]_q \text{ has the form } \left[\frac{c+d}{z} \right]_q, \]

where \(c + d \) is still short and \(c + d \in s + t + I \)

- A random (large) \(z \in R_q \) \(c \) should have small coefficients
Our Construction

- \(R = \mathbb{Z}[x]/f(x) \) and \(R_q = R/qR \)
- Small \(g \in R_q \) defines a principal ideal \(I = (g) \) over \(R \)

\[
\begin{align*}
S^1_0 & \quad 1 + I \quad S^1_1 \\
S^2_0 & \quad 2 + I \\
\vdots & \quad \vdots \\
S^1_0 & \quad c \\
S^2_1 & \quad \left[\frac{c}{z} \right]_q \\
S^2_0 & \quad \left[\frac{c}{z^2} \right]_q
\end{align*}
\]

If \(c \in s + I, d \in t + I \), are both short then,
\[
\left[\frac{c \times d}{z} \right]_q \text{ has the form } \left[\frac{c \times d}{z^2} \right]_q,
\]
where \(c \times d \) is still short and \(c \times d \in s \cdot t + I \)

- A random (large) \(z \in R_q \) \(c \) should have small coefficients
Our Construction (in general)

• In general, “level-k encoding” of a coset \(s + I \) has the form \(\left[\frac{c}{z^k} \right]_q \) for a short \(c \in s + I \)

• **Addition**: Add encodings \(u_i = \left[\frac{c_i}{z^{j_i}} \right]_q \)
 • as long as \(|\sum_i c_i| \ll q \)

• **Multi-linear**: Multiply encodings \(u_i = \left[\frac{c_i}{z^{j_i}} \right]_q \)
 • to get an encoding of the product at level \(\sum_i j_i \)
 • as long as \(|\prod_i c_i| \ll q \)

• “Somewhat homomorphic” encoding

Sampling and equality check?
Sampling

- **Sampling**: If \(c \leftarrow \text{DiscreteGaussian}(Z^n) \) (wider than smoothing parameter [MR05] of \(g \) but still smaller than \(q \)), then \(c \) encodes a random coset.
 - Why should this work?
 - Recall \(I = (g) \) -- vector with tiny coefficients
Encoding this random coset

- Publish an encoding of 1:
 - $y = [a/z]_q$

- **Sampling**: If $c \leftarrow \text{DiscreteGaussian}(Z^n)$ (wide enough), then c encodes a random coset.
 - Don’t know how to encode specific elements

- Given this short c, set $u = [c \cdot y]_q$
 - u is a valid level-1 encoding of the coset $c + I$

- Translating from level i to $i + 1$: $u_{i+1} = [u_i \cdot y]_q$
Equality Checking

• Do u, u' encode the same coset?
 • Suffices to check $-\left[u - u'\right]_q$ encodes 0.
• Publish a (level-k) zero-testing param
 $$v_k = \left[\frac{hz^k}{g}\right]_q$$
 • h is "somewhat short" (e.g. of size \sqrt{q})
• To test, if $u = \left[\frac{c}{z^k}\right]_q$ encodes 0, compute
 • $w = \left[u \cdot v_k\right]_q = \left[\frac{c}{z^k} \cdot \frac{hz^k}{g}\right]_q = \left[\frac{ch}{g}\right]_q$
 • Which is small if $c \in I$ (or, $c = c'g$)
Re-randomization

- Compute $c_{st} = c_s c_t$
- And encode $u_s = [c_s y]_q, u_t = [c_t y]_q, u_{st} = [c_{st} y]_q$
 - But then $u_{st} = \frac{u_s u_t}{y}$
- We need to re-randomize the encoding, to break these simple algebraic relations
Re-randomization

This re-randomization gets us statistically close to the actual distribution [AGHS12].

Need to re-randomize this as well.
The Complete Encoding Scheme

- Parameters:
 \[y = \left[\frac{a}{z} \right]_q, \quad \{x_i = \left[\frac{b_i}{z} \right]_q \}_i, \quad \text{and} \quad v_k = \left[\frac{hz^k}{g} \right]_q \]

- Encode a random element:
 - Sample \(c \) and set \(u = [cy + \sum_i \rho_i x_i]_q \)
 - \(\rho_i \leftarrow \text{DiscreteGaussian}_s(Z) \)

- Re-randomize \(u \) (at level 1):
 - \(u' = [u + \sum_i \rho_i x_i]_q \)

- Zero Test:
 - Map to level \(k \) (by multiplying by \(y^j \) for appropriate \(j \))
 - Check if \([u \cdot v_k]_q \) is small
Variants

- Asymmetric variants (many z_i’s), XDH analog
 \[y_i = \left[\frac{a_i}{z_i} \right]_q, \quad \left\{ x_{i,j} = \left[\frac{b_{i,j}}{z_i} \right]_q \right\}_{i,j}, \quad \nu_k = \left[\frac{h \prod_i z_i}{g} \right]_q \]

- Partially symmetric and partially asymmetric
Security: Cryptanalysis
Assumptions

\[y_0 = \left[\frac{a_0}{z} \right]_q, \ldots, y_k = \left[\frac{a_k}{z} \right]_q \text{ and } v_k = \left[\frac{hz^k}{g} \right]_q \]

- **Goal:** Distinguish
 - \(\left[\prod a_i \right]_q \) from \(\left[\frac{r}{z^k} \right]_q \)

- **Easy**
 - \(\left\{ x_i = \left[\frac{b_i}{z} \right]_q \right\}_i \)
 - General computation and not just multilinear

- **Difficult**
 - \(y_0 = \left[\frac{a_0}{z_1} \right]_q, \ldots, y_k = \left[\frac{a_k}{z_k} \right]_q \text{ and } v_k = \left[\frac{h \prod z_i}{g} \right]_q \)
Attacks

\[y = \left[\frac{a}{z} \right]_q, \left\{ x_i = \left[\frac{b_i}{z} \right]_q \right\}_i, \text{ and } v_k = \left[\frac{hz^k}{g} \right]_q \]

- **Goal:** To find \(z \) or \(g \)
- **Covering the basics (Not ``Trivially’’ broken)**
 - Adversary that only (iteratively) adds, subtracts, multiplies, or divides pairs of elements that it has already computed cannot break the scheme
 - Similar in spirit to Generic Group model
- **Without the \(v_k \) - essentially the NTRU problem**
Some attacks

\[y = \left[\frac{a}{z}\right]_q, \left\{ x_i = \left[\frac{b_i}{z}\right]_q \right\}_i, \text{ and } v_k = \left[\frac{hz^k}{g}\right]_q \]

- **Goal:** To find \(z \) or \(g \)
- **Can easily find ideal for** \(\langle h \rangle, \langle h \cdot g \rangle \) **and** \(\langle g \rangle \)

- **Can not hope to hide** \(I = \langle g \rangle \) **itself**
 - But not small
 - This is the basis for conjectured hardness
Summary

• Presented "noisy" cryptographic multilinear map.
• Construction is similar to NTRU-based homomorphic encryption, but with an equality-testing parameter.
• Security is based on somewhat stronger computational assumptions than NTRU.
• But more cryptanalysis needs to be done!
Thank You! Questions?