Multilinear Maps From Ideal Lattices

Sanjam Garg (IBM)

Joint work with

Craig Gentry (IBM) and Shai Halevi (IBM)

Outline

- Bilinear Maps: Recall and Applications
 - Motivating Multilinear maps
- Our Results
- Definitions of Multi-linear Maps
 - Classical Notion
 - Our Notion
- Our Construction
 - Security

Cryptographic Bilinear Maps

(Weil and Tate Pairings)

Recalling Bilinear Maps and its Applications: Motivating Multilinear Maps

Cryptographic Bilinear Maps

- Bilinear maps are extremely useful in cryptography
 - lots of applications
- As the name suggests allow pairing two things together

Bilinear Maps – Definitions

- Cryptographic bilinear map
 - Groups G_1 and G_2 of order p with generators $g_1, g_2 = e(g_1, g_1)$ and a bilinear map $e: G_1 \times G_1 \to G_2$ such that

$$\forall a,b \in Z_p$$
, $e(g_1^a,g_1^b) = g_2^{ab}$

• Instantiation: Weil or Tate pairings over elliptic curves.

CDH is hard Given g_1^a , g_1^b hard to get g_1^{ab} Given g_1^a , g_1^b , T $T \stackrel{?}{=} g_1^{ab}$ $e(g_1^a, g_1^b) = e(g_1, T)$

Bilinear Maps: "Hard" Problem

Bilinear Diffie-Hellman: Given

$$g_1, g_1^a, g_1^b, g_1^c \in G_1$$
 hard to distinguish $e(g_1, g_1^{abc}) = g_2^{abc}$ from Random

Application 1

Non-Interactive Key Agreement [DH76]

- Easy Application: Tri-partite key agreement [Joux00]:
 - Alice, Bob, Carol generate a,b,c and broadcast g_1^a,g_1^b,g_1^c .
 - They each separately compute the key $K = e(g_1, g_1)^{abc}$
- What if we have more than 3-parties? [BS03]

Outline

- Bilinear Maps: Recall and Applications
 - Motivating Multilinear maps
- Our Results
- Definitions of Multi-linear Maps
 - Classical Notion
 - Our Notion
- Our Construction
 - Security

Our Results

- Candidate approximate constructions of multilinear maps
- Lots of Applications:-
 - Witness Encryption
 - Indistinguishability Obfuscation

Application 2

Witness Encryption [GGSW13]

[TW87, Rudich89, IOS97, IS91, KMV07, CS02, CCKV08, GOVW12 ...]

Application 3

Indistinguishability Obfuscation [GGHRSW13]

[Barak et al...]

Outline

- Bilinear Maps: Recall and Applications
 - Motivating Multilinear maps
- Our Results
- Definitions of Multi-linear Maps
 - Classical Notion
 - Our Notion
- Our Construction
 - Security

Cryptographic Multi-linear Maps

Definitions: Classical notion and our Approximate variant

Multilinear Maps: Classical Notion

- Cryptographic n-multilinear map (for groups)
 - Groups G_1, \ldots, G_n of order p with generators g_1, \ldots, g_n
 - Family of maps:

$$e_{i,k}$$
: $G_i \times G_k \rightarrow G_{i+k}$ for $i+k \leq n$, where

•
$$e_{i,k}(g_i^a, g_k^b) = g_{i+k}^{ab} \ \forall a, b \in Z_p$$
.

- And at least the ``discrete log" problems in each G_i is ``hard".
 - And hopefully the generalization of Bilinear DH

Getting to our Notion

Our visualization of (traditional) Bilinear Maps

Step by step I will make changes to get our notion of Bilinear Maps

At each step provide Extension to Multi-linear Maps

Bilinear Maps: Our visualization

Z_p	G_1	G_2
1	g_1^1	g_2^1
2	g_1^2	g_2^2
•	•	•
p	${g}_1^p$	g_2^p

Bilinear Maps: Our visualization Sampling

It was easy to sample uniformly from Z_p .

Bilinear Maps: Our visualization Equality Checking

Z_p	G_1	G_2
1	g_1^1	g_2^1
2	g_1^2	g_2^2
•	•	•
p	${g}_1^p$	g_2^p

Trivial to check if two terms are the same.

Bilinear Maps: Our visualization Addition

Bilinear Maps: Our visualization Multiplication

Bilinear Maps: Sets

(Our Notion)

Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: "level-i encodings"
- Each set S_i is partitioned into S_i^a for each $a \in R$: ``level-i encodings of a''.

Bilinear Maps: Sampling

(Our Notion) I should be efficient to sample $\alpha \leftarrow S_0$ such that $\alpha \in$ S_0^a for a uniform a. It may not be uniform in S_0 or S_0^a .

It was easy to sample uniformly from Z_p .

Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: ``level-i encodings"
- Each set S_i is partitioned into S_i^a for each $a \in R$: ``level-i encodings of a''.
- Sampling: Output α such that $\alpha \in S_0^a$ for a unifrom α

Bilinear Maps: Equality Checking

(Our Notion)

It was trivial to check if two terms are the same.

Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: ``level-i encodings"
- Each set S_i is partitioned into S_i^a for each $a \in R$: ``level-i encodings of a''.
- Sampling: Output α such that $\alpha \in S_0^a$ for a random a
- Equality testing (α, β, i) : Output 1 iff $\exists a$ such that $\alpha, \beta \in S_i^a$

Bilinear Maps: Addition

(Our Notion)

Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: "level-i encodings"
- Each set S_i is partitioned into S_i^a for each $a \in R$: ``level-i encodings of a''.
- Sampling: Output α such that $\alpha \in S_0^a$ for a random a
- Equality testing(α , β , i): Output 1 iff $\exists a$ such that α , $\beta \in S_i^a$
- Addition/Subtraction: There are ops + and such that:
 - $\forall i \in [n], a, b \in R, \alpha \in S_i^a, \beta \in S_i^b$:
 - We have $\alpha + \beta \in S_i^{a+b}$ and $\alpha \beta \in S_i^{a-b}$.

Bilinear Maps: Multiplication

(Our Notion)

Multilinear Maps: Our Notion

- Finite ring R and sets $S_i \forall i \in [n]$: "level-i encodings"
- Each set S_i is partitioned into S_i^a for each $a \in R$: ``level-i encodings of a''.
- Sampling: Output α such that $\alpha \in S_0^a$ for a random a
- Equality testing(α , β , i): Output 1 iff $\exists a$ such that α , $\beta \in S_i^a$
- Addition/Subtraction: There are ops + and such that:
- Multiplication: There is an op × such that:
 - $\forall i, k$ such that $i + k \leq n, \forall a, b \in R, \alpha \in S_i^a, \beta \in S_k^b$:
 - We have $\alpha \times \beta \in S_{i+k}^{ab}$.

Bilinear Maps: Noisy

(Our Notion)

All operations are required to work as long as ``noise'' level remains small.

Multilinear Maps: Our Notion

• Discrete Log: Given level-j encoding of a, hard to compute level-(j-1) encoding of a.

• n-Multilinear DDH: Given level-1 encodings of $1, a_1, \dots, a_{n+1}$ and a level-n encoding T distinguish whether T encodes $a_1 \cdots a_{n+1}$ or not.

Outline

- Bilinear Maps: Recall and Applications
 - Motivating Multilinear maps
- Our Results
- Definitions of Multi-linear Maps
 - Classical Notion
 - Our Notion
- Our Construction
 - Security

"Noisy" Multilinear Maps

(Kind of like NTRU-Based FHE, but with Equality Testing)

Our Construction

- We work in polynomial ring R = Z[x]/f(x)
 - E.g., $f(x) = x^n + 1$ (n is a power of two)
 - Also use $R_q = R/qR = Z[x]/(f(x), q)$
- Public parameters hide a small $g \in R_q$ and a random (large) $z \in R_q$
 - g defines a principal ideal I = (g) over R
 - The ``scalars" that we encode are cosets of I (i.e., elements in the quotient ring R/I)
 - e.g., if |R/I| = p is a prime, then we can represent these cosets using the integers 1, 2, ..., p

Our Construction

- R = Z[x]/f(x) and $R_q = R/qR$
- Small $g \in R_q$ defines a principal ideal I = (g) over R

• A random (large) $z \in R_a$

c should have small coefficients

Our Construction

- R = Z[x]/f(x) and $R_q = R/qR$
- Small $g \in R_q$ defines a principal ideal I = (g) over R

$$+ \text{ and } \times \underbrace{S_0^1}_{S_0^1} \quad 1 + I \underbrace{S_1^1}_{S_1^1} \underbrace{S_2^1}_{Q} \underbrace{S_2^2}_{Z} \underbrace{\left[\frac{c}{z^2}\right]_q}_{Q}$$

If
$$c \in s+I, d \in t+I$$
, are both short then,
$$\left[\frac{c}{z}+\frac{d}{z}\right]_q \text{ has the form } \left[\frac{c+d}{z}\right]_q,$$
 where $c+d$ is still short and $c+d \in s+t+I$

• A random (large) $z \in R_q$

c should have small coefficients

Our Construction

- R = Z[x]/f(x) and $R_q = R/qR$
- Small $g \in R_q$ defines a principal ideal I = (g) over R

$$+ \text{ and } \times \underbrace{S_0^1}_{S_0^1} \quad 1 + I \underbrace{S_1^1}_{S_1^1} \underbrace{S_2^1}_{Q} \underbrace{S_2^2}_{Z} \underbrace{\left[\frac{c}{z^2}\right]_q}_{Q}$$

where $c \times d$ is still short and $c \times d \in s + I$, $c \in s + I$, are both short then, $\begin{bmatrix} \frac{c}{z} \times \frac{d}{z} \end{bmatrix}_q \text{ has the form } \left[\frac{c \times d}{z^2} \right]_q,$

• A random (large) $z \in R_q$

c should have small coefficients

Our Construction (in general)

- In general, ``level-k encoding" of a coset s+I has the form $\left[\frac{c}{z^k}\right]_q$ for a short $c\in s+I$
- Addition: Add encodings $u_i = \left\lfloor \frac{c_i}{z^j} \right\rfloor_q$
 - as long as $|\sum_i c_i| \ll q$
- Multi-linear: Multiply encodings $u_i = \begin{bmatrix} \frac{c_i}{z^{j_i}} \end{bmatrix}_q$
 - to get an encoding of the product at level $\sum_i j_i$
 - as long as $\left|\prod_i c_i\right| \ll q$
- ``Somewhat homomorphic" encoding

Sampling and equality check?

Sampling

- Sampling: If $c \leftarrow Discrete Gaussian(Z^n)$ (wider than smoothing parameter [MR05] of g but still smaller than q), then c encodes a random coset.
 - Why should this work?
 - Recall I = (g) -- vector with tiny coefficients

Encoding this random coset

Publish an encoding of 1:

•
$$y = [a/z]_q$$

- Sampling: If $c \leftarrow DiscreteGaussian(Z^n)$ (wide enough), then c encodes a random coset.
 - Don't know how to encode specific elements
- Given this short c, set $u = [c \cdot y]_q$
 - u is a valid level-1 encoding of the coset c + I
- Translating from level i to i+1: $u_{i+1}=[u_i\cdot y]_q$

Equality Checking

- Do u, u' encode the same coset?
 - Suffices to check $-[u-u']_q$ encodes 0.
- Publish a (level-k) zero-testing param

$$v_k = [hz^k/g]_q$$

- h is ``somewhat short" (e.g. of size \sqrt{q})
- To test, if $u = [c/z^k]_q$ encodes 0, compute

•
$$w = [u \cdot v_k]_q = \left[\frac{c}{z^k} \cdot \frac{hz^k}{g}\right]_q = \left[\frac{ch}{g}\right]_q$$

• Which is small if $c \in I$ (or, c = c'g)

Re-randomizaton

- Compute $c_{st} = c_s c_t$
- And encode $u_s = [c_s y]_q$, $u_t = [c_t y]_q$, $u_{st} = [c_{st} y]_q$
 - But then $u_{st} = \frac{u_s u_t}{y}$
- We need to re-randomize the encoding, to break these simple algebraic relations

Re-randomizaton

This re-randomization gets us statistically close to the actual distribution [AGHS12].

Need to rerandomize this as well.

The Complete Encoding Scheme

Parameters:

$$y = \left[\frac{a}{z}\right]_q, \left\{x_i = \left[\frac{b_i}{z}\right]_q\right\}_i, \text{ and } v_k = \left[\frac{hz^k}{g}\right]_q$$

- Encode a random element:
 - Sample *c* and set $u = [cy + \sum_{i} \rho_{i} x_{i}]_{q}$
 - $\rho_i \leftarrow DiscreteGaussian_s(Z)$
- Re-randomize *u* (at level 1):

•
$$u' = [u + \sum_{i} \rho_i x_i]_q$$

- Zero Test:
 - Map to level k (by multiplying by y^{j} for appropriate j)
 - Check if $[u \cdot v_k]_q$ is small

Variants

Asymmetric variants (many z_i's), XDH analog

$$y_i = \begin{bmatrix} \frac{a_i}{z_i} \end{bmatrix}_q, \left\{ x_{i,j} = \begin{bmatrix} \frac{b_{i,j}}{z_i} \end{bmatrix}_q \right\}_{i,j}, v_k = \begin{bmatrix} \frac{h \prod_i z_i}{g} \end{bmatrix}_q$$

Partially symmetric and partially asymmetric

Security: Cryptanalysis

Assumptions

$$y_0 = \left[\frac{a_0}{z}\right]_q$$
, ... $y_k = \left[\frac{a_k}{z}\right]_q$ and $v_k = \left[\frac{hz^k}{g}\right]_q$

- Goal: Distinguish
 - $\left[\frac{\prod a_i}{z^k}\right]_q$ from $\left[\frac{r}{z^k}\right]_q$
- Easy
 - $\bullet \left\{ x_i = \left[\frac{b_i}{z} \right]_q \right\}_i$
 - General computation and not just multilinear
- Difficult

•
$$y_0=\left[\frac{a_0}{z_1}\right]_q$$
, ... $y_k=\left[\frac{a_k}{z_k}\right]_q$ and $v_k=\left[\frac{h\prod z_i}{g}\right]_q$

Attacks

$$y = \left[\frac{a}{z}\right]_q, \left\{x_i = \left[\frac{b_i}{z}\right]_q\right\}_i, \text{ and } v_k = \left[\frac{hz^k}{g}\right]_q$$

- Goal: To find z or g
- Covering the basics (Not ``Trivially" broken)
 - Adversary that only (iteratively) adds, subtracts, multiplies, or divides pairs of elements that it has already computed cannot break the scheme
 - Similar in spirit to Generic Group model
- Without the v_k essentially the NTRU problem

Some attacks

$$y = \left[\frac{a}{z}\right]_q, \left\{x_i = \left[\frac{b_i}{z}\right]_q\right\}_i, \text{ and } v_k = \left[\frac{hz^k}{g}\right]_q$$

- Goal: To find z or g
- Can easily find ideal for $\langle h \rangle$, $\langle h \cdot g \rangle$ and $\langle g \rangle$
- Can not hope to hide $I = \langle g \rangle$ itself
 - But not small
 - This is the basis for conjectured hardness

Summary

- Presented ``noisy" cryptographic multilinear map.
- Construction is similar to NTRU-based homomorphic encryption, but with an equalitytesting parameter.
- Security is based on somewhat stronger computational assumptions than NTRU.
- But more cryptanalysis needs to be done!

Thank You! Questions?

