(a) Let \(f \) be a pure jump function with jumps \(j_n = 1/2^n \) at \(x_n = 1/3^n \). Show that \(f(0) = 0 \). Then assuming that the right hand derivative of \(f \) at zero, namely

\[
f'_+(0) := \lim_{h \to 0^+} \frac{f(h) - f(0)}{h}
\]

exists, show that it is equal to \(+\infty \).

Solution: Recall that a pure jump function is a function of the form \(f = \sum_{n=1}^{\infty} f_n \), where \(f_n(x) = j_n \) for \(x \geq x_n \) and \(f_n(x) = 0 \) for \(x < x_n \). Here, \((x_n)\) is a sequence of real numbers and \((j_n)\) is a sequence of positive numbers with \(\sum_j j_n < \infty \).

It is obvious that \(f(0) = 0 \) since \(f_n(0) = 0 \) for all \(n \geq 1 \). Now, taking a sequence \(h_m \to 0^+ \), where \(h_m \in (3^{-(m+1)}, 3^{-m}) \), you have \(f(h_m) = \sum_{k=m+1}^{\infty} 2^{-k} = 2^{-m} \) so that \(f(h_m)/h_m = 2^{-m}/h_m > 2^{-m}3^m = (3/2)^m \to +\infty \).

(b) Let \(g \) be a pure jump function with jumps \(j_n = 1/3^n \) at \(x_n = 1/2^n \). Show that \(g(0) = 0 \). Then assuming that the right hand derivative of \(g \) at zero, namely

\[
g'_+(0) := \lim_{h \to 0^+} \frac{g(h) - g(0)}{h}
\]

exists, show that it is equal to 0.

Solution: As in part (a), it is obvious that \(g(0) = 0 \). Now, taking a sequence \(h_m \to 0^+ \), where \(h_m \in (2^{-(m+1)}, 2^{-m}) \), you have \(g(h_m) = \sum_{k=m+1}^{\infty} 3^{-k} = 3^{-m} \) so that \(g(h_m)/h_m = 3^{-m}/h_m < 3^{-m}2^m = (2/3)^m \to 0 \).