

Elementary Analysis Math 140B—Winter 2007
Homework answers—Assignment 5; January 29, 2007

Exercise 25.4, page 190

Let (f_n) be a sequence of functions on a set $S \subset \mathbf{R}$, and suppose that $f_n \rightarrow f$ uniformly on S . Prove that (f_n) is uniformly Cauchy on S .

Solution: For all $x \in S$ and for all m, n ,

$$|f_n(x) - f_m(x)| \leq |f_n(x) - f(x)| + |f(x) - f_m(x)|. \quad (1)$$

Let $\epsilon > 0$. There exists $N = N(\epsilon)$ such that

$$\sup_{x \in S} |f_n(x) - f(x)| < \epsilon/2 \text{ for all } n > N.$$

Thus, if $m > N$ and $n > N$, then by (1),

$$\sup_{x \in S} |f_n(x) - f_m(x)| < \epsilon.$$

□

Exercise 25.10, page 191

(a) Show that $\sum \frac{x^n}{1+x^n}$ converges for $x \in [0, 1)$.

Solution: Use the ratio test:

$$\frac{\frac{x^{n+1}}{1+x^{n+1}}}{\frac{x^n}{1+x^n}} = x \frac{1+x^n}{1+x^{n+1}} \rightarrow x.$$

The series therefore converges for $|x| < 1$, and in particular on $[0, 1)$.

(b) Show that the series converges uniformly on $[0, a)$ for each a , $0 < a < 1$.

Solution: For $0 \leq x \leq a < 1$,

$$\frac{x^n}{1+x^n} \leq a^n.$$

Since $a < 1$, the geometric series $\sum a^n$ converges. By the Weierstrass M -test, the series converges uniformly on $[0, a)$.

(c) Does the series converge uniformly on $[0, 1)$? Explain.

Solution: NO. If the series converged uniformly on $[0, 1)$, then (see Example 5 on page 190) we would have

$$\sup_{x \in [0, 1)} \frac{x^n}{1+x^n} \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Let $\epsilon = 1/4$ and choose N such that

$$\sup_{x \in [0, 1)} \frac{x^n}{1+x^n} < 1/4 \text{ for all } n > N.$$

In particular for every $x \in [0, 1)$, $\frac{x^{N+1}}{1+x^{N+1}} < \frac{1}{4}$, which is a contradiction to

$$\lim_{x \rightarrow 1} \frac{x^{N+1}}{1+x^{N+1}} = \frac{1}{2}.$$