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1 Friday September 23|Inequalities of Young, H�older,and S
hwarz1.1 Course Information� Course: Mathemati
s 140C MWF 1:00{1:50 ET 204� Instru
tor: Bernard Russo MSTB 263 OÆ
e Hours MW 2:30-3:30 or by ap-pointment (a good time for short questions is right after 
lass just outside the
lassroom)� Dis
ussion se
tion: TuTh 1:00{1:50 MSTB 118� Tea
hing Assistant: Mit
hell Khong� Homework: There will be approximately 35 assignments with at least one weeknoti
e before the due date.� Grading: First midterm O
tober 21 (Friday of week 4) 20 per
entSe
ond midterm November 18 (Friday of week 8) 20 per
entFinal Exam De
ember 7 (Wednesday) 40 per
entHomework approximately 35 assignments 20 per
ent� Holidays: November 11, 24, and 25� Text: R. C. Bu
k, Advan
ed Cal
ulus� Material to be CoveredS
hwarz inequality Theorem 1, page 13 (1 le
ture)topology x1.5 pp 28{33: open, 
losed, boundary, interior, exterior, 
losure,neighborhood, 
luster point (about 4 le
tures)
ompa
tness x1.8 pp 64{67: Heine-Borel and Bolzano-Weierstrass properties(Theorems 25,26,27, page 65) (about 4 le
tures)
ontinuity xx2.2{2.4: Uniform 
ontinuity, extreme value theorems (Theorems1,2,6,10,11,13 on pages 73,74,,84,90,91,93) (about 4 le
tures)di�erentiation (of fun
tions) x3.3: Implies 
ontinuity, 
hara
terization byapproximation (Corollary, page 129 and Theorem 8, page 131) (about 4le
tures)integration xx4.2{4.3: Integrability of 
ontinuous fun
tions, fundamental the-orem of 
al
ulus, mixed partial derivatives (Theorems 1,4,7,11 on pages169,176,182,189) (about 4 le
tures)di�erentiation (of transformations) xx7.2{7.6: Boundedness of linear trans-formations, 
hara
terization by approximation, 
hain rule, mean valuetheorem, inverse fun
tion theorem, impli
it fun
tion theorem (Theorems5,8,10,11,12,16,17,18 on pages 335,338,344,346,350,358,363,364) (about 5le
tures) 1



1.2 Young's, H�older's, and S
hwarz's inequalitiesTheorem 1.1 (Young Inequality) Let ' be di�erentiable and stri
tly in
reasingon [0;1), '(0) = 0, limu!1 '(u) = 1,  := '�1, �(x) := R x0 '(u) du, 	(x) :=R x0  (u) du. Then for all a; b 2 [0;1),ab � �(a) + 	(b): (1)Moreover, equality holds in (1) if and only if b = '(a).Assignment 1 (Due September 30) Give a rigorous proof of Theorem 1.1. Morepre
isely,Step 1 First establish, for 
 2 [0;1), the formulaZ 
0 '(u) du+ Z '(
)0  (v) dv = 
'(
): (2)Step 2 Use (2) to prove (1).Step 3 Prove the \moreover" statement.Corollary 1.2 For p 2 (1;1), and a; b 2 [0;1),ab � app + bqq ;where q 2 (1;1) is de�ned by 1p + 1q = 1:Proof: Take '(u) = up�1 in the theorem. 2Theorem 1.3 (H�older Inequality) Let x1; : : : ; xn and y1; : : : ; yn be real numbersand let p 2 (1;1). Then with q := p=(p� 1),nXj=1 jxjyjj � 0� nXj=1 jxjjp1A1=p0� nXj=1 jyjjq1A1=q :Proof: Take a = jxjj=kxkp and b = jyjj=kykp in the 
orollary, where kxkp denotes�Pnj=1 jxjjp�1=p. 2Corollary 1.4 (S
hwarz Inequality (Theorem 1, p.13 of Bu
k) For any real num-bers x1; : : : ; xn and y1; : : : ; yn,nXj=1 jxjyjj � 0� nXj=1 jxjj21A1=2 0� nXj=1 jyjj21A1=2 :2



Proof: Take p = 2 in the theorem. 2Assignment 2 (Due September 30)1. Read se
tions 1.2,1.3,1.4 in Bu
k (The le
tures will 
ontinue with se
tion 1.5).Do not waste your time reading about the 
on
epts angle, orthogonal, hyper-plane, normal ve
tor, line, 
onvexity, whi
h are dis
ussed in se
tion 1.3 of Bu
k.We have no immediate use for them. Thus, you may skip pages 15-18 and 21-27for now.2. � Bu
k [x1.2 page 10 #5,10,23℄� Bu
k [x1.3 page 18 #2,3,6℄� Bu
k [x1.4 page 27 #3,15,16℄2 Monday, September 26|The triangle inequalityand open sets2.1 The triangle inequalitySe
tion 1.1 of Bu
k In 1,2, or 3 dimensions you 
an use geometry, or geometri
intuition. For dimensions 4; 5; 6 : : : ;1 you need algebra and analysis as tools.Se
tion 1.2 of Bu
k The elements of Rn := fp = (x1; : : : ; xn) : xj 2 R; 1 � j � ngmay be 
onsidered as ve
tors (algebrai
 interpretation) or points (geometri
interpretation). R is a �eld whi
h has a ni
e order stru
ture, in fa
t, almostall properties of Rn depend on those of R, whi
h in turn depend on the leastupper bound property of R. Unfortunately, no reasonable order 
an be de�nedon Rn if n > 1. Although we will not 
onsider the ve
tor spa
e stru
ture of Rnuntil later, we do need the notion of s
alar produ
t: for p = (x1; : : : ; xn); q =(y1; : : : ; yn) 2 Rn, p � q := nXj=1xjyj;and its properties: p � (q + q0) = p � q + p � q0, et
.Se
tion 1.3 of Bu
k The length of a ve
tor p = (x1; : : : ; xn) 2 Rn isjpj = (p � p)1=2;the distan
e between p and q is jp� qj. The famous S
hwarz inequality (a true\theorem" re
orded as Corollary 1.4 above) 
an now be phrased 
ompa
tly asp � q � jpjjqj:Here are two important 
onsequen
es of the S
hwarz inequality.3



Corollary 2.1 (Triangle Inequality) For any two ve
tors p; q, jp+ qj � jpj+ jqjProof: jp+qj2 = (p+q)�(p+q) = p�p+p�q+q �p+q �q � jpj2+2jpjjqj+jqj2 = (pj+jqj)2.2Corollary 2.2 (Ba
kwards Triangle Inequality) jp� qj � jjpj � jqjjProof: jpj = j(p � q) + qj � jp � qj + jqj, whi
h proves jp � qj � jpj � jqj. Nowinter
hange p and q. 22.2 Open setsA very important type of subset of Rn is a ball. An open ball is de�ned, for a givenpoint p 2 Rn and r > 0 byB(p; r) := fq 2 Rn : jp� qj < rg:The 
enter of B(p; r) is p and the radius is r. Today we want to prove (the twostatements):Triangle inequality) ( open ballis open set )) ( 
hara
terizationof interior )De�nition 2.3 Let S � Rn and q 2 Rn. The point q is interior to S if there existsÆ > 0 su
h that B(q; Æ) � S. The interior of S is the set of all points whi
h areinterior to S, notation intS, that isintS = fq 2 Rn : 9Æ > 0 su
h that B(q; Æ) � Sg:Finally, S is an open set if S = intS.Proposition 2.4 Let p 2 Rn and r > 0. Then the ball B(p; r) is an open set.Proof: Let x 2 B(p; r) so that jx�pj < r. Choose Æ := r�jx�pj. Then the triangleinequality implies that B(x; Æ) � B(p; r), showing that every point of B(p; r) is aninterior point of B(p; r).MIDTERM ALERT: It is very important that the 10 propositions (i)-(x) on page 32 of Bu
k be mastered before the �rst miderm. Here is one ofthem.Proposition 2.5 ((vi) on p.32 of Bu
k) Let S be any non-empty subset of Rn.Then intS is the largest open subset of S; more pre
isely(a) intS is an open set;(b) if T is an arbitrary open subset of S, then T � intS.Proof: The assertion of (a) is that intS = int (intS) and it suÆ
es to show only thatintS � int (intS). If p 2 intS, then there exists Æ > 0 with B(p; Æ) � S. Sin
e theball B(p; Æ) is open, for ea
h point x 2 B(p; Æ) there exists Æ0 > 0 with B(x; Æ0) �B(p; Æ). However, sin
e B(p; Æ) � S, we have B(x; Æ0) � S so that x 2 intS, and thusB(p; Æ) � intS. By de�nition then, p 2 int (intS). This proves (a).Let T � S and let T be an open set. If x 2 T , then there exists Æ > 0 withB(x; Æ) � T . Therefore B(x; Æ) � S and so T � intS, proving (b). 24



3 Wednesday September 28|More on open setsAssignment 3 (Due O
tober 7)� Bu
k [x1.5 page 36 #2,5℄� Fix p 2 Rn. Show that fq 2 Rn : jq � pj > 2g is an open set.Remark 3.1 Every open set in Rn is the union of (not ne
essarily disjoint) openballs.3.1 The stru
ture of open sets in R1De�nition 3.2 A set of points in R1 is said to be bounded if it is a subset of a �niteinterval.De�nition 3.3 Let S be an open set in R1 and let (a; b) be an open interval whi
his 
ontained in S, but whose endpoints are not in S. Then (a; b) is 
alled a 
omponentinterval of S.Lemma 3.4 Let S be a bounded open set in R1. Then(i) Ea
h point of S belongs to a 
omponent interval of S.(ii) The 
omponent intervals of S form a 
ountable (possibly �nite) 
olle
tion ofdisjoint sets whose union is SProof: Assume x 2 S. Leta = inffleft endpoints of all open intervals I su
h that x 2 I � Sg;and let b be the sup of the right endpoints of these intervals. Then (a; b) 
ontainsall intervals I with x 2 I � S, and in parti
ular x 2 (a; b). From the way (a; b) was
onstru
ted, it follows that (a; b) � S (See Remark 3.5 below) and a 62 S; b 62 S.We have asso
iated with ea
h x 2 S, at least one 
omponent interval Ix 
ontainingx. If two of these intervals Ix and Iy have a non-empty interse
tion, they must 
oin
idesin
e their endpoints do not belong to S. This proves (i).It is now 
lear that S is the disjoint union of its 
omponent intervals. To prove (ii) itremains to show that they form a 
ountable set. For this purpose, let fx1; : : : ; xn; : : :gbe an enumeration of the rational numbers. De�ne a fun
tion F by means of theequation F (Ix) = n, if xn is the rational number in Ix with the smallest index n. Thisfun
tion is one-to-one sin
e F (Ix) = F (Iy) = n would mean that xn 2 Ix \ Iy, andtherefore Ix = Iy. Therefore F establishes a one-to-one 
orresponden
e between theset of 
omponent intervals of S and a subset of N. This proves (ii). 2Remark 3.5 Here is the proof that (a; b) � S. Let y 2 (a; b). There are two 
asesto 
onsider: either a < y < x < b or a < x < y < b. In the �rst 
ase, by de�nitionof inf, there is an interval (a0; b0) � S su
h that a < a0 < y < x < b0 � b. Inthe se
ond 
ase, by de�nition of sup, there is an interval (a00; b00) � S su
h thata � a00 < x < y < b00 < b. In either 
ase, y 2 S.5



Theorem 3.6 Every open set in R1 is the union of a 
ountable 
olle
tion of disjointopen intervals. (This de
omposition is unique but we shall ignore this fa
t|enoughis enough!)Proof: Let S be the given open set and let Sn := S \ (�n; n). Then S = [11 Sn andea
h Sn is the union of a 
ountable 
olle
tion of disjoint open intervals. The existen
efollows from this. 24 Friday September 30|Closed setsHere are the �rst two propositions on page 32 of Bu
k. The proofs are written out indetail in Bu
k on pages 32{34.(i) If A and B are open sets, then so are A \B and A [B.(ii) If fA� : � 2 Ig is an arbitrary family of open sets, then [�2IA� is an open set.4.1 Closed setsDe�nition 4.1 A subset S of Rn is said to be a 
losed set if its 
omplement Rn n Sis an open set.Remark 4.2 The se
ond part of Assignment 3 shows that the set fq 2 Rn : jq�pj �rg is a 
losed set for any p 2 Rn and r > 0. Needless to say, we 
all su
h a set a\
losed ball".In order to fa
ilitate the study of 
losed sets, we re
all De Morgan's laws. IffA� : � 2 Ig is an arbitrary family of sets, thenRn n [�2IA� = \�2I(Rn n A�)and Rn n \�2IA� = [�2I(Rn n A�):Using De Morgan's laws we obtain immediately from (i) and (ii) the followingpropositions ((iii) and (iv)) on page 32 of Bu
k. From the de�nition of 
losed set, (v)is obvious, and (vi) has already been proved in Proposition 2.5 above.(iii) If A and B are 
losed sets, then so are A \B and A [B.(iv) If fA� : � 2 Ig is an arbitrary family of 
losed sets, then \�2IA� is a 
losedset.(v) A set is open if and only if its 
omplement is 
losed.4.2 Boundary and 
losureDe�nition 4.3 Let S � Rn and let p 2 Rn. We say that p is a boundary point of Sif every ball with 
enter p meets both S and its 
omplement Rn nS, that is, for everyÆ > 0, B(p; Æ) \ S 6= ; and B(p; Æ) \ (Rn n S) 6= ;. The boundary of S, denoted bybdyS, is the set of all boundary points of S. The 
losure of S, notation S is de�nedto be S [ bdyS. 6



Here are some examples in R1:S (a; b℄ [a; b℄ (a; b) f5 + 1=ng1n=1 (a; b) \QbdyS fa; bg fa; bg fa; bg f5g [ f5 + 1=ng1n=1 [a; b℄S [a; b℄ [a; b℄ [a; b℄ f5g [ f5 + 1=ng1n=1 [a; b℄The following proposition is the analog for 
losed sets of (vi) on page 32 of Bu
k.It will be proved in the next le
ture.Proposition 4.4 ((vii) on p.32 of Bu
k) Let S be any subset of Rn. Then S isthe smallest 
losed set 
ontaining S. (you know what this means.)Assignment 4 (Due O
tober 7) Prove the following assertions:(a) intS = [fG : G is open ; G � Sg(b) S = \fF : F is 
losed ; S � Fg5 Monday O
tober 3|More on 
losed sets5.1 Proof of Proposition 4.4 ((vii) on page 32 of Bu
k)Step 1: S is a 
losed set.Proof: We have to prove that the 
omplement Rn n S is an open set, so let q 2Rn n S. We must �nd a ball B(q; Æ) � Rn n S. Sin
e q 62 S = S [ bdyS, q 62 S andq 62 bdyS. The latter implies that there is a Æ > 0 su
h that either B(q; Æ)\S = ; orB(q; Æ)\(RnnS) = ;. The point q belongs to the latter set, so for sure B(q; Æ)\S = ;,that is, B(q; Æ) � Rn n S. We 
omplete the proof of Step 1 by showing that in fa
tB(q; Æ) � Rn n S. If this were not true, there would be a point q0 2 B(q; Æ) \ S.Sin
e B(q; Æ) � Rn n S, in fa
t we have q0 2 B(q; Æ)\ bdyS. Sin
e B(q; Æ) is an openset, there is � > 0 su
h that B(q0; �) � B(q; Æ). Sin
e q0 is a boundary point of S,B(q0; �) \ S 6= ;, a 
ontradi
tion. This proves that S is a 
losed set.Step 2: If F is a 
losed set and S � F , then S � F .Proof: Sin
e S = S[bdyS, and we are given that S � F , we have to show only thatbdyS � F . Suppose that p 2 bdyS and p 62 F . If we arrive at some 
ontradi
tion,we will be done. Sin
e F is 
losed, Rn n F is open, so there exists Æ > 0 su
h thatB(p; Æ) � Rn n F , that is, B(p; Æ) \ F = ;. By the de�nition of boundary point,B(p; Æ) \ S 6= ;. This is the desired 
ontradi
tion, sin
e B(p; Æ) \ S � B(p; Æ) \ F .Steps 1 and 2 
onstitute a proof of Proposition 4.4. 25.2 Cluster pointsDe�nition 5.1 p is a 
luster point of S if every ball with 
enter pmeets S in in�nitelymany points, that is, for every Æ > 0, the set B(p; Æ) \ S 
ontains in�nitely manypoints. We denote the set of 
luster points of a set S by 
lS.7



Remark 5.2 Although it is hard to believe, the point p 2 Rn is a 
luster point ofS � Rn if and only if every ball with 
enter p 
ontains at least one point of S di�erentfrom p. (Reminder: p need not be an element of S).Proposition 5.3 ((ix) on p.32 of Bu
k) Let S be any subset of Rn. Then S is a
losed set if and only if every 
luster point of S belongs to S.Proof:Step1: If S is a 
losed set, then every 
luster point of S must belong to S.Proof: Indire
t. Suppose p is a 
luster point of the 
losed set S. If p 62 S, thensin
e Rn n S is open, there exists a ball B(p; Æ) � Rn n S, that is, B(p; Æ) \ S = ;.But B(p; Æ) \ S is an in�nite set, 
ontradi
tion, so step 1 is proved.Step 2: If a set S 
ontains all of its 
luster points, then S is a 
losed set.Proof: Let S be a set 
ontaining all of its 
luster points. We shall show that RnnSis open. Let p 2 Rn n S, that is, p 62 S. It follows from our assumption that p is nota 
luster point of S. This means that for some Æ > 0, the set B(p; Æ) \ S 
onsists ofonly �nitely many points, say p1; : : : ; pm. Sin
e these points are in S and p 62 S, if weset Æ0 = minfjp� pkj : 1 � k � mg;then Æ0 > 0. Moreover, B(p; Æ0) \ S = ;, that is, B(p; Æ0) � Rn n S. Thus Rn n S isopen, and S is 
losed. Step 2 is proved.Steps 1 and 2 
onstitute a proof of Proposition 5.3. 2Assignment 5 (Due O
tober 14) [Bu
k x1.5 page 36 #6,10,11℄6 Wednesday O
tober 5, 2005|Bolzano-Weierstrassand Heine-Borel propertiesDe�nition 6.1 Let S be any subset of Rn.BW S satis�es the Bolzano-Weierstrass property if every in�nite sequen
e from Shas a 
luster point in S. In other words, if T = fp1; p2; : : :g � S is in�nite, thenthere exists a point p 2 S su
h that for every Æ > 0, B(p; Æ) \ T is an in�niteset.HB S satis�es the Heine-Borel property if every open 
over of S 
an be redu
ed toa �nite sub
over. In other words, if G1; G2; : : : is a sequen
e of open sets and ifS � G1[G2[ � � �, then there is an integer N su
h that S � G1[G2 [ � � �[GN .Another way to write this is: if S � [1n=1Gn, then for some N � 1, S � [Nn=1Gn.EXAMPLES:� (0; 1) does not satisfy BW or HB. 8



� [0;1) does not satisfy BW or HB.� [0; 1℄ satis�es BW. This is the Bolzano-Weierstrass theorem, whi
h you learnedin Mathemati
s 140A or 140B. You 
an also �nd it in Bu
k [Theorem 21,p. 62℄.� [0; 1℄ satis�es HB. This is [Theorem 24,p.65℄ in Bu
k..We shall show that the two properties are equivalent, that is, an arbitrary set S �Rn either satis�es both properties or neither property. This is stated in the nextproposition.7 Friday O
tober 7,2005|Compa
t setsProposition 7.1 Let S be any subset of Rn. Then S satis�es BW if and only if itsatis�es HB.Proof:Step 1: BW) HB.Assume that S satis�es BW. Let S � G1 [ G2 [ � � �. We must �nd N su
h thatS � G1 [G2 [ � � � [GN . If this is not true, then for every n = 1; 2; : : :S 6� G1 [ � � � [Gn:For ea
h n there is thus a point pn 2 S su
h that pn 62 fp1; : : : ; pn�1g andpn 62 Gk for 1 � k � n: (3)Be
ause S satis�es BW, there is a 
luster point, say p of the in�nte sequen
e T =fp1; p2; : : : ; g and p 2 S. Sin
e p 2 S, there is a k0 su
h that p 2 Gk0 . Sin
e Gk0 isan open set, there is a Æ > 0 su
h that B(p; Æ) � Gk0. Sin
e p is a 
luster point ofT , B(p; Æ) \ T is in�nite, therefore B(p; Æ) \ T = fpn1 ; pn2; : : : ; g is a subsequen
e,so n1 < n2 < � � � ! 1. We now have a 
ontradi
tion: take any nj > k0. Thenpnj 2 Gk0 , whi
h 
ontradi
ts (3). Step 1 is proved.Step 2: HB) BW.Let T = fp1; p2; : : :g � S be an in�nite sequen
e, and suppose that T has no
luster point in S. We seek a 
ontradi
tion, whi
h will then 
omplete the proof ofStep 2.Sin
e no point of S is a 
luster point of T , there is, for ea
h p 2 S, a Æp > 0 su
hthat B(p; Æp) \ T is a �nite set. We haveT � S � [p2SB(p; Æp);and by HB, a �nite number of the balls B(p; Æp) 
over S, sayT � S � [mk=1B(pk; Æpk):9



Then T = T \ ([mk=1B(pk; Æpk)) = [mk=1[T \ B(pk; Æpk)℄:This is a 
ontradi
tion, sin
e T is in�nite and [mk=1[T \ B(pk; Æpk)℄ is �nite. Thisproves Step 2 and 
ompletes the proof of Proposition 7.1.De�nition 7.2 Let S be any subset of Rn. We say S is 
ompa
t if it satis�es BWor HB.Assignment 6 (Due O
tober 14) Prove dire
tly the following three assertions. Thefourth assertion will be proved in 
lass.(a) If S satis�es BW, then S is a 
losed set.(b) If S satis�es BW, then S is a bounded set.(
) If S satis�es HB, then S is a bounded set.(d) (This will be done in 
lass, not part of the homework) If S satis�es HB, then Sis a 
losed set.These assertions are stated in Bu
k as [x1.8 page 69 #1,2℄8 Monday O
tober 10, 2005|Chara
terization of
ompa
t sets8.1 Two remarks on the property HBWhen you try to prove the false statement \every set is 
losed", you �nd that it helpsif you assume that the set is 
ompa
t.Proposition 8.1 Every 
ompa
t set in Rn is 
losed.Proof: Let S be a 
ompa
t subset of Rn. We show dire
tly that Rn n S is an openset by using the Heine-Borel property HB. Let p 2 Rn n S. For ea
h q 2 S, letÆp := jp� qj=2. Sin
e p 6= q, Æq > 0. Now 
over S:S � [q2SB(q; Æq):By HB, there exist �nitely many points q1; : : : ; qm 2 S su
h that S � [mj=1B(qj; Æqj).Then V := \mj=1B(p; Æqj) is an open set1 
ontaining p, in fa
t it is an open ballB(p;minfÆqj : 1 � j � mg). Sin
e B(p; Æqj ) is disjoint from B(qj; Æqj), it follows thatV is disjoint from [mj=1B(qj; Æqj), and hen
e from S, that is, V � Rn n S. Thus S is
losed. This 
ompletes the proof.1be
ause it is a �nite interse
tion!! (this is the beauty of the Heine-Borel property)10



Remark 8.2 In the proof of Proposition 7.1 it wasn't shown yet that BW) HB, onlythat BW implies that every 
ountable 
over of S by open sets 
ould be redu
ed to a�nite sub
over. On the other hand, the proof of HB) BW uses the full strength ofthe property HB, namely that an arbitrary (that is, possibly un
ountable) open 
overof S 
ould be redu
ed to a �nite sub
over. So to 
omplete the proof of Proposition 7.1,we need the following lemma, whose proof is left for you to think about.Lemma 8.3 Every open 
over of any set S � Rn 
an be redu
ed to a 
ountable 
overof S.8.2 Another 
hara
terization of 
ompa
tnessWe now 
ome to a major theorem. 2Theorem 8.4 Let S be any subset of Rn. If S is 
losed and bounded, then S is
ompa
t.We shall prove this theorem by showing that a 
losed and bounded set satis�es BW.In this form, the theorem is known as the Bolzano-Weierstrass theorem (in Rn). Of
ourse you may want to prove this theorem by showing that a 
losed and boundedset satis�es HB. In that form, the theorem is known as the Heine-Borel theorem (inRn). You will �nd the Heine-Borel theorem in Bu
k as Theorem 24 on page 65 (forn = 1) and Theorem 25 on page 65 of Bu
k for arbitrary n.The following two lemmas, well known fa
ts (by now) about subsequen
es of se-quen
es of real numbers are the main tools in the proof of Theorem 8.4.Lemma 8.5 (Bolzano-Weierstrass theorem in R) Every bounded sequen
e of realnumbers has a 
onvergent subsequen
e.Lemma 8.6 Every subsequen
e of a 
onvergent sequen
e of real numbers 
onvergesto the same limit as the sequen
e.Proof of Theorem 8.4:Sin
e S is bounded, there is a ball B(0;M) with S � B(0;M). ObviouslyB(0;M) � \nj=1fp = (a1; : : : ; an) 2 Rn : �M � aj �Mg:Now let T = fp1; p2; : : :g � S be an in�nite sequen
e. We must �nd a point p 2 Swhi
h is a 
luster point of T .Choose a subsequen
e T1 = fq1; q2; : : :g of T su
h that the sequen
e of �rst 
oor-dinates 
onverges (you used Lemma 8.5 here sin
e the �rst 
oordinates of T lie in the
losed interval [�M;M ℄). Call the limit of the sequen
e of �rst 
oordinates x1.Now 
hoose a subsequen
e T2 = fr1; r2; : : :g of T1 su
h that the sequen
e of se
ond
oordinates 
onverges (Lemma 8.5 again) and 
all this limit x2. By Lemma 8.6, the�rst 
oordinates of T2 also 
onverge to the previous x1.2This makes today a very important day in your life11



Continuing in this way, you obtain subsequen
esTn � Tn�1 � � � � � T1 � Tsu
h that the n 
oordinate sequen
es of Tn ea
h 
onverge to some number. Wehave de
ided to 
all these numbers x1; : : : ; xn, and we have thus de�ned a pointp = (x1; : : : ; xn) 2 Rn.Our proof will be 
omplete as soon as we show that p is a 
luster point of T . Forthen, sin
e T � S, p will be a 
luster point of S, and sin
e S is 
losed, p will belongto S.To help us prove that p is a 
luster point of T , we need some notation. LetTn = fs1; s2; : : :g and let sk = (x(k)1 ; : : : ; x(k)n ) k = 1; 2; : : : ;so that limk!1x(k)j = xj 1 � j � n: (4)Let Æ > 0. We must show that B(p; Æ) \ T is in�nite. Obviously, it is enough toshow that B(p; Æ) \ Tn is in�nite, that is, we must show thatjp� skj < Æ for in�nitely many k:By (4), there exist Nj (1 � j � n) su
h thatjxj � x(k)j j < Æ=pn for k � Nj:Then for k � N := maxfN1; : : : ; Nng we have jp � skj2 = Pnj=1(xj � x(k)j )2 �n(Æ2=n) = Æ2. Therefore fsN ; sN+1; : : :g � Tn \ B(p; Æ):This 
ompletes the proof of Theorem 8.4. 29 Wednesday O
tober 12, 2005|More on bound-ary and 
losed sets (Se
ond Midterm Alert)Proposition 9.1 (Part of (viii) on page 32 of Bu
k) For any subset S of Rn,its boundary bdyS is a 
losed set.Proof: Just note that for any set S, we have the de
omposition3Rn = intS [ bdyS [ int (Rn n S)of Eu
lidean spa
e Rn into three mutually disjoint subsets. It follows that bdyS =Rn n (intS [ int (Rn n S)) is the 
omplement of an open set. 2Note that bdyS = bdyRn n S, for any set S � Rn.3Be sure to 
he
k this 
arefully 12



MIDTERM ALERT NUMBER 2The �rst midterm, (WHICH IS CLOSED BOOK AND NOTES!) will take pla
e onFriday O
tober 21 and will 
over se
tions 1.5 (pages 28{33 only) and 1.8 of Bu
k(pages 64{65 only). Of parti
ular interest are the 10 statements (Propositions) onpage 32. You should understand ea
h step in the proofs of these propositions.Assignment 7 (Due O
tober 21|no penalty for turning it in on O
tober 24, so you
an write it up elegantly)� Bu
k page 36, #1,3,4,11 (any two of these four)� Bu
k page 36, #7,8,12 (any one of these)� Bu
k page 36, #9, Bu
k page 69, #3 (both of these) (For #3, see the hint atthe end of the book)You will of 
ourse be responsible for all of these problems on the midterm.For purposes of this midterm, you may ignore Young's inequality, H�older's in-equality and the S
hwarz inequality (in se
tion 1.3), and the notion of 
onne
tednessin se
tion 1.8. We will use the S
hwarz inequality in a signi�
ant way later in the
ourse but we may not have time to study the important topi
 of 
onne
tedness inthis 
ourse4The important results in se
tion 1.8 are the following: you should understand ea
hstep in the proofs.� BW)HB� HB)BW� BW) 
losed� HB) 
losed� BW) bounded� HB) bounded� 
losed and bounded )BW� 
losed and bounded )HB5You may ignore Theorems 27,28,29,30 on pages 65{69 of Bu
k. We shall not dis
ussthem6. Note that the proofs of Theorems 24,25,26 on page 65 are 
ontained in theresults listed above.Make sure you understand the homework you turned in on September 30 andO
tober 7 and the homework you will turn in on O
tober 14 and O
tober 21 (orO
tober 24).4You 
an do this on your own|I will provide notes later5we did not dis
uss this one|this is in
luded in the proof of Theorem 25 in [Bu
k, p.67℄ Of 
oursethe result follows from the pre
eding fa
t sin
e BW) HB6however, you are in a good position to understand them13



10 Friday O
tober 14, 2005|EvenMore on bound-ary and 
losed sets; proof of Lemma 8.310.1 Two remarks on 
losed sets and boundaryProposition 10.1 ((iii) and (iv) on p.32 of Bu
k)(a) If A and B are 
losed subset of Rn, then so are A \B and A [B.(b) If fAkg1k=1 is a sequen
e of 
losed sets, then \1k=1Ak is 
losed but [1k=1Ak neednot be 
losed.(
) If fA� : � 2 �g is a family of 
losed sets, then \�2� is 
losed.First proof: use De Morgan's law:Rn n \1k=1Ak = [1k=1(Rn n Ak):Se
ond proof: Let S := \1k=1Ak and let p be a 
luster point of S. We shall showthat p 2 S. Sin
e S � Ak for every k, for every Æ > 0, B(p; Æ) \ S � B(p; Æ) \ Ak.Thus p is a 
luster point of Ak. Sin
e Ak is 
losed, p 2 Ak for every k, that is, p 2 S.The same proofs work for (
). 2Proposition 10.2 (Another part of (viii) on p.32 of Bu
k) For any subset S of Rn,bdyS = S \ (Rn n S):Proof: S \ (Rn n S) = (S [ bdyS) \ ((Rn n S) [ bdy (Rn n S))= (S [ bdyS) \ ((Rn n S) [ bdyS)= bdyS:10.2 Proof of Lemma 8.3The lemma states: Every open 
over of any set S � Rn 
an be redu
ed to a 
ountable
over of S.Proof: Let S be 
overed by a family G of open sets. For ea
h p 2 S 
hoose a setGp 2 G 
ontaining p. Sin
e Gp is open, 
hoose an open ball B(p; Æp) � Gp. Sin
e Qis dense in R, we 
an �nd a rational number rp 2 (0; Æp), hen
e p 2 B(p; rp) � Gp.Again, sin
e Q is dense in R, we 
an �nd a ve
tor qp with rational 
oordinates su
hthat qp 2 B(p; rp=2). By the triangle inequality, B(qp; rp=2) � B(p; rp) (Che
k this!),so for ea
h p 2 S, we have p 2 B(qp; rp=2) � Gp. The 
olle
tion fB(qp; rp=2) : p 2 Sgis 
ountable, so we 
an enumerate it as fB(qpj ; rpj=2)g1j=1, where fpjg is a sequen
e ofpoints in S. For ea
h j = 1; 2; : : : pi
k the 
orresponding Gpj 2 G. Then S � [1j=1Gpj ,proving the lemma. 214



11 Monday O
tober 17, 2005|Continuous fun
-tions11.1 OverviewHere is a preview of our next topi
: 
ontinuous fun
tions. There are only twomain theorems. The rest is either trivial modi�
ation of what you learned in 140ABor 
onsequen
e of these two theorems.The main theorems on 
ontinuous fun
tions deal with 
ompa
t sets. They are� Theorem 13 on page 93 of Bu
k7: The 
ontinuous real valued image of a 
ompa
tsubset of Rn is a 
ompa
t subset of R.� Theorem 6 on page 84 of Bu
k: A 
ontinuous real valued fun
tion on a 
ompa
tsubset of Rn is uniformly 
ontinuous.Both of these theorems are well known to you in the following form for n = 1.� A 
ontinuous fun
tion on a 
losed interval [a; b℄ is bounded, and assumes amaximum and minimum on [a; b℄; that is, there exist points �; � 2 [a; b℄ (notne
essarily unique) su
h that f(�) � f(x) � f(�) for every x 2 [a; b℄. (This isstated for fun
tions de�ned on 
ompa
t subsets of Rn as Theorem 10 on page90 and Theorem 11 on page 91 of Bu
k)� A 
ontinuous real valued fun
tion on a 
losed and bounded interval in R isuniformly 
ontinuous on that interval.Here is a des
ription of the �rst �ve theorems of Chapter 2 of Bu
kTheorems 1,2 page 73-74 These 
on
ern a 
hara
terization of 
ontinuity at a pointin terms of 
onvergen
e of sequen
es, and are extremely useful.Theorem 3 page 76 This is a global 
hara
terization of 
ontinuity. It be
omesmessy if the domain D is not an open set, and for this reason we shall notspend any time on it right now.Theorem 4 page 77 This 
on
erns the \algebra" of 
ontinuous fun
tions, that issums, produ
ts, quotients, and is familiar from elementary 
al
ulus. This isimportant to know but we shall not spend time on it. It is used in Bu
k togive a proof of the extreme value theorem ([Theorem 11,page 91℄ of Bu
k), butwe shall give an independent proof of the extreme value theorem, using only
ompa
tness.Theorem 5 page 78 This involves 
omposite fun
tions and we shall dis
uss it in
onne
tion with our study of the 
hain rule, later in this 
ourse.7Do not read the proof of Theorem 13 in Bu
k, we will present a better one15



In [Bu
k, Se
tion 2.3℄ we will dis
uss De�ntion 2 on page 82 and Theorem 6 onpage 84. We will not have time for De�nition 3 and Theorem 7, whi
h 
an be ignored.In [Bu
k, Se
tion 2.4℄ Theorems 10 and 11 follow easily from Theorem 13, as wewill show. Before we do that, let us note that Theorems 8,9 and 12 
an be skipped(we need Theorem 8 later, but we 
an wait on that). Theorems 14,15,16 involve
onne
tedness and we may have to skip them now.11.2 Continuous fun
tions|
ontinuous image of a 
ompa
tsetDe�nition 11.1 Let f : D! R be a fun
tion, where D is any subset of Rn, and letp0 2 D. We say that f is 
ontinuous at p0 if8� > 0; 9Æ > 0su
h that8 jf(p)� f(p0)j < � for all p 2 D with jp� p0j < Æ:It is important to realize that this lengthy de�nition 
an be put in the 
ompa
t 9form 8� > 0; 9Æ > 0 su
h that f [D \B(p0; Æ)℄ � B(f(p0); �):Here, we are using the notationf(A) := ff(p) : p 2 Ag if A � D:We refer to f(A) as the image of A under f .Please note that the above de�nition is a \lo
al" one, that is, 
on
erns a singlepoint p0, together with \neighboring" points. We say f is 
ontinuous on D if it is
ontinuous at ea
h point of D. This gives a \global" de�nition of 
ontinuity.Assignment 8 (Due O
tober 28) [Bu
k, x2.2 page 80 #1 or 2,3 or 4,7 or 8,12 or13,14 or 17℄ You are to hand in 5 problems, one from ea
h of these 5 pairs. You willof 
ourse be responsible for all of the problems.Theorem 11.2 The 
ontinuous image of a 
ompa
t set is 
ompa
t. In other words,if f : D ! R is a 
ontinuous fun
tion on D, and D is a 
ompa
t subset of Rn, thenf(D) is a 
ompa
t subset of R.Proof: We 
hoose10 to show that f(D) satis�es the HB property. By Lemma 8.3, weonly need to deal with 
ountable open 
overs. We shall use the fa
t that D satis�esthe HB property (for arbitrary 
overs!).8Æ depends in general on p0 as well as on �9no pun intended10how many 
hoi
es are there? 16



Let f(D) � [1k=1Gkbe an open 
over of f(D). For ea
h p 2 D, f(p) 2 f(D) and so there is a member ofthe 
over, say Gkp, with f(p) 2 Gkp. Sin
e the 
over is an open 
over, Gkp is an openset so there is �p > 0 su
h that B(f(p); �p) � Gkp. Sin
e f is 
ontinuous at everypoint of D, there exists Æp > 0 su
h thatf [B(p; Æp) \D℄ � B(f(p); �p)We 
an now 
over D11: D � [p2DB(p; Æp):Sin
e D is 
ompa
t, the HB property tells us there are a �nite number of pointsp1; : : : ; pm say, su
h that D � [mj=1B(pj; Æpj):It follows that D = [mj=1[B(pj; Æpj) \D℄, and therefore thatf(D) = [mj=1f [B(pj; Æpj) \D℄ � [mj=1B(f(pj); �pj) � [mj=1Gpj :We have redu
ed the given (
ountable) 
over to a �nite sub
over, so the proof is
omplete. 2An alternate proof would show that if S satis�es BW, then f(S) satis�ed BW, asfollows. Let f�ng1n=1 be an in�nite sequen
e in f(S), whi
h we may assume withoutloss of generality, 
onsists of distin
t points. For ea
h n, 
hoose a point pn 2 S su
hthat f(pn) = �n. Sin
e f is a fun
tion (well-de�ned!), fpng1n=1 is an in�nite sequen
ein S so there exists a ve
tor p 2 S whi
h is a 
luster point of fpng1n=1. Now verifythat f(p) is a 
luster point of f�ng1n=1 (details omitted).Assignment 9 (Due November 4) [Bu
k, x2.3 page 88 #1,3 or 4,5 or 6,7℄Remark 11.3 Whenever a set in Rn is de�ned by inequalities (or equalities) involv-ing 
ontinuous fun
tions, the set is open if all inequalities are stri
t (> or <), and
losed if all inequalities are not stri
t (� or � or =). Also, the boundary is obtainedby 
hanging one or more of the inequalites to =. As an example, here is a proof ofthe fa
t that the set S = f(x; y; z) 2 R3 : xy > zg is open in R3 (Problem 3(
) onpage 37 of Bu
k).Proof: Let p0 = (x0; y0; z0) 2 S. We must �nd Æ > 0 su
h that jp � p0j < Æimplies p 2 S. For any Æ we note that if p = (x; y; z) and jp � p0j < Æ, then(x � x0)2 � jp � p0j2 < Æ2 so that jx � x0j < Æ and similarly jy = y0j < Æ andjz � z0j < Æ. Rewriting these last three inequalities as x0 � Æ < x < x0 + Æ, y0 � Æ <y < y0 + Æ, and z0 � Æ < z < z0 + Æ implies xy � z > (x0 � Æ)(y0 � Æ) � (z0 + Æ) =x0y0� Æy0� Æx0+ Æ2� z0� Æ = x0y0� z0+ Æ(Æ�y0�x0�1), whi
h is stri
tly positivefor suÆ
iently small Æ. This proves that B(p0; Æ) � S for some Æ > 0. 211the redundant 
over! 17



12 Wednesday O
tober 19, 2005|Continuity interms of sequen
es12.1 Limits of sequen
es of points in RnDe�nition 12.1 Let fpkg1k=1 � Rn be a subset indexed by the natural numbers, andlet p 2 Rn. We say the sequen
e fpkg 
onverges to p iflimk!1 jpk � pj = 0;that is, for every � > 0, there exists N su
h thatjpk � pj < � for all k > N:Notation for this is: limk!1 pk = p or limk pk = p or limpk = p or pk ! p ask !1, or just plain pk ! p.Introdu
e 
oordinates of the points pk and p:p = (x1; : : : ; xn) and pk = (x(k)1 ; : : : ; x(k)n ):Then jp� pkj2 = nXj=1(xj � x(k)j )2 � (xj � x(k)j )2 for all 1 � j � n:This proves the following:Theorem 12.2 (Theorem 7 on page 42 of Bu
k) Let fpkg1k=1 � Rn be a se-quen
e, and let p 2 Rn. Then limk!1 pk = p;if and only if limk!1x(k)j = xj for 1 � j � n:Theorem 12.3 (Theorem 3 on page 40 of Bu
k) A 
onvergent sequen
e in Rnis bounded.Proof: Let pk ! p. Choose N su
h that jpk � pj < 1 if k > N . Thenjpkj � jpk � pj+ jpj < 1 + jpj for k > Nand so fpkg1k=1 � B(0;M) whereM = maxf1 + jpj; jp1j; : : : ; jpN jg;that is, the sequen
e is bounded. 2Theorem 12.3 raises the following question. Does the set of points of a 
onvergentsequen
e 
onstitute a 
ompa
t set, that is, is it 
losed. The answer is easily seen tobe no. However, an illuminating informal exer
ise would be to prove that the set
onsisting of the points of 
onvergent sequen
e together with its limit is a 
ompa
tset. This exer
ise be
omes even more instru
tive if you proved it in three ways, usingsu

essively, BW, HB, and CB (
losed and bounded).18



12.2 Continuity and limits of sequen
esTheorem 12.4 (Theorem 1 on page 73 of Bu
k) Let f : D ! R, where D �Rn, and suppose that f is 
ontinuous at the point p0 2 D. Then for every sequen
epk from D, whi
h 
onverges to p0, we havelimk!1 f(pk) = f(p0):Proof: Let � > 0. We have to prove there is an N su
h that jf(pk)� f(p0)j < � forall k > N . Sin
e f is 
ontinuous at p0, there exists Æ > 0 su
h thatf [D \ B(p0; Æ)℄ � B(f(p0); �): (5)Sin
e pk ! p0, and sin
e Æ > 0, there exists N su
h thatpk 2 B(p0; Æ) for k > N: (6)Putting together (5) and (6) results in f(pk) 2 B(f(p0); �) for k > N . 2Remark 12.5 � Theorem 2 on page 74 of Bu
k is an important 
onverse toTheorem 12.4. I suggest you read this theorem as we will not 
over it in le
ture.� At this point you are in a position to give another proof of Theorem 11.2 aboveusing the property BW (at both ends). We did this in 
lass but I stronglysuggest that you do this again for yourself as an informal exer
ise. The followinglemma, whi
h we shall use in the extreme value theorem (Theorem 12.8 below)may be helpful in that informal exer
ise.Lemma 12.6 For any subset S � Rn, the set of 
luster points of S 
oin
ides with thelimits of sequen
es of distin
t points from S. In parti
ular, a point is a 
luster pointof a sequen
e if and only if it is a limit of a 
onvergent subsequen
e of the sequen
e.Proof: Let p be a 
luster point of S. Pi
k pk 2 B(p; 1k )\ S. Sin
e this set is in�nite,we 
an 
ertainly assume that pk 62 fp1; : : : ; pk�1g. Then jpk � pj < 1=k ! 0, sopk ! p, as required. Conversely if p = limk!1 pk with pk 2 S all distin
t, then forany Æ > 0, there exists N su
h that fpN+1; pN+2; : : :g � B(p; Æ) \ S, so B(p; Æ) \ S isan in�nite set. 2Theorem 12.7 (Theorem 10 on page 90 of Bu
k) A 
ontinuous fun
tion on a
ompa
t set is bounded. That is, if f : D ! R is 
ontinuous on D � Rn and D is
ompa
t, then f is a bounded fun
tion on D.Proof: This is now trivial, sin
e by Theorem 11.2, f(D) is 
ompa
t, hen
e bounded.(Note that Theorem 11.2 does not depend on Theorem 12.7, so it is OK to use it inthe proof). 19



Theorem 12.8 (Theorem 11 on page 91 of Bu
k, Extreme values Theorem)A 
ontinuous fun
tion f on a 
ompa
t set D � Rn assumes its maximum and its min-imum at some points of D.Proof: By Theorem 12.7, f is bounded, that is f(D) is a bounded subset of R. Let� := supff(p) : p 2 Dg;so that � 2 R. By de�nition of supremum, for ea
h k � 1, there is a point pk 2 Dsu
h that � � 1k � f(pk) � �: (7)Sin
e D is 
ompa
t, BW implies the existen
e of a 
luster point p0 of the sequen
e pk,and p0 2 D. By Lemma 12.6, there is a subsequen
e pkj su
h that limj!1 pkj = p0.In parti
ular, from (7), for j = 1; 2 : : :,� � 1kj � f(pkj) � �:Now let j !1 to get � � f(p0) � �, that is f assumes its maximum at p0 2 D.Similar proof for minimum. 2Assignment 10 (Due O
tober 28) [Bu
k, x1.6 page 54 #1 or 2,3 or 4,31 or 33,32 or35℄13 Friday O
tober 21, 2005|First MidtermDo all problems. However, there is a 
hoi
e in one of them, number 8Problem 1 (12 points) Prove rigorously that the set Z = f: : : ;�2;�1; 0; 1; 2; : : :gof integers is a 
losed subset of R1. Is it a 
losed subset of R2? (Yes or no, no proofrequired for this part of the question). IsS := f(m; k) : m 2 N; k 2 Zga 
losed subset of R2? (Yes or no, no proof required).Problem 2 (12 points) Find bdyS; intS, and all 
luster points of S ifS = f(x; y) 2 R2 : 1 � x2 + y2 < 2g [ f(x; 0) : 0 < x � 1=2gJust write down your answer, no proof is required.Problem 3 (5 points) Prove or disprove: For every S � Rn, S n intS = bdyS.Problem 4 (25 points) Let A be a bounded subset and B a 
losed subset of Rn andsuppose that A\B 6= ;. True or false (3 points for ea
h 
orre
t answer, 2 more pointsfor the proof or example) 20



(A) A \B is bounded(B) A [B is bounded(C) A [ B is 
losed(D) A \ B is 
ompa
t(E) A \ (Rn nB) is boundedProblem 5 (12 points) Prove that a 
ompa
t set is bounded. You may use BW orHB.Problem 6 (12 points) Let S be a 
losed subset of Rn, that is Rn n S is an openset. Prove(A) bdyS � S.(B) S = SProblem 7 (12 points) Let A be any subset of a 
ompa
t set S.(A) Prove that if A is 
losed, then A is 
ompa
t.(B) Now suppose again that A is an arbitrary subset of the 
ompa
t set S. Provethat A, the 
losure of A, is a 
ompa
t set.Problem 8 (10 points) Let S be an arbitrary subset of Rn. Do only one of (A) or(B), not both.(A) Let p 2 Rn and suppose that for every Æ > 0, B(p; Æ) \ S 
ontains at least onepoint di�erent from p. Show that p is a 
luster point of S.(B) Let 
lS be the set of 
luster points of S. Prove that 
lS is a 
losed set. Hint:Use the fa
t that open balls are open sets to show that 
l(
lS) � 
lS14 Monday O
tober 24, 2005|More on 
losure;Uniform 
ontinuity14.1 A dis
ussion of 
losed sets and 
losureA 
losed set was originally de�ned to be a set whose 
omplement is an open set andthe 
losure of a set was originally de�ned to be the union of the set and its boundary.These de�nitions are not always workable so it is desirable to note that the following�ve statements are all equivalent to a set S being 
losed and 
an therefore serve asthe de�nition of 
losed set. (The last one has not been dis
ussed before and is provedin the next subse
tion. I stated it as an equality in 
lass; however, it is also 
orre
tas stated here.) 21



� Rn � S is an open set� S = S� 
lS � S� bdyS � S (I failed to mention this one in 
lass!)� flimk pk : fpkg1k=1 � S; the limit existsg � SBesides being de�ned as the union of the set and its boundary points, the 
losureof a set has also been shown to be equivalent to several other statements, listed below.(The last one is proved in the next subse
tion.)� S = S [ bdyS� S is the smallest 
losed set 
ontaining S� S is the interse
tion of all 
losed sets 
ontaining S� S = intS [ bdyS� S = flimk!1 pk : fpkg � S; limk pk exists g14.2 A 
hara
terization of 
losed sets in terms of 
onvergentsequen
esTheorem 14.1 (Theorem 5 on page 40 of Bu
k) Let S be any subset of Rn.Then S = f limk!1 pk : fpkg � S; limk pk exists g: (8)Proof: Suppose �rst that p = limk pk for some sequen
e pk from S. If p 62 S =bdyS [ S, then p 62 S and p 62 bdyS. Thus there exists Æ > 0 su
h that at least oneof B(p; Æ) \ S or B(p; Æ) \ (Rn n S) is empty. But the �rst one is non-empty sin
eit 
ontains some elements of the sequen
e pk. Thus the se
ond one is empty, whi
hmeans B(p; Æ) � S. This is a 
ontradi
tion to p 62 S. We have proved that the rightside of (8) is 
ontained in the 
losure of S.Now let p 2 S, and suppose �rst that p 2 S. Then the sequen
e pk de�ned bypk = p for k = 1; 2; : : : 
onverges to p. Next suppose that p 2 bdyS, so that for everyk � 1, B(p; 1k ) \ S 6= ;. Pi
k a point pk 2 B(p; 1k ) \ S, so that pk is a sequen
e fromS whi
h 
onverges to p sin
e jp� pkj < 1=k! 0. 2Corollary 14.2 (Corollary 2 on page 41 of Bu
k) A set S is 
losed if and onlyif it 
ontains the limit of ea
h 
onvergent sequen
e of points from S.
22



14.3 Cau
hy sequen
esThe 
on
ept of Cau
hy sequen
e is needed in Assignment 11.De�nition 14.3 (De�nition 6 on page 52 of Bu
k) A sequen
e pk of points inRn is said to be a Cau
hy sequen
e if for every � > 0, there exists N su
h thatjpk � pjj < � for all k � N and j � N .The following theorem follows easily from the 
ase n = 1 by 
onsidering the se-quen
es of 
oordinates of all the points involved.Theorem 14.4 (Corollary on page 63 and exer
ise 32 on page 56 of Bu
k)A sequen
e in Rn is 
onvergent if and only if it is a Cau
hy sequen
e.14.4 Uniform 
ontinuityDe�nition 14.5 (De�nition 2 on page 82 of Bu
k) A fun
tion f : E ! R,where E � Rn, is uniformly 
ontinuous on E if for every � > 0, there exists Æ > 0su
h that jf(p)� f(q)j < � whenever p; q 2 E and jp� qj < Æ.A fun
tion whi
h is uniformly 
ontinuous on a set S is 
ertainly 
ontinuous atevery point of S, that is, is 
ontinuous on S. However, a fun
tion 
ontinuous on aset S need not be uniformly 
ontinuous on S. There are ex
eptions, as in the nexttheorem.Theorem 14.6 (Theorem 6 on page 84 of Bu
k) A fun
tion whi
h is 
ontinu-ous on a 
ompa
t set D is uniformly 
ontinuous on D.Proof: First an outline:� Given �, use �=2 to get a \
ontinuity ball" B(p; Æp for every p 2 S� Use Æp=2 to get a \
overing ball" for every p 2 S� Use HB to get a �nite number of 
overing balls and pi
k Æ to be the smallest oftheir radii� Use the triangle inequality to get the uniform 
ontinuityNow the details. Let � > 0. For ea
h p 2 D, there exists Æp > 0 su
h thatf [B(p; Æp)\D℄ � B(f(p); �=2). We shall refer to B(p; Æp) as a \
ontinuity ball". Now
over D by the 
orresponding balls with radius halved, that is,D � [p2DB(p; Æp=2):We 
an refer to B(p; Æp=2) as a \
overing ball". By 
ompa
tness, we have D �[mj=1B(pj; Æpj=2). Now set Æ = min1�j�mfÆpj=2g. It remains to prove that if x; y 2 Dand jx� yj < Æ, then jf(x)� f(y)j < �. 23



Sin
e x 2 D there is a j su
h that x 2 B(pj; Æpj=2). Sin
e jx� yj < Æ � Æpj=2 wehave jy � pjj � jy � xj + jx � pjj < Æ + Æpj=2 � Æpj . In other words, x and y bothbelong to the same 
ontinuity ball B(pj; Æpj). Thusjf(x)� f(y)j � jf(x)� f(pj)j+ jf(pj)� f(y)j < �=2 + �=2 = �:The proof is 
omplete. 2As the next assignment shows, there are non-trivial uniformly 
ontinuous fun
tionson non-
ompa
t sets.Assignment 11 (Due November 4) In (A) and (B), show that f and g are uni-formly 
ontinuous on Rn, where(A) f(p) = jpj (Hint: triangle inequality)(B) g(p) = x1y1 + � � � + xnyn where p = (x1; : : : ; xn) 2 Rn is a variable point andy1; : : : ; yn 2 R are �xed.(C) [Bu
k, p.88#6℄, namely, a uniformly 
ontinuous fun
tion preserves Cau
hy se-quen
es.15 Wednesday O
tober 26,2005|Dis
ussion of FirstMidterm15.1 Statisti
s� Mean =49� Median =41� tentative letter grade 91-100=A, 85-90=A-, 80-84=B+, 72-80=B, 65-71=B-,55-65=C+,45-54=C,40-44=C-,35-39=D+, 30-34=D,25-29=D-,0-24=F� mean on ea
h problem: #1 6.72=56%, #2 5.40=45%, #3 3.68=74%, #4 13.64=55%,#5 6.88=57%, #6 7.40=62%, #7 3.24=27%, #8 2.68=27%15.2 Answers to the problemsProblem 1 (a) R�Z = [n2Z(n; n+1) is a union of open sets. Alternatively, givenx 2 R� Z, pi
k n 2 Z with x 2 (n; n + 1) and de�ne Æ = minfx� n; n+1� xg. Then (x� Æ; x+ Æ) � R� Z.(b) yes(
) yesProblem 2 (a) bdyS = f(x; 0) : 0 � x � 1=2g [ f(x; y) : x2 + y2 = 1g [ f(x; y) :x2 + y2 = 2g 24



(b) intS = f(x; y) : 1 < x2 + y2 < 2g(
) 
lS = f(x; 0) : 0 � x � 1=2g [ f(x; y) : 1 � x2 + y2 � 2gProblem 3 False. Counterexample: S = f(x; y) : x2 + y2 < 1gProblem 4 (a) True; A \B is a subset of A(b) False; A = (0; 1); B = [1=2;1)(
) False; A = (0; 1); B = [1=2; 3℄(d) False; A = (0; 1); B = [1=2; 3℄(e) True; A \ (Rn �B) is a subset of AProblem 5 � Using BW: If S is 
ompa
t and not bounded, then for every n � 1there exists pn 2 S with jpnj > n. By BW there exists p 2 (
l fpng1n=1)\Sso that for any Æ > 0, B(p; Æ) \ fpng is in�nite, say B(p; Æ) \ fpng =fpnkg1k=1. Then nk < jpnk j � jpnk � pj+ jpj � Æ+ jpj, a 
ontradi
tion sin
elimk nk =1.� Using HB: The 
olle
tion G = fB(0; n) : n =1;2; : : :g is an open 
over ofany set S � Rn. If S is 
ompa
t then for some N � 1, S � [Nn=1B(0; n) =B(0; N), that is, S is bounded.Problem 6 (a) Let p 2 bdyS and suppose p 62 S. Then 9B(p; Æ) � Rn�S, so thatthen B(p; Æ) \ S = ;, 
ontradi
ting the fa
t that p 2 bdyS(b) S = bdyS [ S � S by (a). But S is the smallest 
losed set 
ontaining S.In parti
ular, S � S. Hen
e S = SProblem 7 (a) � Using HB: Let A � [1k=1Gk where Gk is a sequen
e of opensets. Then S � (Rn�A)[[Gk is an open 
over of S , so that 9N � 1with S � (Rn � A) [ [Nk=1Gk. Then A � [Nk=1Gk.� Using BW: Let fpng be an in�nite sequen
e in A. Sin
e A � S by theBW property for S, 9p 2 
lfpng \ S. Sin
e fpng � A, p 2 
lA andsin
e A is 
losed (
lA � A), p 2 A. Thus A satis�es BW� Using CB: A is given to be 
losed, and S is 
losed be
ause it is 
ompa
t.Sin
e A � S, A is also bounded, so A is 
losed and bounded, therefore
ompa
t.(b) S is 
losed be
ause it is 
ompa
t. So S is a 
losed set 
ontaining A. Sin
eA is the smallest 
losed set 
ontaining A, we have A � S. Then by (a), A,being 
losed, is 
ompa
t.Problem 8 (a) We need to show that for every Æ > 0, the set B(p; Æ)\S is in�nite.Given Æ, pi
k q1 6= p and q1 2 B(p; Æ) \ S and set Æ1 = jp� q1j. Then pi
kq2 6= p, and q2 2 B(p; Æ1) \ S and make sure that q1 6= q2. Continuing inthis was we obtain a sequen
e of distin
t points fqi; q2; : : :g � B(p; Æ) \ S25



(b) Let's show (dire
tly) that 
l(
lS) � 
lS. Take p 2 
l(
lS) so that B(p; Æ)\
lS 
ontains a point q 6= p. Choose Æ1 su
h that B(q; Æ1) � B(p; Æ). ButB(q; Æ1) \ S is in�nite, so B(p; Æ) \ S is in�nite, proving that p 2 
lS.15.3 An assignment related to Problem 8Assignment 12 (Due November 4) Give three other proofs that the set 
lS of 
lusterpoints of an arbitrary set S is a 
losed set, more pre
isely,� Show Rn � 
lS is open� Show bdy (
lS) � 
lS� Show flimk pk : pk 2 
lSg � 
lS16 Friday O
tober 28, 2005|A uniformly 
ontin-uous fun
tion extends (
ontinuously!) to the
losure of its domain16.1 Motivation and statement of the problemThere are two main appli
ations of uniform 
ontinuity. In the theory of Riemannintegration the fa
t that a 
ontinuous fun
tion on a 
lose re
tangle in R2 is integrablefollows very readily the fa
t that it is automati
ally uniformly 
ontinuous, a 
losedre
tangle being a 
ompa
t set.Today we 
onsider the another appli
ation in the form of a solution to a parti
ularmathemati
al problem. Let S be any subset of Rn and let f : S ! R be a 
ontinuousfun
tion. The problem is: 
an f be extended to a 
ontinuous fun
tion, 
all it ~f ,on the 
losure S of S? Stated again, given f 
ontinuous on S, does there exist a
ontinuous fun
tion ~f on S, su
h that ~f(p) = f(p) for p 2 S? Let me repeat this:given a 
ontinuous fun
tion f on S, does there exist a 
ontinuous fun
tion ~f on Ssu
h that ~fjS = f?We know already that the answer is no, as the example f(x) = 1=x on S = (0; 1) �R shows. So to get a positive answer, we must put some restri
tions on the fun
tionf and/or on the set S. We will �nd that if we assume that f is uniformly 
ontinuouson S, then the answer is yes for any set S.To solve this problem we note �rst that our hands are tied by Theorems 14.1 and12.4. That is, we have no 
hoi
e, we must de�ne the extension ~f as follows:~f(p) = ( f(p) if p 2 S;limk!1 f(pk) if p 2 S n S;where pk 2 S is su
h that limk pk = p.To make this 
onstru
tion legitimate, we must answer three questions:26



� Why does limk f(pk) exist?� Why is limk f(pk) independent of the sequen
e pk 
hosen in S?� Why is ~f (whi
h is a fun
tion by positive answers to the �rst two questions)
ontinuous on S?In order to get aÆrmative answers to the �rst and third questions, we have tomake an assumption on f , but not on S. The �rst two questions are easy to answer,so let's get them out of the way �rst.Assume now that f is not merely 
ontinuous on S, but uniformly 
ontinuous onS. If pk is any sequen
e from S whi
h 
onverges12 to p 2 S, then pk is a Cau
hysequen
e, and by uniform 
ontinuity of f , Assignment 11(C) tells us that f(pk) isa Cau
hy sequen
e in R. Hen
e the limit exists and the �rst question is answeredaÆrmatively.We now answer the se
ond question. Let fpkg and fqkg be any two sequen
esfrom S whi
h 
onverge to p 2 S. By the answer to the �rst question, the limits� := limk f(pk) and � := limk f(qk) exist. We must show that � = �. To dothis, 
onsider a third sequen
e, obtained by interla
ing the two given sequen
es:p1; q1; p2; q2; : : : ;. Obviously, this sequen
e 
onverges to p also, so the sequen
e offun
tion values f(p1); f(q1); f(p2); f(q2); : : : ; 
onverges, say to a number 
. Sin
eevery subsequen
e of this sequen
e must also 
onverge to 
, it follows that � = 
 and� = 
, so � = �, as required. The se
ond question is answered aÆrmatively.17 Monday O
tober 31, 2005|The extension the-oremThis se
tion is devoted to the answer to the third question raised in the last le
ture.Let us state this as a theorem.Theorem 17.1 Let f : S ! R be a uniformly 
ontinuous fun
tion de�ned on asubset S of Rn. De�ne a fun
tion ~f : S ! R by~f(p) = ( f(p) if p 2 S;limk!1 f(pk) if p 2 S n S;where pk 2 S is su
h that limk pk = p. Then ~f is 
ontinuous13 on S.Proof: Let p 2 S and let � > 0. We shall produ
e a Æ > 0 su
h that ~f [B(p; Æ)\ S℄ �B( ~f(p); �), that is, j ~f(p)� ~f(q)j < � if q 2 S and jq � pj < Æ:Dis
ussion (sidebar): here are the basi
 ideas of the proof. Make sure you under-stand the reason for ea
h assertion below.12Su
h a sequen
e exists by Theorem 14.113The proof will show that a
tually ~f is uniformly 
ontinuous on S27



1. The points p; q (2 S) have \neighbors" pk; qj 2 S: for example jp � pkj < 1=kand jq � qjj < 1=j.2. ~f(p) and f(pk) are \
lose"; so are ~f(q) and f(qj).3. if pk and qj are 
lose, so are f(pk) and f(qj).4. if p and q are 
lose, so are pk and qj.5. end of sidebarWe now make these statements pre
ise. We begin with the triangle inequality:j ~f(p)� ~f(q)j � j ~f(p)� f(pk)j+ jf(pk)� f(qj)j+ jf(qj)� f(q)j: (9)There exists N1 = N1(�=3; p) su
h that j ~f(p) � f(pk)j < �=3 for all k > N1 andthere exists N2 = N2(�=3; q) su
h that j ~f(q)�f(qj)j < �=3 for all j > N2. (This takes
are of the �rst and third terms on the right side of (9)).There exists Æ1 = Æ1(f; �=3; S) su
h that jf(x)�f(y)j < �=3 whenever x; y 2 S andjx�yj < Æ1. In parti
ular, for the middle term on the right side of (9), jf(pk)�f(qj)j <�=3 if jpk � qjj < Æ1.Now note that (again by the triangle inequality)jpk � qjj � jpk � pj+ jp� qj+ jq � qjj: (10)Thus, if we de�ne Æ := Æ1=2, then from (10), if jp � qj < Æ, and k; j are largeenough, then jpk � qjj will be less than Æ1.Con
lusion: if jp�qj < Æ, where Æ = Æ1(f; �=3; S), then, j ~f(p)� ~f(q)j < �=3+ �=3+�=3 = �, by (9), where k; j are 
hosen so that k > N1; j > N2 and 1=k + 1=j < Æ1. 2Assignment 13 (Due November 14)(A) Let S � Rn be a bounded set and let f : S ! R be a 
ontinuous fun
tion. Provethat f has a 
ontinuous extension to S if and only if f is uniformly 
ontinuouson S.(B) Let f : R! R be 
ontinuous and suppose thatlimx!1 f(x) = limx!�1 f(x) = 0:Prove that f is uniformly 
ontinuous on R.18 Wednesday November 2, 2005|Di�erentiabilityimplies 
ontinuity for fun
tionsThere will be another version of this later|see the 
oordinate-free de�nition of deriv-ative later in the 
ourse.Let's begin by re
alling the mean value theorem in one variable. We shall useLemma 18.1 (a result in one dimension) in the proof of Theorem 18.3 below (a theoremin n � 1 dimensions). 28



Lemma 18.1 (Mean Value Theorem in one variable) If f : (a; b) ! R is dif-ferentiable on (a; b), then for every x1; x2 2 (a; b) with x1 < x2, there exists 
 2 (x1; x2)su
h that f(x1)� f(x2)x1 � x2 = f 0(
):Rhetori
al question: is f 0 a 
ontinuous fun
tion? NO!, in general. (See thetextbook for 140AB by Ross, page 160. The fun
tion f de�ned by f(0) = 0 andf(x) = x2 sin(1=x) for x 6= 0 is di�erentiable for every real x, but the derivative f 0 isnot 
ontinuous at x = 0.) However, only the existen
e of a derivative, not the 
on-tinuity of the derivative, is required in Lemma 18.1 and Theorem 18.2. This is onedi�eren
e between these two one-dimensional results, and the n-dimensional theoremTheorem 18.3.Now let's re
all the proof in one variable that di�erentiability implies 
ontinuity.Theorem 18.2 (Di�erentiability implies 
ontinuity|one variable) If f : (a; b)!R is di�erentiable at a point 
 in (a; b), then f is 
ontinuous at 
. In parti
ular, if fis di�erentiable on all of (a; b) then it is 
ontinuous on (a; b).Proof: If f : (a; b) ! R is di�erentiable on (a; b), then for any �xed 
 2 (a; b), andany x 6= 
, f(x)� f(
) = f(x)� f(
)x� 
 � (x� 
):Thus, f(x) = f(
) + f(x)�f(
)x�
 � (x� 
) so thatlimx!
 f(x) = f(
) + f 0(
) � 0 = f(
):We now 
onsider a notion of di�erentiability for fun
tions f : D ! R de�ned onopen subsets D of Rn. For su
h a fun
tion and a point p0 = (x01; : : : ; x0n) 2 D, thepartial derivatives at p0 are de�ned byD1f(p0) = limx1!x01 f(x1; x02; : : : ; x0n)� f(x01; x02; : : : ; x0n)x1 � x01 = ddx1 �����x1=x01 f(x1; x02; x03; : : : ; x0n);D2f(p0) = limx2!x02 f(x01; x2; x03; : : : ; x0n)� f(x01; x02; : : : ; x0n)x2 � x02 = ddx2 �����x2=x02 f(x01; x2; x03; : : : ; x0n);and so forth, untilDnf(p0) = limxn!x0n f(x01; : : : ; x0n�1; xn)� f(x01; x02; : : : ; x0n)xn � x0n = ddxn �����xn=x0n f(x01; : : : ; x0n�1; xn):Some 
ommon notations for this areDjf(p0) = fj(p0) = �f�xj (p0):29



You 
an also write (if you prefer)�f�xj (p0) = limt!0 f(x01; � � � ; x0j�1; xj + t; x0j+1; � � � ; x0n)� f(x01; x02; : : : ; x0n)t :Other 
ommon notations 
an be found in [Bu
k, page 127℄.We want to prove an analog of Theorem 18.2 for fun
tions of n variables. We willsee that it di�ers both in statement and diÆ
ulty of proof from the 
ase n = 1. Thefollowing example (Problem 4 on page 135 and part of Assignment 14) indi
ates astriking di�eren
e between one variable and two variables.Let f(x; y) = xy=(x2 + y2) for (x; y) 2 R2 � f(0; 0)g and f(0; 0) = 0. Then� D1f(0; 0) and D2f(0; 0) exist� f is not 
ontinuous at (0; 0)� D1f and D2f are not 
ontinuous at (0; 0)Theorem 18.3 (Corollary on page 129 of Bu
k) Let f : D ! R be de�ned onan open subset D of Rn, and suppose that f 2 C1(D). Then f is 
ontinuous on D.Restated, if D1f; : : : ; Dnf exist and are 
ontinuous at all points of D, then f is
ontinuous on D.Proof: Fix p0 2 D and let p 2 B(p0; r) � D for some r > 0.Sidebar: We shall travel from p0 = (x01; : : : ; x0n) to p = (x1; : : : ; xn) bygoing parallel to the 
oordinate axes, one axis at a time, using only theexisten
e of ea
h partial derivative fj and the mean value theorem in onevariable to obtain an expression of the formf(p)�f(p0) = f1(q1)(x1�x01)+f2(q2)(x2�x02)+� � �+fn(qn)(xn�x0n) (11)for 
ertain ve
tors q1; : : : ; qn 2 B(p0; r).Next we shall use the 
ontinuity of the partial derivatives to get jf(p)�f(p0)j < � for jp� p0j < Æ.Let's get down to business. For simpli
ity, we do the proof in the 
ase n = 3(otherwise we will get lost in the notation, but the proof we shall give works in anydimension). A

ordingly, we shall use the notation p0 = (x0; y0; z0) and p = (x; y; z).Step 1 Let p1 = (x; y0; z0). Then by the mean value theorem in one variablef(p1)� f(p0) = �f�x(
; y0; z0)(x� x0) for some 
 between x and x0:(Question: what does 
 depend on?)30



Step 2 Let p2 = (x; y; z0). Then by the mean value theorem in one variablef(p2)� f(p1) = �f�y (x; d; z0)(y � y0) for some d between y and y0:(Question: what does d depend on?)Step 3 Let p3 = (x; y; z) (= p). Then by the mean value theorem in one variablef(p)� f(p2) = �f�z (x; y; e)(z � z0) for some e between z and z0:(Question: what does e depend on?)Step 4 Letting q1 = (
; y0; z0); q2 = (x; d; z0); q3 = (x; y; e), we havef(p)� f(p0) = [f(p1)� f(p0)℄ + [f(p2)� f(p1)℄ + [f(p)� f(p2)℄= f1(q1)(x� x0) + f2(q2)(y � y0) + f3(q3)(z � z0):This proves (11).By 
onstru
tion, jqk � p0j � jp � p0j for k = 1; 2; 3 and of 
ourse jx � x0j �jp�p0j; jy�y0j � jp�p0j; jz�z0j � jp�p0j. The 
ontinuity of the partial derivatives,together with (11) now shows that for any � > 0 there exists Æ > 0 su
h that jf(p)�f(p0)j < � for jp� p0j < Æ and p 2 D. 2We repeat that if n = 1, you do not have to assume that the derivative is 
on-tinuous, only the existen
e is required. For n > 1, existen
e and 
ontinuity of thederivatives is required14.Assignment 14 (Due November 14) [Bu
k, x3.3 page 134 #4,5,11℄19 Friday November 4, 2005|Di�erential as a Lin-ear approximation (the 
ase of fun
tions)Let's examine the equation (11). If we write it in ve
tor notation we get some newinsight whi
h leads us to the notion of gradient (or di�erential) of a fun
tion and tothe notion of approximating a fun
tion by a linear fun
tion (namely, the di�erentialof the fun
tion). The equation (11) 
an be rewritten as a dot produ
t of ve
tors:f(p)� f(p0) = (f1(q1); f2(q2); � � � ; fn(qn)) � (x1 � x01; x2 � x02; � � � ; xn � x0n); (12)or, f(p)� f(p0) = V � (p� p0), where V is the ve
tor V = (f1(q1); f2(q2); � � � ; fn(qn)).Re
all that the assumption is that f 2 C1(D), D is an open set, p0 2 D and the
on
lusion is that the points q1; : : : ; qn 
an be 
hosen in any ball with 
enter p0
ontaining p.Two questions 
an be asked in 
onne
tion with (12).14this is a little white lie, see Problem 5 in the next assignment31



1. Can we pi
k the q1; : : : ; qn all to be the same point (
all it p�) lying on the linesegment from p0 to p? The answer is: YES! This is the Mean Value Theoremin several variables, see [Bu
k, Theorem 16,page 151℄ and a theorem below inthe se
tion on Mean Value Theorems. As in the 
ase of one variable, a meanvalue theorem may not be so interesting in its own right, but it is an importanttool whi
h will be very useful in our lifetime.2. Carrying the previous question one step further, we 
an be greedy and askwhether the point p� 
an be equal to p0. The answer here is NO! (See Assign-ment 15)Assignment 15 (Due November 14) Give an example for n = 1 where p� 
annot be
hosen to be p0. (Hint: almost any example works). What about n = 2?The following is a fundamental de�nition. It has o

urred impli
itly in the abovetwo questions.De�nition 19.1 If f : D ! R is de�ned on an open set D � Rn, the gradient off at p 2 D is the ve
tor rf(p) = (D1f(p); D2f(p); � � � ; Dnf(p)). Of 
ourse rf isde�ned only at those points of D where all �rst order partial derivatives of f exist.Even though the answer to the se
ond question above is negative, something is,nevertheless true. To see what it is that interests me, let us just write down the fa
t,in a di�erent way, that a fun
tion (of one variable) is di�erentiable. This will enableus to formulate an analogous property for fun
tions of several variables.If f is di�erentiable at the point 
 2 (a; b) � R with derivative f 0(
), thenlimx!
 f(x)� f(
)� f 0(
)(x� 
)x� 
 = 0:This is the same as limx!
 jf(x)� f(
)� f 0(
)(x� 
)jjx� 
j = 0: (13)The following is the analog, for fun
tions of several variables, of (13). It says thata C1-fun
tion 
an be approximated, in some sense, by an essentially linear fun
tion,namely the fun
tion T (p) := f(p0)+rf(p0) �(p�p0). Note that (14) is mu
h strongerthan the obvious statement that jf(p) � f(p0) � rf(p0) � (p � p0)j ! 0 as p ! p0,whi
h follows from the 
ontinuity of f at p0.Theorem 19.2 (Theorem 8 on page 131 of Bu
k) Let f be of 
lass C1 on anopen set D � Rn. For any p0 2 D,limp!p0 jf(p)� f(p0)�rf(p0) � (p� p0)jjp� p0j = 0:Sin
e we have not used the notation limp!p0, we should explain that it simply meansthe following: for every � > 0, there exists Æ > 0 su
h thatjf(p)� f(p0)�rf(p0) � (p� p0)jjp� p0j < � whenever p 2 B(p0; Æ) \D: (14)32



Proof: Let R := f(p)� f(p0)�rf(p0) � (p� p0). By (12) (whi
h is the main pointin the proof of Theorem 18.3), f(p) � f(p0) = V � (p � p0), where V is the ve
torV = (f1(q1); f2(q2); � � � ; fn(qn)). ThereforeR = V � (p� p0)�rf(p) � (p� p0) = [V �rf(p0)℄ � (p� p0):Now use the S
hwarz inequality:jRj = j[V �rf(p0)℄ � [p� p0℄j � jV �rf(p0)jj(p� p0)j;that is jRjjp� p0j � jV �rf(p0)j; (15)and if you write out the 
oordinates of V � rf(p0) you will see that jV � rf(p0)j,and hen
e by (15) jRj=jp� p0j, approa
hes zero as p approa
hes p0.Here are the details:V �rf(p0) = [f1(q1); f2(q2); � � � ; fn(qn)℄� [f1(p0); f2(p0); � � � ; fn(p0)℄= [f1(q1)� f1(p0); f2(q2)� f2(p0); � � � ; fn(qn)� fn(p0)℄;so thatjV �rf(p0)j2 = (f1(q1)�f1(p0))2+(f2(q2)�f2(p0))2+ � � �+(fn(qn)�fn(p0))2: (16)Sin
e ea
h fj is 
ontinuous and sin
ejqj � p0j2 = j((x1; x2; : : : ; xj�1; 
j; x0j+1; : : : ; x0n)� (x01; : : : s; x0n)j2= j�1Xk=1(xk � x0k)2 + (
j � x0j)2 � jp� p0jfor ea
h j, we see from (15) and (16) that (14) holds.20 Monday November 7, 2005|Higher derivatives;Transformations20.1 Higher order partial derivativesWhen you di�erentiate a fun
tion the result is another fun
tion, whi
h you 
an thenpro
eed to (try to) di�erentiate again. This gives rise to higher derivatives in onevariable, f; f 0; f 00; f 000; : : :. We 
an do the same thing in several variables, where wehave a lot more variety. That is, given a fun
tion f on an open set D in Rn, its\�rst" derivatives (when they exist!) are the fun
tions D1f;D2f; : : : ; Dnf , whi
h arethemselves fun
tions on D. Ea
h one of these new fun
tions has n partial derivatives,so the list of \se
ond" derivatives of f is very large, and the number of \third" oreven higher order derivatives grows very qui
kly (Question: what is that number?)33



Higher order partial derivatives are denoted as follows: for example, for order 2,Di(Djf) = (fj)i = fji = ��xi ( �f�xj ) = �2f�xi�xj ;and if i = j, D2jf = Dj(Djf) = (fj)j = fjj = ��xj ( �f�xj ) = �2f�x2j :De�nition 20.1 Let k be any positive integer, k = 1; 2; : : :. A fun
tion f de�ned onan open set D in Rn is said to be of 
lass Ck on D, notation f 2 Ck(D), if all of itspartial derivatives up to and in
luding order k exist and are 
ontinuous fun
tions onD. A 
ontinuous fun
tion on D is said to be of 
lass C0. 15To be expli
it, a fun
tion f is of 
lass C1 on D if the following n fun
tions are all
ontinuous on D: D1f; : : : ; Dnf . The fun
tion f is of 
lass C2 if the following n2+nfun
tions are all 
ontinuous on D:Djf (1 � j � n); Dm(Dif) (1 � i � n; 1 � m � n):We have C1(D) � C2(D) � � � � � Ck(D) � Ck+1(D) � � � � (17)In parti
ular, if n = 1, and D is an open interval I in R, thenC0(I) � C1(I) � C2(I) � � � � � Ck(I) � Ck+1(I) � � � � (18)Noti
e that (18) has an extra in
lusion at the beginning, namely C0(I) � C1(I),due to Theorem 18.2. We have shown in Theorem 18.3 that (17) has an extra in
lusiontoo, namely C0(D) � C1(D). (Question: how do these two extra in
lusion relationsdi�er from ea
hother?)20.2 TransformationsWe now begin the study of transformations. First a formal de�nition.De�nition 20.2 A transformation is any fun
tion T : D! Rm, where D � Rn.Here, m � 1 and n � 1, so this in
ludes the spe
ial 
ase of a fun
tion f 
onsideredup to now (that is, m = 1; n arbitrary). Every transformation gives rise to 
oordinatefun
tions as follows: if p = (x1; � � � ; xn) 2 D, and T (p) = (y1; � � � ; ym) 2 Rm, thenea
h yj is a fun
tion of p = (x1; : : : ; xn), whi
h we 
an denote by fj or f j 16. ThusT (p) = (f 1(p); � � � ; fm(p));15In [Bu
k, De�nition 1,page 128℄, the de�nition of Ck requires that f be 
ontinuous. By Theo-rem 18.3, Bu
k's de�nition of Ck and our De�nition 20.1 are equivalent16the latter notation is preferable in order to avoid 
onfusion with the notation fj for a partialderivative of some fun
tion f 34



where ea
h f j : D! R is a fun
tion of n variables x1; : : : ; xn.Transformations are the subje
t of [Bu
k, Chapter 7℄ and their geometri
 prop-erties are dis
ussed in [Bu
k, Se
tion 7.2℄. Although these geometri
 properties areimportant to know for a better understanding of transformations, we will have to takethe moral high ground and 
on
entrate on analyti
 properties of transformations, thatis, 
ontinuity, and most importantly, di�erentiability.Fortunately, the study of 
ontinuity of transformations is no more diÆ
ult thanthe study of 
ontinuity of fun
tions of several variables. This will be established inthe following assignments, namely Assignments 16 to 23.17The following is the analog of De�nition 11.1De�nition 20.3 Let T : D ! Rm be a transformation, where D is any subset ofRn, and let p0 2 D. We say that T is 
ontinuous at p0 if8� > 0; 9Æ > 0su
h that jT (p)� T (p0)j < � for all p 2 D with jp� p0j < Æ:This de�nition 
an be put in the 
ompa
t form8� > 0; 9Æ > 0 su
h that T (D \B(p0; Æ)) � B(f(p0); �):Noti
e that if f : D ! R is a fun
tion whi
h is of 
lass C1 on a subset D � Rn,the rf is an example of a transformation. In this 
ase, m = n. The main purpose ofthe rest of this 
ourse, (and mu
h of 
lassi
al and modern mathemati
s) is to studyproperties of transformations T : D ! Rm, su
h as 
ontinuity and di�erentiability(suitably de�ned).Assignment 16 (Due November 21) Let T (p) = (f 1(p); � � � ; fm(p)) be a transfor-mation with 
oordinate fun
tions f 1; : : : ; fm. Prove that T is 
ontinuous at p0 if andonly if ea
h 
oordinate fun
tion f j, 1 � j � m, is 
ontinuous at p0.The following is the analog of Theorem 11.2.Theorem 20.4 (Theorem 4 on page 333 of Bu
k) The 
ontinuous image of a
ompa
t set is 
ompa
t. In other words, if T : D ! Rm is a 
ontinuous transfor-mation on D, and D is a 
ompa
t subset of Rn, then T (D) is a 
ompa
t subset ofRm.Assignment 17 (Due November 21) Prove Theorem 20.4.The following is the analog of Theorem 12.4.17Don't worry, not all of these assignments will be handed in35



Theorem 20.5 Let T : D ! Rm, where D � Rn, and suppose that T is 
ontinuousat the point p0 2 D. Then for every sequen
e pk from D, whi
h 
onverges to p0, wehave limk!1T (pk) = T (p0):Assignment 18 (Due November 21) Prove Theorem 20.5.Assignment 19 (Due November 21) State and prove an analog of the Extreme val-ues theorem, Theorem 12.4. (Hint: Sin
e Rm has no order stru
ture, you have toexpress the theorem in terms of jT (p)j.)The following is the analog of De�nition 14.5De�nition 20.6 A transformation : T : E ! Rm, where E � Rn, is uniformly
ontinuous on E if for every � > 0, there exists Æ > 0 su
h that jT (p) � T (q)j < �whenever p; q 2 E and jp� qj < Æ.The following is the analog of Theorem 14.6.Theorem 20.7 A transformation whi
h is 
ontinuous on a 
ompa
t set D is uni-formly 
ontinuous on D.Assignment 20 (Due November 21) Prove Theorem 20.7.Assignment 21 (Due November 21) Show that a linear transformation (see [Bu
k,Se
tion 7.3℄) is uniformly 
ontinuous. (Hint: Use [Bu
k, Theorem 8,page 338℄)The following is the analog of Theorem 17.1Theorem 20.8 Let T : D ! Rm be a uniformly 
ontinuous transformation de�nedon a subset D of Rn. De�ne a transformation ~T : D! Rm by~T (p) = ( T (p) if p 2 D;limk!1 T (pk) if p 2 D nD;where pk 2 D is su
h that limk pk = p. Then ~T exists, is well de�ned, and is 
ontin-uous on D.Assignment 22 (Due November 21) Prove Theorem 20.8.Assignment 23 (Due November 21) Let D � Rn be a bounded set and let T : D!Rm be a 
ontinuous transformation. Prove that T has a 
ontinuous extension to Dif and only if T is uniformly 
ontinuous on D.
36



21 Wednesday November 9, 2005|Approximationby the di�erential|the 
ase of transformationsOur next main result is the analog for transformations of (14) in Theorem 19.2. Firstwe need to de�ne the repla
ement for the gradient.De�nition 21.1 If T : D! Rm is de�ned on an open set D � Rn, with 
oordinatefun
tions f 1; : : : ; fm, the Ja
obian matrix of T at p 2 D is the m by n matrixJT (p) = 266664 �f1�x1 (p) : : : �f1�xn (p)�f2�x1 (p) : : : �f2�xn (p): : : : : : : : :�fm�x1 (p) : : : �fm�xn (p)
377775 :Of 
ourse JT (p) is de�ned only at those points of D where all �rst order partialderivatives of ea
h 
oordinate fun
tion f i exist.We 
an also write this in the formJT (p) = [ �f i�xj (p)℄1�i�m;1�j�n = [Djf i(p)℄1�i�m;1�j�nWe shall use � to denote matrix multipli
ation. Thus, for example, if q is any(row) ve
tor in Rn, JT (p)� qt is a (
olumn) ve
tor in Rm, where qt is the transposeof q. In parti
ular, for the dot produ
t of two (row) ve
tors p; q, p � q = p� qt.Later on, for the inverse fun
tion theorem, we will have m = n, and it will bevery important to 
onsider the Ja
obian determinant of T , whi
h is de�ned to bedet JT (p).18At this point it is ne
essary to in
lude the following obvious de�nition. A trans-formation T = (f 1; : : : ; fm) is said to be of 
lass Ck on an open set D � Rn for a�xed integer k � 1, if ea
h of its 
oordinate fun
tions f i is of 
lass Ck on D.Assignment 24 (Due November 21) Prove that a transformation of 
lass C1 is 
on-tinuous.Theorem 21.2 (Theorem 10 on page 344 of Bu
k) Let T : D ! Rm be a trans-formation of 
lass C1 on an open set D � Rn. Then19, for any p0 2 D,limp!p0 jT (p)� T (p0)� JT (p0)� (p� p0)tjjp� p0j = 0:18Be 
areful. Some authors (in
luding Bu
k) de�ne the Ja
obian to be what I am 
alling Ja
obiandeterminant. Others, like me, who are sensible, distinguish between the two de�nitions: Ja
obianmatrix and Ja
obian determinant19Stri
tly speaking, T (p) and T (p0) are row ve
tors and JT (p0)�(p�p0)t is a 
olumn ve
tor, so tobe perfe
tly truthful this should be written as limp!p0 jT (p)t�T (p0)t�JT (p0)�(p�p0)tjjp�p0j = 0. However,we won't do this as it makes the notation 
umbersome and it is 
lear that we are talking aboutve
tors, and it doesn't matter if we 
all them row ve
tors or 
olumn ve
tors.37



The meaning here is: for every � > 0, there exists Æ > 0 su
h thatjT (p)� T (p0)� JT (p0)� (p� p0)tjjp� p0j < � whenever p 2 B(p0; Æ) \D: (19)Proof: Let T = (f 1; � � � ; fm). By Theorem 19.2, for ea
h 1 � i � mjf i(p)� f i(p0)�rf i(p0) � (p� p0)jjp� p0j ! 0 as p! p0: (20)Using the notation Ri(p) = f i(p)� f i(p0)�rf i(p0) � (p� p0), (20) be
omesjRi(p)jjp� p0j ! 0; (21)and we haveT (p)� T (p0) = (f 1(p)� f 1(p0); � � � ; fm(p)� fm(p0))= (rf 1(p0) � (p� p0); � � � ;rfm(p0) � (p� p0)) + (R1(p); � � � ; Rm(p))= ( nXj=1 �f1�xj (p0)(xj � x0j); � � � ; nXj=1 �fm�xj (p0)(xj � x0j)) + (R1(p); � � � ; Rm(p)):On the other hand,JT (p0)� (p� p0)t = 266664 �f1�x1 (p0) : : : �f1�xn (p0)�f2�x1 (p0) : : : �f2�xn (p0): : : : : : : : :�fm�x1 (p0) : : : �fm�xn (p0)
377775� 26664 x1 � x01x2 � x02� � �xn � x0n 37775= ( nXj=1 �f1�xj (p0)(xj � x0j); � � � ; nXj=1 �fm�xj (p0)(xj � x0j))t:Now let us subtra
t the last two equations. We getT (p)� T (p0)� JT (p0)� (p� p0)t = (R1(p); � � � ; Rm(p)):Now use (21) to obtainjT (p)� T (p0)� JT (p0)� (p� p0)tjjp� p0j =  mXi=1 Ri(p)2jp� p0j2!1=2 ! 0as p! p0. 222 Friday November 11, 2005|Holiday(Veteran's day) 38



23 Monday November 14, 2005|Chain rule I. Theone-dimensional 
aseWe begin our by re
alling the statement and proof of the one-dimensional 
hainrule that we en
ounter as freshmen (or as seniors in high s
hool) and use every day(sometimes without realizing it). Here, we are very lu
ky, sin
e we shall write theproof in one-dimension in su
h a way that the proof in arbitrary dimensions of the
hain rule for transformations will require only notational 
hanges. The key ideaunderlying this s
heme is to write every formula \horizontally", or on a line. In otherwords, you 
an divide by numbers, but not by ve
tors.We denote the 
omposition of fun
tions by f Æ g, that is,f Æ g(x) = f(g(x)):In order for this to make sense, the range of g must be a subset of the domain of f .Theorem 23.1 (One-dimensional 
hain rule) Let g be a real valued fun
tion de-�ned on an open interval 
ontaining a 2 R and suppose that g is di�erentiable at awith derivative g0(a). Let f be a real valued fun
tion de�ned on an open interval
ontaining g(a) and suppose that f is di�erentiable at g(a) with derivative f 0(g(a)).Then f Æ g is di�erentiable at a with derivative(f Æ g)0(a) = f 0(g(a)) g0(a):Proof: Sin
e g is di�erentiable at a, 8�0 > 0; 9Æ0 > 0 su
h thatjg(x)� g(a)� g0(a)(x� a)j < �0jx� aj if jx� aj < Æ0: (22)Sin
e f is di�erentiable at g(a), 8�00 > 0; 9Æ00 > 0 su
h thatjf(y)� f(g(a))� f 0(g(a))(y � g(a))j < �00jy � g(a)j if jy � g(a)j < Æ00: (23)We need to prove: 8� > 0; 9Æ > 0 su
h thatjf(g(x))� f(g(a))� f 0(g(a))g0(a)(x� a)j < �jx� aj if jx� aj < Æ: (24)Sin
e g is 
ontinuous at a, 9Æ
 > 0 su
h thatjg(x)� g(a)j < Æ00 if jx� aj < Æ
: (25)Using (25), we may repla
e y in (23) by g(x) to obtainjf(g(x))� f(g(a))� f 0(g(a))(g(x)� g(a))j < �00jg(x)� g(a)j if jx� aj < Æ
: (26)Now set Æ := minfÆ
; Æ0g and �(x) := g(x)� g(a)� g0(a)(x� a) so thatg(x)� g(a) = g0(a)(x� a) + �(x) (27)39



and by (22), j�(x)j < �0jx� aj if jx� aj < Æ: (28)Now substitute (27) into (26) (in two pla
es!) and setA := f(g(x))� f(g(a))� f 0(g(a))[g0(a)(x� a) + �(x)℄ (29)to obtain from (26) jAj < �00jg0(a)(x� a) + �(x)j if jx� aj < Æ: (30)Finally, if jx� aj < Æ, we have,jf(g(x))� f(g(a))� f 0(g(a))g0(a)(x� a)j= jA+ f 0(g(a))�(x)j (by (29))� jAj+ jf 0(g(a))�(x)j� �00jg0(a)jjx� aj+ �00j�(x)j+ jf 0(g(a))jj�(x)j (by (30))� [�00jg0(a)j+ �00�0 + jf 0(g(a))j�0℄jx� aj (by (28))< �jx� aj;the last step provided we simply 
hoose �0 and �00 so that [�00jg0(a)j+�00�0+jf 0(g(a))j�0℄ <�. This proves (24). 224 Wednesday November 16, 2005|Coordinate-free de�nition of derivative24.1 Composition of transformationsWe now 
onsider 
omposition of transformations and the 
hain rule in arbitrary di-mensions.De�nition 24.1 Let T be a transformation de�ned on a subset A ofRn with T (A) �Rm. Suppose that S is a transformation de�ned on a subset C ofRm with S(C) � Rk.We suppose that C � T (A). Under these 
ir
umstan
es, the 
omposition of S and Tis the transformation S Æ T (also denoted20 simply by ST ) de�ned byS Æ T (p) = S(T (p)) (p 2 A):EXAMPLE: If T (x; y) = (xy; 2x;�y) and S(x; y; z) = (x�y; yz), then ST (x; y) =S(T (x; y)) = S(xy; 2x;�y) = (xy � 2x;�2xy). In this 
ase, TS is de�ned andTS (x; y; z) = T (S(x; y; z)) = T (x� y; yz) = ((x� y)yz; 2(x� y);�yz). Note that inthis 
ase, ST 6= TS.20There is some logi
 to this notation: fg (in pla
e of f Æ g) 
an be 
onfused with the ordinaryprodu
t of the two fun
tions f and g, whereas ST 
annot, be
ause you 
annot multiply ve
tors40



Theorem 24.2 (Theorem 3, page 333 of Bu
k) If S : A ! Rm is a transfor-mation whi
h is 
ontinuous at a point p0 2 A � Rn, and T : B ! Rk is a trans-formation whi
h is 
ontinuous at the point S(p0) 2 B � Rm, then the 
ompositionT Æ S : A! Rk is 
ontinuous at the point p0.Assignment 25 (Due November 28) Prove Theorem 24.2.24.2 Coordinate free de�nition of derivativeBefore stating the general 
hain rule we must give a \
oordinate-free" de�nition ofderivative and dis
uss some of its properties.De�nition 24.3 (Coordinate-free de�nition of derivative) Let T be a trans-formation de�ned on a subset A of Rn with T (A) � Rm. We say that T is dif-ferentiable at p0 2 A if there exists a linear transformation L : Rn ! Rm, su
hthat limp!p0 jT (p)� T (p0)� L(p� p0)jjp� p0j = 0: (31)We denote L by T 0(p0) (this is justi�ed by Assignment 26) and 
all it the derivativeof T at p0. (Other names for this are total derivative, di�erential, Fre
h�et derivative,. . . ; other notations are dT jp0, DT (p0); : : :)Assignment 26 (Due November 28) Prove that, for a �xed p0, at most one lineartransformation L 
an satisfy (31). (This is the same as Exer
ise #10, page 352 inBu
k)Sin
e at most one linear transformation 
an satisfy (31), the notation T 0(p0) is jus-ti�ed, that is, T 0 is a fun
tion (single valued, or well-de�ned) with domain fp 2 A :T is di�erentiable at pg, whi
h has its values in the set of all linear transformationsfrom Rn to Rm.The next three remarks 
an be thought of as examples or as informal exer
ises.Ea
h one is a spe
ial 
ase of its su

essor.Remark 24.4 If m = 1 and n = 1, then a transformation T is just a fun
tionf : A ! R, where A � R. In this 
ase, if f is di�erentiable at x0, that is, f 0(x0)exists, then the transformation T is di�erentiable at x0, with derivative T 0(x0) whi
his the linear transformation L : R ! R given by L(x) = f 0(x0)x. (What is thejusti�
ation for this?)Remark 24.5 If m = 1 and n � 1, then a transformation T is just a fun
tionf : A! R, where this time A � Rn. In this 
ase, if f is of 
lass C1 on an open set
ontaining p0, then the transformation T is di�erentiable at p0, with derivative T 0(p0)whi
h is the linear transformation L : Rn ! R given by L(p) = rf(p0) � p. (What isthe justi�
ation for this?) 41



Remark 24.6 If m � 1 and n � 1, then a transformation T is just a fun
tionT : A ! Rm, where A � Rn. In this 
ase, if T is of 
lass C1 on an open set
ontaining p0, then the transformation T is di�erentiable at p0, with derivative T 0(p0)whi
h is the linear transformation L : Rn ! Rm given21 by L(p) = JT (p0) � pt.(What is the justi�
ation for this?)We now see one reason for introdu
ing the 
oordinate-free de�nition of the deriva-tive of a transformation T . In the �rst pla
e, it is more general than the \
oordinate"de�nition given by the Ja
obian matrix JT . For, a

ording to Remark 24.6, if T is of
lass C1, that is, all the �rst order partial derivatives exist and are 
ontinuous, thenT is di�erentiable with derivative T 0(p0) = JT (p0). On the other hand, for a di�er-entiable transformation, the �rst order partial derivatives of its 
oordinate fun
tionsall exist (see the next Assignment), but they are not ne
essarily 
ontinuous.Assignment 27 (Due November 28) If T = (f 1; : : : ; fm) is a di�erentiable trans-formation at p0, then the partial derivatives �f i�xj (p0) exist for all 1 � j � n; 1 �i � m. In other words, the Ja
obian matrix JT (p0) exists. (Hint: In the de�nitionof partial derivative, let p = p0 + tej where t 2 R and e1 = (1; 0; : : : ; 0); e2 =(0; 1; 0; : : : ; 0); : : : ; en = (0; : : : ; 0; 1)).24.3 What the se
ond midterm will 
overAssignments: Assignments 8-24Text pages 
overed: 22 72-74, 81-85, 89-93, 109-110, 127-131, 328-333, 341-344Le
ture Material: 23� Continuous real valued fun
tions, 
ontinuous image of a 
ompa
t set (O
t17)� Continuous fun
tions and sequen
es, extreme value theorem (O
t 19)� Closure of a set, 
ontinuous fun
tions on 
ompa
t sets are uniformly 
on-tinuous (O
t 24)� Extension theorem for fun
tions (O
t 28 and 31)� Di�erentiability implies 
ontinuity for fun
tions (Nov 2)� Linear approximation (Nov 4)� Properties of transformations (Nov 7)� Di�erentiability implies 
ontinuity for transformations, linear approxima-tion for transformations (Nov 9)21Re
all that pt is the transpose of the row ve
tor p and that stri
tly speaking L(p) is a row ve
torand JT (p0)� pt is a 
olumn ve
tor. As stated in an earlier footnote, we shall ignore this notationalin
onsisten
y sin
e it does not 
ause any 
onfusion22I suggest you rely on these notes rather than on these pages of the text23The se
ond midterm is a take home midterm whi
h will fo
us on the �rst four of these items;the last four items are 
overed in the Assignments whi
h are due on November 2142



25 Friday November 18, 2005|Chain rule II. Thegeneral 
ase; appli
ations25.1 Proof of the 
hain ruleWe are now ready to prove the 
hain rule for 
omposition of transformations. Weonly have to assume that the transformations are di�erentiable (not ne
essarily of
lass C1). There is very little work to do, in fa
t, this proof is a word pro
essor'sdream|just make the notational 
hanges to the proof, already printed above, ofTheorem 23.1.Theorem 25.1 (Chain Rule,Theorem 11, page 346 of Bu
k) Let T : D! Rmbe a transformation whi
h is di�erentiable on an open set D � Rn, and let S : E !Rk be a di�erentiable transformation on an open subset E of Rm 
ontaining T (D).Then S Æ T is di�erentiable on D, and if p 2 D, then(S Æ T )0(p) = S 0(T (p)) Æ T 0(p):To make life simpler, we shall isolate two lemmas, whi
h are themselves of inde-pendent interest. We �rst met Lemma 25.2 in Assignment 21.Lemma 25.2 (Theorem 8,page 338 of Bu
k) A linear transformation L fromRnto Rm is 
ontinuous. In fa
t, L is uniformly 
ontinuous and there is a 
onstant Csu
h that jL(p)j � Cjpj for every p 2 Rn. More pre
isely, if L is given by an m� nmatrix A := [aij℄1�i�m;1�j�n as follows:L( nXj=1xjej) = nXj=1xjL(ej) where Lej = A� etj = mXi=1 aijeiand e1 = (1; 0; : : : ; 0); e2 = (0; 1; 0; : : : ; 0); : : : ; en = (0; : : : ; 0; 1) is the usual basis forRn (and e1; : : : ; em is the usual basis for Rm!), thenjL(p)j � (Xi Xj a2ij)1=2jpj:Proof: With p = Pnj=1 xjej,L(p) =Xj xjXi aijei =Xi (Xj xjaij)ei;so, by the S
hwarz inequality,jL(p)j2 =Xi jXj xjaijj2 �Xi (Xj x2j)(Xj a2ij) = (Xi Xj a2ij)jpj2: 2Lemma 25.3 (Di�erentiability implies 
ontinuity II) A transformation whi
his di�erentiable at a point p0 is 
ontinuous at that point.43



Proof: We know that limp!p0 jT (p)� T (p0)� T 0(p0)(p� p0)jjp� p0j = 0:Let � = 365. Then there exists a Æ > 0 su
h thatj jT (p)� T (p0)� T 0(p0)(p� p0)jjp� p0j j < 365 for jp� p0j < Æ:Writing this \horizontally", you getjT (p)� T (p0)� T 0(p0)(p� p0)j < 365jp� p0j for jp� p0j < Æ:Now write T (p)� T (p0) = T (p)� T (p0)� T 0(p0)(p� p0) + T 0(p0)(p� p0) to arrive atjT (p)� T (p0)j � jT (p)� T (p0)� T 0(p0)(p� p0)j+ jT 0(p0)(p� p0)j� 365jp� p0j+ Cjp� p0j = (365 + C)jp� p0j:(The 
onstant C 
omes from Lemma 25.2.) Thus T is 
ontinuous at p0. 2Question: What is the di�eren
e between Lemma 25.3 and Assignment 24.In the proof of Theorem 25.1 whi
h follows, the names of the 
hara
ters were
hanged to prote
t the inno
ent. Any similarity with any 
hara
ters, living or dead,is purely intentional.Proof of Theorem 25.1 (Chain Rule): Let p0 2 D. Sin
e T is di�erentiableat p0, 8�0 > 0; 9Æ0 > 0 su
h thatjT (p)� T (p0)� T 0(p0)(p� p0)j < �0jp� p0j if jp� p0j < Æ0: (32)Sin
e S is di�erentiable at T (p0), 8�00 > 0; 9Æ00 > 0 su
h thatjS(q)� S(T (p0))� S 0(T (p0))(q � T (p0))j < �00jq � T (p0)j if jq � T (p0)j < Æ00: (33)We need to prove: 8� > 0; 9Æ > 0 su
h thatjS Æ T (p)� S Æ T (p0)� S 0(T (p0)) Æ T 0(p0)(p� p0)j < �jp� p0j if jp� p0j < Æ: (34)By Lemma 25.3, T is 
ontinuous at p0, so 9Æ
 > 0 su
h thatjT (p)� T (p0)j < Æ00 if jp� p0j < Æ
: (35)Using (35), we may repla
e q in (33) by T (p) to obtainjS(T (p))� S(T (p0))� S 0(T (p0))(T (p)� T (p0))j < �00jT (p)� T (p0)j if jp� p0j < Æ
:(36)Now set Æ := minfÆ
; Æ0g and �(p) := T (p)� T (p0)� T 0(p0)(p� p0) so thatT (p)� T (p0) = T 0(p0)(p� p0) + �(p) (37)44



and by (32), j�(p)j < �0jp� p0j if jp� p0j < Æ: (38)Now substitute (37) into (36) (in two pla
es!) and setA(p) := S(T (p))� S(T (p0))� S 0(T (p0))[T 0(p0)(p� p0) + �(p)℄ (39)to obtain from (36)jA(p)j < �00jT 0(p0)(p� p0) = �(p)j if jp� p0j < Æ: (40)Finally, if jp� p0j < Æ, we have,jS(T (p))� S(T (p0))� S 0(T (p0) Æ T 0(p0)(p� p0)j= jA(p) + S 0(T (p0))�(p)j (by (39))� jA(p)j+ jS 0(T (p0))�(p)j� �00jT 0(p0)(p� p0)j+ �00j�(p)j+ jS 0(T (p0))�(p)j (by (40))� �00C1jp� p0j+ �00�0jp� p0j+ C2�0jp� p0j (by (38) and Lemma 25.3)< �jp� p0j;the last step provided we simply 
hoose �0 and �00 so that [�00C1+ �00�0+C2�0℄ < �. Thisproves (34). 2The power of Theorem 25.1 is that by setting m = n = k = 1 you get the one-dimensional 
hain rule (Theorem 23.1), and by setting m = k = 1 and leaving n � 1you subsume the dis
ussion of the 
hain rule in [Bu
k,se
tion 3.4℄. To make this laststatement really a

urate we need to dis
uss the di�eren
e between a transformationbeing di�erentiable and being of 
lass C1. This was already broa
hed in an earlierassignment.First, let's have some fun with 
oordinates in the setting of the 
hain rule. LetT = (f 1; : : : ; fm), S = (g1; : : : ; gk), and S Æ T = (h1; : : : ; hk) where, for 1 � i �m; 1 � j � k; 1 � r � k,f i : D! R; gj : E ! R; and hr : D! R:Sin
e S Æ T (p) = S(T (p)) = S(f 1(p); : : : ; fm(p))= (g1(f 1(p); : : : ; fm(p)); : : : ; gk(f 1(p); : : : ; fm(p)));we see that hr(p) = gr(f 1(p); : : : ; fm(p)) for 1 � r � k. Using this you should haveno problem with the next assignment.Assignment 28 (Due November 28) Let T be a transformation whi
h is of 
lass C1on an open set D, and let S be a transformation of 
lass C1 on an open set 
ontainingT (D). Then S Æ T is of 
lass C1 on D. 45



25.2 Baby 
hain ruleThe following is the \
oordinatized" version of the 
hain rule. Noti
e that it requiresthe stronger assumption of the transformations being of 
lass C1, not just di�eren-tiable. Noti
e also that there is nothing to prove, given Theorem 25.1, Remark 24.6,and Assignment 28.Corollary 25.4 Let T be a transformation whi
h is of 
lass C1 on an open set D,and let S be a transformation of 
lass C1 on an open set 
ontaining T (D). ThenS Æ T is of 
lass C1 on D, and if p 2 D, thenJSÆT (p) = JS(T (p))� JT (p):As an illustration of the power of Corollary 25.4, we prove the following theoremfrom [Bu
k,se
tion 3.4℄.Theorem 25.5 (Baby 
hain rule,Theorem 14, page 136 of Bu
k) Let F (t) =f(x; y), where x = g(t), y = h(t), the fun
tions g; h are assumed to be of 
lass C1 onan open interval 
ontaining t0 2 R, and the fun
tion f is assumed to be of 
lass C1in an open ball with 
enter p0 = (x0; y0) = (g(t0); h(t0)). Then F is of 
lass C1 on anopen interval 
ontaining t0 2 R, and for t in that interval,F 0(t) = �f�x(g(t); h(t))g0(t) + �f�y (g(t); h(t))h0(t):Proof: Set T (t) = (g(t); h(t)) and S(x; y) = f(x; y). Then F (t) = S Æ T (t), and byCorollary 25.4, F 0(t) = JF (t) = JSÆT (t) = JS(T (t))� JT (t)= [�f�x(g(t); h(t)) �f�y (g(t); h(t))℄� " g0(t)h0(t) #= �f�x(g(t); h(t))g0(t) + �f�y (g(t); h(t))h0(t): 2Assignment 29 (Due November 28) Let F (x; y) = f(g(x; y); h(x; y)), where g :R2 ! R and h : R2 ! R. Use Corollary 25.4 to prove thatF1(x; y) = f1(g(x; y); h(x; y))g1(x; y) + f2(g(x; y); h(x; y))h1(x; y)and F2(x; y) = f1(g(x; y); h(x; y))g2(x; y) + f2(g(x; y); h(x; y))h2(x; y):(Compare using Corollary 25.4 with the method on page 137 of Bu
k.)Assignment 30 (Due November 28) [Bu
k, x7.4 page 351, #2,5,(7 or 8)℄(three prob-lems)
46



26 Monday November 21, 2005|Mean value the-orems; lo
al invertibility26.1 Mean Value TheoremsUp to now we have used the mean value theorem in one variable (Theorem 18.1).But we mentioned the mean value theorem in several variables above (see the �rstquestion at the beginning of the le
ture for November 4), so we might as well talkabout it. There are two several-variable versions, one for fun
tions and one for trans-formations. We shall state and prove both of them in what follows, and use the oneabout transformations to give an alternate proof to Theorem 21.2 (linear approxima-tion for transformations). This is just one appli
ation, and there are many others.For example, we shall use it to prove the lo
al invertibility of a C1 transformation(Bu
k, Theorem 14, page 355)|see Theorem 26.3 below.We note that the version for fun
tions (Theorem 26.1), ni
knamed the \LittleMean Value Theorem" will be used in the proof of the version for transformations(Theorem 26.2), ni
knamed the \Big Mean Value Theorem". Also, the \Baby ChainRule" (Theorem 25.5) is needed in the proof of the \Little Mean Value Theorem"24.Theorem 26.1 (\Little" Mean Value Theorem, Theorem 16,page 151 of Bu
k)Let f : B(p0; r)! R be of 
lass C1 on a ball B(p0; r) � Rn. Then for any two pointsp1; p2 2 B(p0; r), there is another point p� on the line25 segment L := ftp2+(1� t)p1 :0 � t � 1g 
onne
ting p1 and p2 su
h thatf(p2)� f(p1) = rf(p�) � (p2 � p1):Proof: De�ne a fun
tion F : [0; 1℄! R byF (�) = f(�p2 + (1� �)p1):We note that F = f Æ � where � : [0; 1℄! Rn is the fun
tion �(�) = �p2 + (1� �)p1and that J�(�) = (p2 � p1)t, 8� 2 [0; 1℄.By the one-variable mean value theorem, sin
e f(p2)� f(p1) = F (1)� F (0),f(p2)� f(p1) = F 0(�0) (41)for some �0 2 (0; 1).Letting p� = �(�0) we get by the \
oordinatized" 
hain rule (Corollary 25.4),F 0(�0) = rf(�(�0))� J�(�0) = rf(�(�0))� (p2 � p1)t = rf(p�) � (p2 � p1): (42)Compare (41) and (42). 224We have a little and big mean value theorem. Question: what is the \tiny mean value theorem"?25Note that this line segment is a subset of B(p0; r)47



Theorem 26.2 (\Big" Mean Value Theorem, Theorem 12,page 350 of Bu
k)Let T : D ! Rm be a transformation of 
lass C1 on an open set D � Rn. Letp0; p00 2 D and suppose that the line segment L := ftp0 + (1 � t)p00 : 0 � t � 1g is asubset of D. Then there exist points p�1; : : : ; p�m 2 L su
h that26T (p00)� T (p0) =M � (p00 � p0)t;where M is the matrix (Djf i(p�i ))1�i�m;1�j�n, that is2728,M = 266664 �f1�x1 (p�1) : : : �f1�xn (p�1)�f2�x1 (p�2) : : : �f2�xn (p�2): : : : : : : : :�fm�x1 (p�m) : : : �fm�xn (p�m)
377775 :Proof: Apply the Little mean value theorem (Theorem 26.1) to ea
h f i : D ! R toget points p�i 2 L su
h thatf i(p00)� f i(p0) = rf i(p�i ) � (p00 � p0) (1 � i � m): (43)Now write down the 
oordinates of the ve
tor T (p00)�T (p0), thinking of it as a 
olumnve
tor, and use (43):T (p00)� T (p0) = (f 1(p00); � � � ; fm(p00))t � (f 1(p0); � � � ; fm(p0))t= (f 1(p00)� f 1(p0); � � � ; fm(p00)� fm(p0))t= (rf 1(p�1) � (p00 � p0); � � � ;rfm(p�m) � (p00 � p0))t:On the other hand,M � (p00 � p0)t = 266664 �f1�x1 (p�1) : : : �f1�xn (p�1)�f2�x1 (p�2) : : : �f2�xn (p�2): : : : : : : : :�fm�x1 (p�m) : : : �fm�xn (p�m)

377775� 26664 p001 � p01p002 � p02� � �p00n � p0n 37775= 264 rf 1(p�1)� � �rfm(P �m) 375� 264 p001 � p01� � �p00n � p0n 375 = 264 rf 1(p�1) � (p00 � p0)� � �rfm(p�m) � (p00 � p0) 375 :Now 
ompare the last two displayed equations. 2For no parti
ularly good reason, we now give an alternate proof to the approxima-tion property of the Ja
obian matrix (Theorem 21.2).Se
ond Proof of Theorem 21.2: By the Big mean value theorem (Theo-rem 26.2), T (p)� T (p0) = L�� (p� p0)t where L� := (Djf i(p�i )). Look at the matrix26Note that in the following equation, ve
tors of the form T (p) are 
olumn ve
tors27How does M di�er from the Ja
obian matrix of T ?28Note that M = (rf1(p�1); � � � ;rfm(p�m))t 48



entries of L� � JT (p0) = (aij); they are aij = Djf i(p�i ) �Djf i(p0). By Lemma 25.2,for all 
olumn ve
tors q 2 Rn,j(L� � JT (p0))� qj � 0� mXi=1 nXj=1 jaijj21A1=2 jqj:Sin
e T (p)� T (p0)� JT (p0)� (p� p0)t = (L� � JT (p0))� (p� p0)t, we have,jT (p)� T (p0)� JT (p0)� (p� p0)tjjp� p0j � j(L� � JT (p0))� (p� p0)tjjp� p0j� �Pi;j(aij)2�1=2 jp� p0jjp� p0j= 0�Xi;j (Djf i(p�i )�Djf i(p0))21A1=2! 0 as p! p0;be
ause, as p! p0, ea
h p�i ! p0 and T is of 
lass C1. 226.2 The lo
al invertibility theoremThe following simple one-dimensional illustration gives the 
avor of the statementand proof of the lo
al invertibility theorem, Theorem 26.3. Let f : D ! R bedi�erentiable on an open set D � R and suppose that f 0(x) 6= 0 for every x 2 D.Then f is lo
ally one-to-one on D, that is, for every x0 2 D there exists Æ > 0 su
hthat B(x0; Æ) � D and f is one-to-one on B(x0; Æ). Proof: Sin
e D is open, givenx0 2 D, just 
hoose any interval I = B(x0; Æ) � D and apply the one-variable meanvalue theorem: if x0; x00 2 I, then for some ~x between x0 and x00,f(x00)� f(x0) = f 0(~x)(x00 � x0): (44)If f(x00) = f(x0), then sin
e f 0(~x) 6= 0, (44) implies x00 = x0.Theorem 26.3 (Lo
al invertibility,Theorem 14,page 355 of Bu
k) Let T : D!Rn be a transformation of 
lass C1 de�ned on an open set D � Rn and suppose that29det JT (p) 6= 0 for all p 2 D:Then T is lo
ally one-to-one in D, in the sense that for every p0 2 D, there is a Æ > 0su
h that B(p0; Æ) � D and the restri
tion of T to B(p0; Æ) is one-to-one on B(p0; Æ).Proof: Consider the open30 set 
 := D � � � � �D � Rn � � � � �Rn. The set 
 is asubset of Rn2. Here is the tri
k: de�ne a fun
tion F : 
! R byF (p1; : : : ; pn) = det[Djf i(pi)℄ for p1; : : : ; pn 2 D:29note that JT (p) is an n by n matrix, so its determinant makes sense30If (p1; : : : ; pn) 2 D � � � � � D, let B(pj ; Æj) � D and let Æ := minfÆ1; : : : ; Æng. ThenB((p1; : : : ; pn); Æ) � D � � � � �D 49



We note �rst that F is a 
ontinuous fun
tion on 
 sin
e, ea
h T being of 
lassC1, all of the fun
tions Djf i are 
ontinuous, and F , being a determinant, is a sum ofprodu
ts of these fun
tions.We note next that the value of F at a spe
ial point of 
 of the form (p; : : : ; p) isgiven by F (p; : : : ; p) = det[Djf i(p)℄ = det JT (p) and so for every p 2 D, F (p; : : : ; p) 6=0. It follows from the last two paragraphs that, given a point, let's 
all it p0 now,there is a Æ > 0 su
h that B(p0; Æ) � D andF (p1; : : : ; pn) 6= 0 for every (p1; : : : ; pn) 2 B(p0; Æ)� � � � � B(p0; Æ): (45)CLAIM: T is one-to-one on B(p0; Æ)To prove this 
laim, we use the Mean value theorem for transformations, The-orem 26.2. Let p0; p00 2 B(p0; Æ) and suppose that T (p0) = T (p00). We shall provethat p0 = p00. Now the line segment L 
onne
ting p0 and p00 lies in B(p0; Æ) and theMean value theorem tells us that there are points p�1; : : : ; p�n 2 L su
h that, withM = [Djf i(p�i )℄, T (p00)� T (p0) =M � (p00 � p0)t: (46)Now detM = F (p�1; : : : ; p�n) 6= 0 by (45), soM is non-singular. Sin
e we are assumingT (p00) = T (p0), (46) shows p00 � p0 = 0. 227 Tuesday November 22, 2005|Open MappingTheoremIn the next theorem, we shall use the following elementary \
riti
al point" result.Lemma 27.1 (Theorem 11,page 133 of Bu
k) Let f : D! R be of 
lass C1 onan open set D � Rn and suppose that f has a lo
al minimum at a point p0 2 D. Thenall the �rst order partial derivatives of f vanish at p0: Djf(p0) = 0 for 1 � j � n.Stated another way, rf(p0) = 0.Proof: The meaning of \lo
al minimum" is that there exists a ball B(p0; r) � D su
hthat f(p) � f(p0) for all p 2 B(p0; r). By de�nition,Djf(p0) = limt!0 f(p0 + tej)� f(p0)t : (47)In (47), the numerator is non-negative whenever p0 + tej 2 B(p0; r). Thus if we lett approa
h zero through positive values, we get Djf(p0) � 0, whereas if we let tapproa
h zero through negative values, we get Djf(p0) � 0. Thus Djf(p0) = 0. 2We shall also use the following fa
t about 
ompa
t sets.50



Assignment 31 (Due De
ember 2) Prove that if K is a 
ompa
t set in Rn andq 62 K, then inffjp� qj : p 2 Kg > 0:Theorem 27.2 (Open mapping,Theorem 15,page 356 of Bu
k) Let T : D !Rn be a transformation of 
lass C1 de�ned on an open set D � Rn and suppose thatdet JT (p) 6= 0 for all p 2 D:Then T (D) is an open subset of Rn.Proof: Let q0 2 T (D). Choose a point p0 2 D su
h that q0 = T (p0). By Theo-rem 26.3, there is a Æ > 0 su
h that T is one-to-one on B(p0; 2Æ) � D. Thus T isone-to-one on the 
losed ball N := fp 2 D : jp � p0j � Æg � D. The boundaryC = fp 2 D : jp� p0j = Æg of N is a 
ompa
t set and therefore so is its image T (C),and 
learly q0 62 T (C). Thus by Assignment 31, d := inffjq0 � qj : q 2 T (C)g > 0.CLAIM 1: B(q0; d=3) � T (D).This 
laim shows that T (D) is an open set. Thus we are done if we prove this
laim. We shall show that ea
h point q1 2 B(q0; d=3) belongs to T (D). So �x a pointq1 2 B(q0; d=3). De�ne a fun
tion � : N ! [0;1) by the rule: �(p) = jT (p)� q1j2.The fun
tion � is 
ontinuous on the 
ompa
t set N , so by the extreme values theorem,it attains its minimum at some point, 
all it p� 2 N . Thus �(p) � �(p�) for all p 2 N ,whi
h 
an be expressed as:8p 2 N; jT (p)� q1j2 � jT (p�)� q1j2: (48)CLAIM 2: p� 2 intN , that is, p� 62 C.To prove 
laim 2, note �rst that, by the de�nition of d, for all p 2 C, jT (p)�q0j � d,and thus by the ba
kwards S
hwarz inequality, for p 2 C,jT (p)� q1j � jT (p)� q0j � jq0 � q1j � d� d=3 = 2d=3: (49)Note that T (p0) = q0, and jq0� q1j < d=3. Suppose now that p� 2 C. Then we wouldhave on the one hand, by (49), jT (p�)� q1j � 2d=3, and on the other hand, by (48),jT (p�)� q1j � jT (p0)� q1j < d=3, a 
ontradi
tion, proving 
laim 2.By 
laim 2, p� is an interior point of N so that by Lemma 27.1, Dj�(p�) = 0 for1 � j � n.We now need to write down some expli
it formulas for the fun
tion �. At this point,for 
onvenien
e, we assume that n = 2. We 
an write T (x; y) = (f(x; y); g(x; y)),where f and g are the 
oordinate fun
tions of T , and if we set q1 = (a; b) andp = (x; y), we have �(x; y) = (f(x; y)� a)2 + (g(x; y)� b)2���x(x; y) = 2(f(x; y)� a)�f�x(x; y) + 2(g(x; y)� b) �g�x(x; y)51



���y (x; y) = 2(f(x; y)� a)�f�y (x; y) + 2(g(x; y)� b)�g�y (x; y)and so (plugging in p�)0 = 2(f(p�)� a)�f�x(p�) + 2(g(p�)� b) �g�x(p�)0 = 2(f(p�)� a)�f�y (p�) + 2(g(p�)� b)�g�y (p�):The matrix of 
oeÆ
ients of this two by two system of linear equations is JT (p�), whi
hhas a non-zero determinant by assumption. Thus f(p�) � a = 0 and g(p�) � b = 0,that is T (p�) = (f(p�); g(p�)) = (a; b) = q1;and thus q1 2 T (D), as required. 228 Friday November 25, 2005|Holiday(Thanksgiving)29 Monday November 28, 2005|Inverse Fun
tionTheorem29.1 Automati
 
ontinuity of the inverseThe spe
ial 
ase of Theorem 29.2 below, in whi
h m = n = 1 and D is a 
ompa
tinterval, is proved in [Ross 18.4,18.6℄. Before stating and proving Theorem 29.2, let'sstate a very simple and very useful lemma.Lemma 29.1 A sequen
e of points in Rn 
onverges to a point p 2 Rn if and only ifevery subsequen
e of the given sequen
e has a subsequen
e whi
h 
onverges to p.Assignment 32 (Due De
ember 7|the day of the �nal exam) Prove Lemma 29.1.Assignment 33 (Due De
ember 7|the day of the �nal exam) If a transformationpreserves 
onvergent sequen
es, then it is 
ontinuous. (Same proof as [Bu
k, Theorem2,page 74℄.)The following theorem in the 
ase of fun
tions was a problem on the take-homemidterm.Theorem 29.2 (Automati
 
ontinuity of inverse,Theorem 13,page 353 of Bu
k)Let T : D! Rm be a 
ontinuous one-to-one transformation de�ned on a 
ompa
t setD � Rn. Then the inverse transformation T�1 (whi
h exists sin
e T is one-to-one)is 
ontinuous. 52



Proof: Let pk be a sequen
e from D, let p 2 D and suppose that limk!1 T (pk) =T (p). A

ording to Assignment 33 all we need to do is prove limk!1 pk = p. For thiswe shall use Lemma 29.1. So let pkj be a subsequen
e of pk. By the BW propertythere is a further subsequen
e pkjl and a point q 2 D su
h thatliml!1 pkjl = q:Sin
e T is 
ontinuous, liml!1 T (pkjl ) = T (q). But T (pkjl ) is a subsequen
e of T (pk) soT (pkjl )! T (p). Thus T (p) = T (q) and sin
e T is one-to-one, p = q. By Lemma 29.1,limk pk = p. 229.2 The inverse fun
tion theoremThe inverse fun
tion theorem (Theorem 29.4 below) is the n-dimensional analog ofthe following result in one-variable whi
h we state here for 
omparison purposes.Theorem 29.3 (Theorem 29.9,page 165 of Ross) Let f be a one-to-one 
ontin-uous fun
tion on an open interval I � R and let J = f(I). If f is di�erentiable atx0 2 I, and if f 0(x0) 6= 0, then f�1 is di�erentiable at f(x0) and(f�1)0(f(x0)) = 1f 0(x0) :Theorem 29.4 (Inverse Fun
tion Theorem, Theorem 16,page 358 of Bu
k)Let T : D! Rn be a transformation of 
lass C1 de�ned on an open set D � Rn andsuppose that det JT (p) 6= 0 for all p 2 D:31Suppose also that T is one-to-one on D. Then the inverse T�1 (whi
h exists and isde�ned on the open subset T (D) � Rn) is of 
lass C1 on T (D) andJT�1(T (p)) = [JT (p)℄�1 for all p 2 D: (50)Proof: Sin
e T is of 
lass C1, by Theorem 21.2, (
onsidering T (p) and T (p0) as
olumn ve
tors) T (p)� T (p0) = JT (p0)� (p� p0)t +R(p) (51)where limp!p0 jR(p)jjp� p0j = 0: (52)By assumption det JT (p0) 6= 0 so JT (p0) is non-singular. Multiplying (51) (on theleft) by [JT (p0)℄�1, you get[JT (p0)℄�1(T (p)� T (p0)) = (p� p0)t + [JT (p0)℄�1(R(p)): (53)31so that JT (p)�1 exists 53



Let us now denote by q and q0, the 
olumn ve
tors whi
h are the images of pt and pt0under T ; that is q = T (pt) and q0 = T (pt0), so that pt = T�1(q); pt0 = T�1(q0). Thenby (53),T�1(q)� T�1(q0) = (p� p0)t = [JT (p0)℄�1(T (p)� T (p0))� [JT (p0)℄�1(R(p));that is (eliminating the middle person (p� p0)t),T�1(q)� T�1(q0)� [JT (p0)℄�1(T (p)� T (p0)) = �[JT (p0)℄�1(R(p)): (54)If we 
an show that the right hand side of (54) satis�eslimq!q0 j[JT (p0)℄�1(R(p))jjq � q0j = 0; (55)then (54) will say that (50) is true. So we need to prove (55).First re
all that by Lemma 25.2 there is a 
onstant M su
h that j[JT (p0)℄�1(u)j �M juj for all u 2 Rn. Therefore,j[JT (p0)℄�1(R(p))jjq � q0j � M jR(p)jjq � q0j : (56)By (53), (p� p0)t = [JT (p0)℄�1(T (p)� T (p0))� [JT (p0)℄�1(R(p)) sojp� p0j �M jq � q0j+M jR(p)j; (57)and by (52), jR(p)j � �jp� p0j for jp� p0j < Æ (Æ depending on �): (58)Therefore, (57) be
omes jp� p0j �M jq � q0j+M�jp� p0j;or, (1� �M)jp� p0j �M jq � q0j;that is, jp� p0j � M1� �M jq � q0j for jp� p0j < Æ: (59)Taking re
ripro
als in (59) you get1jq � q0j � M1� �M 1jp� p0j for jp� p0j < Æ: (60)Now by (56),(60), and (58), we have, for jp� p0j < Æ,j[JT (p0)℄�1(R(p))jjq � q0j �M jR(p)j Mjp� p0j(1� �M) � �M21� �M :54



The quantity �M21� �Mis \just as good" as � (sin
e it goes to zero as � does). Therefore (55) holds. Notethat we have used the fa
t that T�1 is 
ontinuous (Theorem 29.2). That is, if q ! q0,then pt = T�1q ! T�1q0 = pt0, so jR(p)j=jp� p0j < � if jp� p0j < Æ.We still need to prove that T�1 is of 
lass C1. To see this, just noti
e that thematrix entries of JT (p) are 
ontinuous fun
tions by assumption and therefore theentries of the inverse matrix JT (p)�1 are 
ontinuous fun
tions (Why?). By (50) then,the entries of JT�1(T (p)) are 
ontinuous fun
tions of q = T (p). 2Assignment 34 (Due De
ember 7) [Bu
k, x7.5,page 361,#11,14℄30 Wednesday November 30, 2005|Impli
it Fun
-tion Theorem30.1 MotivationIn mu
h of analysis, the linear fun
tions are the easiest to work with32. Let F : Rn !R be a linear fun
tion, that is, there are real numbers a1; : : : ; an su
h thatF (x1; : : : ; xn) = nXj=1 ajxj:Note that for su
h a fun
tion, �F�xk (x1; : : : ; xn) = ak, and moreover, if ak 6= 0, we 
ansolve the equation F (x1; : : : ; xn) = 0 for xk in terms of the other n � 1 variables.Expli
itly, xk = � nXj=1;j 6=k ajakxj:Thus we have seen that we 
an easily solve for one of the variables in terms of theothers if the partial derivative with respe
t to that variable does not vanish. This isthe idea behind the impli
it fun
tion theorem for non-linear fun
tions.For a se
ond example let F (x; y) = x2 + y2� 1 for (x; y) 2 R2 so that F : D! Rwhere D = R2. Note that �F�y (x; y) = 2y.Suppose that (x0; y0) 2 R2 is su
h that F (x0; y0) = 0, that is, (x0; y0) is a point onthe unit 
ir
le. We wish to �nd a fun
tion �, de�ned in an interval (x0�r; x0+r), su
hthat y = �(x) is a solution of the equation F (x; y) = 0 for every x 2 (x0 � r; x0 + r),that is, x2+(�(x))2�1 = 0 for every x 2 (x0�r; x0+r), and �(x0) = y0. Moreover wewant the fun
tion � to have a 
ontinuous derivative at every point of (x0� r; x0+ r).In this example, it is easy to know when su
h a fun
tion exists and it is also easyto �nd it. Obviously (draw a 
ir
le), we 
an take r = 1 � jx0j, and set �(x) =32This is not ne
essarily the 
ase for linear algebra55



+p1� x2 for x 2 (x0 � r; x0 + r). The only problem arises when jx0j = 1, that isy0 = 0, whi
h is pre
isely where �F�y vanishes. Another solution is obtained by taking�(x) = �p1� x2. Before we leave this example, let's note that we 
an inter
hangethe roles of the variables x and y and obtain a fun
tion x =  (y) satisfying, amongother things ( (y))2 + y2 � 1 = 0.Let's now 
onsider a third example, whi
h is not so easy (
orre
tion: impossible)to solve with our bare hands. Let F (x; y) = x+ 2y + x2y5 � 8, for (x; y) 2 R2. Notethat F (2; 1) = 0. We wish to �nd a solution y = �(x) of the equation F (x; y) = 0 forall x in an interval of the form (2� r; 2 + r), in su
h a way that �(2) = 1, and � hasa 
ontinuous derivative on (2� r; 2 + r). For this example, it is not 
lear that therewill be a solution y of the equation x + 2y + x2y5 � 8 = 0 for any x (this is a �fthdegree equation in y for ea
h �xed x). But we are greedy and want even more. Wewant a fun
tion � whi
h systemati
ally produ
es a solution �(x) to the equation fora given x, and moreover, we want this fun
tion to be 
ontinuous, even di�erentiable,and furthermore, we want the derivative to be 
ontinous.Let's return to our se
ond example, that is, F (x; y) = x2 + y2 � 1 for (x; y) 2 R2so that F : D ! R where D = R2. Of 
ourse F is a fun
tion. Let's 
onstru
t arelated transformation TF : D ! R2 as follows: TF (x; y) = (x; F (x; y)). Note that ifwe set G(x; y) = x then G and F are the 
oordinate fun
tions of the transformationTF , that is TF = (G;F ). Hereafter, we'll just write T instead of TF .Assignment 35 (Due De
ember 7) Show that, for F = x2 + y2 � 1, T = TF is notone-to-one on D = R2 and T (R2) is not an open subset of R2.Suppose again that (x0; y0) 2 R2 is su
h that F (x0; y0) = x20 + y20 � 1 = 0, thatis, (x0; y0) is a point on the unit 
ir
le. Note that T (x0; y0) = (x0; 0). Finally we
onstru
t the Ja
obian matrix of T :JT (x; y) =  �G�x (x; y) �G�y (x; y)�F�x (x; y) �F�y (x; y) ! =  1 0�F�x (x; y) �F�y (x; y) ! :It follows that the Ja
obian determinant isdet JT (x; y) = �F�y (x; y):30.2 Impli
it fun
tion theoremsSin
e we have just introdu
ed most of the ideas in its proof, it seems appropriate nowto state the impli
it fun
tion theorem.Theorem 30.1 (Theorem 17,page 363 of Bu
k,\downgraded" to two variables)Let F : D ! R be of 
lass C1 on an open set D � R2, let (x0; y0) 2 D, and supposethat F (x0; y0) = 0 and �F�y (x0; y0) 6= 0. Then there exists a r > 0 and a fun
tion� : (x0 � r; x0 + r) ! R of 
lass C1 on (x0 � r; x0 + r), su
h that �(x0) = y0 andF (x; �(x)) = 0 for all x 2 (x0 � r; x0 + r).Before going into the proof of Theorem 30.1, let's reiterate exa
tly all that it says.56



� There is (theoreti
ally!) a fun
tion �, su
h that for ea
h x 
lose enough to x0,y = �(x) is a solution33 of the equation F (x; y) = 0� As a fun
tion of x, � is 
ontinuous� A
tually, � is di�erentiable� A
tually, the derivative of � is a 
ontinuous fun
tion34� Question: Can we 
al
ulate �0(x) by impli
it di�erentiation and the 
hainrule?35Proof of Theorem 30.1: De�ne a transformation T = (G;F ) by setting G(x; y) =x. Let p0 denote (x0; y0). Sin
e JT (p0) 6= 0, by the \lo
al invertibility theorem"(Theorem 26.3), T is lo
ally one-to-one at p0. That is, there is a ball B with 
enterp0 su
h that the restri
tion of T to this ball is one-to-one, so has an inverse trans-formation T�1 : T (B) ! B. Sin
e T is of 
lass C1, by making the radius of B evensmaller, we may assume that JT is not zero anywhere in this smaller ball36. Thus,if we 
all this new ball B0, then T is one-to-one on B0 with inverse T�1 on T (B0),and by the \open mapping theorem" (Theorem 27.2), T (B0) is an open set . Sin
e(x0; 0) = T (x0; y0) 2 T (B0), there is an open ball B((x0; 0); r) � T (B0). Let us writethe inverse transformation T�1 in terms of its 
oordinate fun
tions, 
all them g andh: T�1 = (g; h). We have the relation(x; y) = T�1ÆT (x; y) = T�1(T (x; y)) = T�1(x; F (x; y)) = (g(x; F (x; y)); h(x; F (x; y)))for all (x; y) 2 B0. Therefore, 
omparing 
oordinates, for (x; y) 2 B0,x = g(x; F (x; y)) and y = h(x; F (x; y)):But we also have the relation(u; v) = TÆT�1 (u; v) = T (T�1(u; v)) = T (g(u; v); h(u; v)) = (g(u; v); F (g(u; v); h(u; v))for all (u; v) 2 B((x0; 0); r). In parti
ular, u = g(u; v) andv = F (g(u; v); h(u; v)) = F (u; h(u; v)): (61)Substitute for (u; v), any point of the form (x; 0) 2 B((x0; 0); r). From (61), wehave 0 = F (x; h(x; 0)) for all jx� x0j < r:Thus, if we de�ne �(x) = h(x; 0) for jx � x0j < r, we have the desired fun
tion �.Note that by the 
hain rule, �0(x) = �h�x(x; 0) so that � is of 
lass C1 on (x0�r; x0+r).This 
ompletes the proof. 233This already says a lot! If you stop here you got a bargain.34This statement implies the previous two statements35Yes, but it is not entirely satisfa
tory be
ause the answer is in terms of �(x)36What is the reason for this? 57



We now state a version of the impli
it fun
tion theorem in 3 variables. We referto Bu
k for the proof, whi
h is not signi�
antly di�erent from the above proof.Draw a diagram (=graph) for the next theorem. If that seems diÆ
ult, draw adiagram for the previous theorem �rst.Theorem 30.2 (Theorem 17,page 363 of Bu
k|three variables) Let F : D !R be of 
lass C1 on an open set D � R3, let (x0; y0; z0) 2 D, and suppose thatF (x0; y0; z0) = 0 and �F�z (x0; y0; z0) 6= 0. Then there exists a r > 0 and a fun
tion� : B((x0; y0); r) ! R of 
lass C1 on B((x0; y0); r), su
h that �(x0; y0) = z0 andF (x; y; �(x; y)) = 0 for all (x; y) 2 B((x0; y0); r).It is now easy to state (and prove) a general theorem of impli
it fun
tion type inany number of variables. There are no new ideas needed to prove this theorem so wedo not write the proof here.Theorem 30.3 Let F : D ! R be of 
lass C1 on an open set D � Rn, let(x01; : : : ; x0n) be a point of D, and suppose thatF (x01; x02; : : : ; x0n) = 0 and for some k; �F�xk (x01; x02; : : : ; x0n) 6= 0:Then there exists r > 0 and a fun
tion� : B((x01; : : : ; x0k�1; x0k+1; : : : ; x0n); r)! Rof 
lass C1 on B((x01; : : : ; x0k�1; x0k+1; : : : ; x0n); r) � Rn�1, su
h that�(x01; : : : ; x0k�1; x0k+1; : : : ; x0n) = x0kand F (x1; : : : ; xk�1; �(x1; : : : ; xk�1; xk+1; : : : ; xn); xk+1; : : : ; xn) = 0for all (x1; : : : ; xk�1; xk+1; : : : ; xn) 2 B((x01; : : : ; x0k�1; x0k+1; : : : ; x0n); r).If we introdu
e a little notation we 
an make the last theorem easier to read.Let F : D ! R be of 
lass C1 on an open set D � Rn, let p0 =(x01; : : : ; x0n) be a point of D, and suppose that F (p0) = 0 and �F�xk (p0) 6= 0for some k. Let p(k)0 = (x01; : : : ; x0k�1; x0k+1; : : : ; x0n). Then there existsr > 0 and a fun
tion � : B(p(k)0 ; r)! R of 
lass C1 on B(p(k)0 ; r) � Rn�1,su
h that, with p = (x1; : : : ; xn) and p(k) = (x1; : : : ; xk�1; xk+1; : : : ; xn),we have �(p(k)0 ) = x0k and F (x1; : : : ; xk�1; �(p(k)); xk+1; : : : ; xn) = 0 for allp(k) 2 B(p(k)0 ; r).There are versions of the impli
it fun
tion theorem in whi
h more than one of theindependent variables x1; : : : ; xn 
an be solved in terms of the remaining variables.The situation is des
ribed in [Bu
k, Theorem 18,page 364℄, and the dis
ussion onpage 366 of Bu
k.We now present some examples in the form of exer
ises.58



Assignment 36 (Due De
ember 7) Let F (x; y; z) = x2+y2+z2�1 and take a point(x0; y0; z0) on the unit sphere in R3: x20 + y20 + z20 = 1, that is, F (x0; y0; z0) = 0.\Prove" that37 z = �(x; y) := p1� x2 � y2 satis�es F (x; y; �(x; y)) = 0. A

ordingto the impli
it fun
tion theorem, we need �F�z (x0; y0; z0) 6= 0, that is, 2z0 6= 0, so take,for example p0 = (1=p2; 0; 1=p2). Now �nd r > 0 su
h that(x� 1p2)2 + (y � 0)2 < r) x2 + y2 < 1:Assignment 37 (Due De
ember 7) Let F (x; y; z) = x2 + yz5 � 3xyz + z, take thepoint (1; 0;�1), and note that F (1; 0;�1) = 0 and �F�z (1; 0;�1) = 1 6= 0. Con
ludethat there exists r > 0 and a fun
tion �(x; y) of 
lass C1 in the ballj(x; y)� (1; 0)j < rsu
h that F (x; y; �(x; y)) = 0 for all (x; y) with (x� 1)2 + y2 < r2, that isx2 + y[�(x; y)℄5 � (3xy � 1)�(x; y) = 0:Assignment 38 (Due De
ember 7) Let F (x; y; z) = sin xy + ez � e, take the point(x0; 0; 1), and note that F (x0; 0; 1) = 0. Also�F�x (x0; 0; 1) = 0; �F�y (x0; 0; 1) = x0; �F�z (x0; 0; 1) = e:What does the impli
it fun
tion theorem say in this 
ase? Can you solve for any ofthe three variables without the help of the impli
it fun
tion theorem?Assignment 39 (Due De
ember 7) Let F (x; y; z) = (sinx)ey + (
os y)exz + sin z,take the point (0; �=2; �), and note that F (0; �=2; �) = 0. Also�F�x (0; �=2; �) = e�=2; �F�y (0; �=2; �) = �1; �F�z (0; �=2; �) = �1:By the impli
it fun
tion theorem, you havez = �(x; y) for (x; y) 
lose to (0; �=2);as well as x =  (y; z) for (y; z) 
lose to (�=2; �);et
. Now let S(x; y) = (x; y; �(x; y)) and apply the 
hain rule to F Æ S to derive���x(x; y) = ��F�x (x; y; �(x; y))�F�z (x; y; �(x; y)) ;and ���y (x; y) = ��F�y (x; y; �(x; y))�F�z (x; y; �(x; y)) :Assignment 40 (Due De
ember 7) [Bu
k, x7.6,page 366,#1,2,5℄37Don't laugh, you need to assume that x2 + y2 < 159



31 Friday De
ember 2, 2005|Review of 
ourse31.1 COURSE SUMMARY (from Bu
k)1.3 S
hwarz inequality|Theorem 11.5 topology|open,
losed,interior,boundary,
losure,
luster point1.6 sequen
es|
hara
terization of 
losure: Theorem 51.8 
ompa
tness|Bolzano Weierstrass,Heine Borel, Theorem 24,25,26,27.2.2 
ontinuity|sequential 
riteria,Theorem 1,2; 
omposition Theorem 52.3 uniform 
ontinuity|on 
ompa
t sets, Theorem 62.4 extreme values|Theorem 10,11,132.6 extension|Theorem 243.3 gradient|D) C:Corollary (page 129), approximation:Theorem 83.4 baby 
hain rule|Theorem 143.5 little mean value theorem|Theorem 167.2 transformations|
ontinuity,
ompa
tness Theorem 3,47.3 linear transformation-uniform 
ontinuity of them, Theorem 87.4 
oordinate free derivative|approximation Theorem 10, 
hain rule Theorem 117.5 inverse fun
tions|automati
 
ontinuity of inverse Theorem 13, lo
al invertibilityTheorem 14, open mapping Theorem 15, inverse fun
tion Theorem 167.6 impli
it fun
tions|impli
it fun
tion theorems, Theorems 17,1831.2 The four theorems on transformationsWe proved these four theorems in 
lass on November 21,22,30. The last one is afamous one, 
alled the Inverse fun
tion theorem. The inverse fun
tion theorem is thekey tool in the impli
it fun
tion theorem, whi
h is the 
limax of this 
ourse, and is avery useful result in almost any bran
h of analysis. Even in one variable, the inversefun
tion theorem is not so easy. We re
alled the statement (but not the proof) of theone-variable result below for motivation (see Theorem 29.3).Here is a summary of the four theorems. We presented them in a slightly di�erentorder from that of [Bu
k, x7.6℄. We shall give ea
h of these theorems a \ni
kname".
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\Automati
 
ontinuity of inverse" Theorem 29.2 ([Bu
k, Theorem 13,page 353℄)Hypothesis Con
lusionT 
ontinuous,one-to-one T�1 is 
ontinuouson 
ompa
t D � Rn\Lo
al invertibility" Theorem 26.3 ([Bu
k, Theorem 14,page 355℄)Hypothesis Con
lusionT is of 
lass C1 on open D � Rn T is lo
ally one-to-one at p0and det JT (p0) 6= 0\Open mapping" Theorem 27.2 ([Bu
k, Theorem 15,page 356℄)Hypothesis Con
lusionT is of 
lass C1 on open D � Rn T (D) is an open setand det JT (p) 6= 0 for all p 2 D\Inverse fun
tion" Theorem 29.4 (Bu
k, [Theorem 16,page 358℄)Hypothesis Con
lusionT is of 
lass C1 on open D � Rn T�1 is of 
lass C1 on T (D)and det JT (p) 6= 0 for all p 2 D and (T�1)0(T (p)) = (T 0(p))�1T is globally one-to-one on D and JT�1(T (p)) = (JT (p))�131.3 Fun
tions vs. Transformationsthing to be fun
tion fun
tion transformationdi�erentiated f : R! R f : Rn ! R T : Rn ! Rmnotations for derivative f 0(a) �f�xj (p),Djf(p);rf(p) T 0(p); JT (p)di�erentiability [Ross, 28.2℄ [Bu
k, Cor,p129℄ Lemma 25.3implies 
ontinuity of these notesapproximation (13) p.32 [Bu
k, Thm8,p131℄ [Bu
k, Thm10,p344℄of these notesalgebra of 
ontinuity [Ross, 17.4,28.3℄ [Bu
k, Thm4,p77℄ just aand di�erentiation ve
tor spa
e
hain rule [Ross, 17.5,28.4℄ [Bu
k, Thm14,p136℄ [Bu
k, Thm11,p346℄
riti
al points [Ross, 29.1℄ [Bu
k, Thm11,p133℄ doesn't make senseRolle's theorem [Ross, 29.2℄Mean value theorem [Ross, 29.3℄ [Bu
k, Thm16,p151℄ [Ross, Thm12,p350℄Inverse fun
tion theorem [Ross, 29.9℄ doesn't make sense [Bu
k, Thm16,p358℄lo
al invertibility p.49 of these notes [Bu
k, Thm14,p355℄automati
 
ontinuity [Ross, 18.4,18.6℄ [Bu
k, Thm13,p353℄of inverseopen mapping theorem [Bu
k, Thm15,p356℄impli
it fun
tion doesn't make [Bu
k, Thm17,18,p363-4℄theorem sense 61
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