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1.1

Friday September 23—Inequalities of Young, Holder,

and Schwarz

Course Information
Course: Mathematics 140C MWF 1:00 1:50 ET 204

Instructor: Bernard Russo MSTB 263 Office Hours MW 2:30-3:30 or by ap-
pointment (a good time for short questions is right after class just outside the
classroom)

Discussion section: TuTh 1:00 1:50 MSTB 118
Teaching Assistant: Mitchell Khong

Homework: There will be approximately 35 assignments with at least one week
notice before the due date.

First midterm | October 21 (Friday of week 4) | 20 percent
Second midterm | November 18 (Friday of week 8) | 20 percent
Final Exam December 7 (Wednesday) 40 percent
Homework approximately 35 assignments 20 percent

Grading:

Holidays: November 11, 24, and 25
Text: R. C. Buck, Advanced Calculus
Material to be Covered

Schwarz inequality Theorem 1, page 13 (1 lecture)

topology §1.5 pp 28 33: open, closed, boundary, interior, exterior, closure,
neighborhood, cluster point (about 4 lectures)

compactness §1.8 pp 64 67: Heine-Borel and Bolzano-Weierstrass properties
(Theorems 25,26,27, page 65) (about 4 lectures)

continuity §§2.2-2.4: Uniform continuity, extreme value theorems (Theorems
1,2,6,10,11,13 on pages 73,74,,84,90,91,93) (about 4 lectures)

differentiation (of functions) §3.3: Implies continuity, characterization by
approximation (Corollary, page 129 and Theorem 8, page 131) (about 4
lectures)

integration §§4.2-4.3: Integrability of continuous functions, fundamental the-
orem of calculus, mixed partial derivatives (Theorems 1,4,7,11 on pages
169,176,182,189) (about 4 lectures)

differentiation (of transformations) §§7.2-7.6: Boundedness of linear trans-
formations, characterization by approximation, chain rule, mean value
theorem, inverse function theorem, implicit function theorem (Theorems
5,8,10,11,12,16,17,18 on pages 335,338,344,346,350,358,363,364) (about 5
lectures)



1.2 Young’s, Holder’s, and Schwarz’s inequalities

Theorem 1.1 (Young Inequality) Let ¢ be differentiable and strictly increasing
on [0,00), ©(0) = 0, limy 00 p(u) = o0, ¢ = ¢ ', ®(z) := [y p(u)du, ¥(z) =
Jo ¥(u)du. Then for all a,b € [0, 00),

ab < ®(a) + ¥ (b). (1)
Moreover, equality holds in (1) if and only if b = ¢(a).

Assignment 1 (Due September 30) Give a rigorous proof of Theorem 1.1. More
precisely,

Step 1 First establish, for ¢ € [0,00), the formula
c p(c)
| etwydu+ [T w(w) do = ep(o) 2)

Step 2 Use (2) to prove (1).

Step 3 Prove the “moreover” statement.

Corollary 1.2 Forp € (1,00), and a,b € [0,00),

a? bl
ab < — 4+ —,
p q

where q € (1,00) is defined by

1 1

-+-=1.

p q
Proof: Take ¢(u) = uP~" in the theorem. O

Theorem 1.3 (Holder Inequality) Let xy,...,z, and yi,...,y, be real numbers
and let p € (1,00). Then with q == p/(p — 1),

n n e /. 1/q
> gyl < (Z%‘p) (ZW) :
j=1 =1 j=1

Proof: Take a = |z;|/[|z|, and b = |y;|/||lyll, in the corollary, where ||z||, denotes
n 1/p
(Z]‘:l ‘xj|p) : =

Corollary 1.4 (Schwarz Inequality (Theorem 1, p.13 of Buck) For any real num-
bers xy, ..., oy and Y1, ..., Yn,

. . 2 4 1/2
> lzjy;l < (Z |ffj|2> (Z ij|2> :
7=1 7j=1 7j=1



Proof: Take p = 2 in the theorem. O

Assignment 2 (Due September 30)

1. Read sections 1.2,1.3,1.4 in Buck (The lectures will continue with section 1.5).
Do not waste your time reading about the concepts angle, orthogonal, hyper-
plane, normal vector, line, convexity, which are discussed in section 1.3 of Buck.
We have no immediate use for them. Thus, you may skip pages 15-18 and 21-27
for now.

2. e Buck [§1.2 page 10 #5,10,23]
e Buck [§1.3 page 18 #2,3,6]
e Buck [§1.4 page 27 #3,15,16]

2 Monday, September 26—The triangle inequality
and open sets

2.1 The triangle inequality

Section 1.1 of Buck In 1,2, or 3 dimensions you can use geometry, or geometric
intuition. For dimensions 4,5,6..., 00 you need algebra and analysis as tools.

Section 1.2 of Buck The elements of R" := {p = (z1,....2,) :z; e R,1 < j <n}
may be considered as vectors (algebraic interpretation) or points (geometric
interpretation). R is a field which has a nice order structure, in fact, almost
all properties of R" depend on those of R, which in turn depend on the least
upper bound property of R. Unfortunately, no reasonable order can be defined
on R" if n > 1. Although we will not consider the vector space structure of R”
until later, we do need the notion of scalar product: for p = (x,...,2,),q¢ =

(yla"'ayn) € Rn:

n
pqi=Y xy;,
=1

and its properties: p-(¢+¢') =p-q+p- ¢, etc.
Section 1.3 of Buck The length of a vector p = (z1,...,z,) € R" is

pl=(p-p)"?

the distance between p and ¢ is |p — g|. The famous Schwarz inequality (a true
“theorem” recorded as Corollary 1.4 above) can now be phrased compactly as

p-q<1pllql.

Here are two important consequences of the Schwarz inequality.



Corollary 2.1 (Triangle Inequality) For any two vectors p,q, |p+q| < |p| + |q|

Proof: [p+q|? = (p+q)-(p+q) = p-p+p-g+q-p+q-q < |p|*+2|pllg|+q|* = (p|+]q])*
0

Corollary 2.2 (Backwards Triangle Inequality) |[p —q| > ||p| — |¢||

Proof: [p| = |(p — ¢) +q/ < |p—q| + [q|, which proves |p —q| = |p| — [q|. Now
interchange p and q. O

2.2 Open sets

A very important type of subset of R" is a ball. An open ball is defined, for a given
point p € R"” and r > 0 by

B(p,r)={qeR":|p—q| <r}.
The center of B(p,r) is p and the radius is r. Today we want to prove (the two

statements):

open ball } { characterization }

riangle inequality = { is open set of interior

Definition 2.3 Let S C R" and ¢ € R". The point ¢ is interior to S if there exists
d > 0 such that B(q,d) C S. The interior of S is the set of all points which are
interior to S, notation int S, that is

int S = {¢ € R": 3§ > 0 such that B(q,d) C S}.
Finally, S is an open set if S = int S.
Proposition 2.4 Let p € R" and r > 0. Then the ball B(p,r) is an open set.
Proof: Let © € B(p,r) so that |z —p| < r. Choose ¢ := r — |x — p|. Then the triangle
inequality implies that B(z,d) C B(p,r), showing that every point of B(p,r) is an
interior point of B(p, ).
MIDTERM ALERT: It is very important that the 10 propositions (i)-

(x) on page 32 of Buck be mastered before the first miderm. Here is one of
them.

Proposition 2.5 ((vi) on p.32 of Buck) Let S be any non-empty subset of R".
Then intS s the largest open subset of S; more precisely

(a) intS is an open set;
(b) if T is an arbitrary open subset of S, then T C intS.

Proof: The assertion of (a) is that int S = int (int S) and it suffices to show only that
int S C int (int S). If p € int S, then there exists § > 0 with B(p,d) C S. Since the
ball B(p,d) is open, for each point x € B(p,d) there exists ¢’ > 0 with B(z,d") C
B(p,d). However, since B(p,d) C S, we have B(x,4") C S so that « € int S, and thus
B(p,d) C int S. By definition then, p € int (int S). This proves (a).

Let T C S and let T be an open set. If x € T, then there exists 6 > 0 with
B(z,d) C T. Therefore B(x,0) C S and so T C int S, proving (b). O

4



3 Wednesday September 28—More on open sets

Assignment 3 (Due October 7)
e Buck [§1.5 page 36 #2,5]
e Fix p € R". Show that {g € R" : |¢ — p| > 2} is an open set.

Remark 3.1 FEuvery open set in R"™ is the union of (not necessarily disjoint) open
balls.

3.1 The structure of open sets in R!

Definition 3.2 A set of points in R' is said to be bounded if it is a subset of a finite
interval.

Definition 3.3 Let S be an open set in R! and let (a,b) be an open interval which
is contained in S, but whose endpoints are not in S. Then (a, b) is called a component
interval of S.

Lemma 3.4 Let S be a bounded open set in R'. Then
(i) Each point of S belongs to a component interval of S.

(ii) The component intervals of S form a countable (possibly finite) collection of
disjoint sets whose union is S

Proof: Assume z € S. Let
a = inf{left endpoints of all open intervals I such that x € I C S},

and let b be the sup of the right endpoints of these intervals. Then (a,b) contains
all intervals I with x € I C S, and in particular = € (a,b). From the way (a,b) was
constructed, it follows that (a,b) C S (See Remark 3.5 below) and a & S, b ¢& S.

We have associated with each x € S, at least one component interval /, containing
x. If two of these intervals I, and I, have a non-empty intersection, they must coincide
since their endpoints do not belong to S. This proves (i).

It is now clear that S is the disjoint union of its component intervals. To prove (ii) it
remains to show that they form a countable set. For this purpose, let {1, ..., xp, ...}
be an enumeration of the rational numbers. Define a function F' by means of the
equation F'(I,) = n, if x, is the rational number in I, with the smallest index n. This
function is one-to-one since F(I,) = F(I,) = n would mean that z,, € I, N I,, and
therefore I, = I,. Therefore F' establishes a one-to-one correspondence between the
set of component intervals of S and a subset of N. This proves (ii). a

Remark 3.5 Here is the proof that (a,b) C S. Let y € (a,b). There are two cases
to consider: either a <y < x < bora <z <y <b. In the first case, by definition
of inf, there is an interval (a/,0') C S such that a« < o' <y <z < b < b In
the second case, by definition of sup, there is an interval (a”,0”) C S such that
a<ad <z<y<b" <b. In either case, y € S.



Theorem 3.6 Every open set in R' is the union of a countable collection of disjoint
open intervals. (This decomposition is unique but we shall ignore this fact—enough
is enough!)

Proof: Let S be the given open set and let S,, := SN (—n,n). Then S = UPS,, and
each S, is the union of a countable collection of disjoint open intervals. The existence
follows from this. O

4 Friday September 30—Closed sets

Here are the first two propositions on page 32 of Buck. The proofs are written out in
detail in Buck on pages 32 34.

(i) If A and B are open sets, then so are AN B and AU B.

(ii) If {A, : @ € I'} is an arbitrary family of open sets, then Uyer A, is an open set.

4.1 Closed sets

Definition 4.1 A subset S of R” is said to be a closed set if its complement R" \ S
is an open set.

Remark 4.2 The second part of Assignment 3 shows that the set {g € R™ : |¢—p| <
r} is a closed set for any p € R™ and r > 0. Needless to say, we call such a set a
“closed ball”.

In order to facilitate the study of closed sets, we recall De Morgan’s laws. If
{A, : @ € I} is an arbitrary family of sets, then

Rn \ UQEIAQ — ﬂaej(Rn \ Aa)

and

RTZ \ ﬂaejAa — Uaej(Rn \ Aa)

Using De Morgan’s laws we obtain immediately from (i) and (ii) the following
propositions ((iii) and (iv)) on page 32 of Buck. From the definition of closed set, (v)
is obvious, and (vi) has already been proved in Proposition 2.5 above.

(iii) If A and B are closed sets, then so are AN B and AU B.

(iv) If {As : @ € I} is an arbitrary family of closed sets, then N,cr A4, is a closed
set.

(v) A set is open if and only if its complement is closed.

4.2 Boundary and closure

Definition 4.3 Let S C R™ and let p € R™. We say that p is a boundary point of S
if every ball with center p meets both S and its complement R™\ S, that is, for every
§d >0, B(p,0) NS # 0 and B(p,0) N (R"\ S) # (. The boundary of S, denoted by
bdy S, is the set of all boundary points of S. The closure of S, notation S is defined
to be SUbdy S.



Here are some examples in R!:
S (CL, b] [CL, b] (CL, b) {5 + 1/”’}20:1 (CL, b) n Q
bdy S | {a,b} | {a,b} | {a,b} | {B}U{b+1/n}>2, [a, b]
g [CL, b] [CL, b] [CL, b] {5} U {5 + 1/”’}20:1 [CL, b]
The following proposition is the analog for closed sets of (vi) on page 32 of Buck.
It will be proved in the next lecture.

Proposition 4.4 ((vii) on p.32 of Buck) Let S be any subset of R". Then S is
the smallest closed set containing S. (you know what this means.)

Assignment 4 (Due October 7) Prove the following assertions:
(a) intS=U{G:G isopen ,G C S}
(b) S=n{F: Fisclosed ,S C F}

5 Monday October 3—More on closed sets

5.1 Proof of Proposition 4.4 ((vii) on page 32 of Buck)

Step 1: S is a closed set.

Proof: We have to prove that the complement R™ \ S is an open set, so let ¢ €
R"\ S. We must find a ball B(¢g,6) C R*\ S. Since ¢ ¢ S= SUbdyS, ¢ ¢ S and
q ¢ bdy S. The latter implies that there is a > 0 such that either B(¢,d)NS = () or
B(q,0)N(R™\S) = 0. The point ¢ belongs to the latter set, so for sure B(g, §)NS = 0,
that is, B(q,0) C R™\ S. We complete the proof of Step 1 by showing that in fact
B(g,0) ¢ R™\ S. If this were not true, there would be a point ¢’ € B(q,6) N S.
Since B(q,0) C R™\ S, in fact we have ¢' € B(q,d) Nbdy S. Since B(q,d) is an open
set, there is € > 0 such that B(¢',e¢) C B(g,d). Since ¢’ is a boundary point of S,
B(q',e) NS # 0, a contradiction. This proves that S is a closed set.

Step 2: If F is a closed set and S C F, then S C F.

Proof: Since S = SUbdy S, and we are given that S C F, we have to show only that
bdy S C F. Suppose that p € bdy S and p € F. If we arrive at some contradiction,
we will be done. Since F' is closed, R" \ F' is open, so there exists 6 > 0 such that
B(p,6) € R™\ F, that is, B(p,6) N F = (). By the definition of boundary point,
B(p,0) NS # (). This is the desired contradiction, since B(p,d) NS C B(p,d§) N F.

Steps 1 and 2 constitute a proof of Proposition 4.4. O

5.2 Cluster points

Definition 5.1 pis a cluster point of S if every ball with center p meets S in infinitely
many points, that is, for every § > 0, the set B(p,d) N S contains infinitely many
points. We denote the set of cluster points of a set S by cl S.



Remark 5.2 Although it is hard to believe, the point p € R" is a cluster point of
S C R" if and only if every ball with center p contains at least one point of S different
from p. (Reminder: p need not be an element of S).

Proposition 5.3 ((ix) on p.32 of Buck) Let S be any subset of R". Then S is a
closed set if and only if every cluster point of S belongs to S.

Proof:
Stepl: If S is a closed set, then every cluster point of S must belong to S.

Proof: Indirect. Suppose p is a cluster point of the closed set S. If p ¢ S, then
since R™\ S is open, there exists a ball B(p,d) € R"\ S, that is, B(p,0) NS = 0.
But B(p,d) NS is an infinite set, contradiction, so step 1 is proved.

Step 2: If a set S contains all of its cluster points, then S is a closed set.

Proof: Let S be a set containing all of its cluster points. We shall show that R™\ S
is open. Let p € R™\ S, that is, p ¢ S. It follows from our assumption that p is not
a cluster point of S. This means that for some § > 0, the set B(p,d) NS consists of
only finitely many points, say pq, ..., pm- Since these points are in S and p ¢ S, if we
set

8 = min{lp—pil : 1< k <m},
then &' > 0. Moreover, B(p,¢') NS = 0, that is, B(p,d') € R™\ S. Thus R"\ S is
open, and S is closed. Step 2 is proved.

Steps 1 and 2 constitute a proof of Proposition 5.3. 0O

Assignment 5 (Due October 14) [Buck §1.5 page 36 #6,10,11]

6 Wednesday October 5, 2005—Bolzano-Weierstrass
and Heine-Borel properties

Definition 6.1 Let S be any subset of R™.

BW S satisfies the Bolzano- Weierstrass property if every infinite sequence from S
has a cluster point in S. In other words, if T' = {p1,ps,...} C S is infinite, then
there exists a point p € S such that for every § > 0, B(p,d) N T is an infinite
set.

HB S satisfies the Heine-Borel property if every open cover of S can be reduced to
a finite subcover. In other words, if G, G, ... is a sequence of open sets and if
S C Gy UGy U- -, then there is an integer N such that S C Gy, UGy U---UGy.
Another way to write this is: if S C U;° G, then for some N > 1, S C U,]LlGn.

EXAMPLES:

e (0,1) does not satisty BW or HB.



e [0,00) does not satisfy BW or HB.

e [0, 1] satisfies BW. This is the Bolzano-Weierstrass theorem, which you learned
in Mathematics 140A or 140B. You can also find it in Buck [Theorem 21,p. 62].

e [0, 1] satisfies HB. This is [Theorem 24,p.65] in Buck..

We shall show that the two properties are equivalent, that is, an arbitrary set S C
R" either satisfies both properties or neither property. This is stated in the next
proposition.

7 Friday October 7,2005—Compact sets

Proposition 7.1 Let S be any subset of R". Then S satisfies BW if and only if it
satisfies HB.

Proof:

Step 1: BW= HB.

Assume that S satisfies BW. Let S € G; UGy U ---. We must find N such that
SC G UGyU---UGy. If this is not true, then for every n =1,2, ...

S¢Z G U---UG,.
For each n there is thus a point p, € S such that p, &€ {p1,...,p,_1} and
pn & G for 1 < k <n. (3)

Because S satisfies BW, there is a cluster point, say p of the infinte sequence T =
{p1,p2,...,} and p € S. Since p € S, there is a kg such that p € Gy,. Since Gy, is
an open set, there is a § > 0 such that B(p,d) C Gy,. Since p is a cluster point of
T, B(p,0) NT is infinite, therefore B(p,d) N T = {pn,, Pn,,---, } is a subsequence,
song < ng < --- — oo. We now have a contradiction: take any n; > ky. Then
Pn; € Gy, which contradicts (3). Step 1 is proved.

Step 2: HB= BW.

Let T = {p1,p2,...} C S be an infinite sequence, and suppose that 7" has no
cluster point in S. We seek a contradiction, which will then complete the proof of
Step 2.

Since no point of S is a cluster point of 7', there is, for each p € S, a 6, > 0 such
that B(p,d,) N T is a finite set. We have

T CS CUpesB(p,6,),
and by HB, a finite number of the balls B(p,d,) cover S, say

TCScC U?:lB(pka(Spk)'



Then
T =T 0 (UL B(pk, 0p,)) = Uph [T 0 B(pg, 6p,.)]-

This is a contradiction, since 7' is infinite and U}, [T N B(pg,d,,)| is finite. This
proves Step 2 and completes the proof of Proposition 7.1.

Definition 7.2 Let S be any subset of R". We say S is compact if it satisfies BW
or HB.

Assignment 6 (Due October 14) Prove directly the following three assertions. The
fourth assertion will be proved in class.

a) If S satisfies BW, then S is a closed set.

(
(b) If S satisfies BW, then S is a bounded set.
(c) If S satisfies HB, then S is a bounded set.
(

d) (This will be done in class, not part of the homework) If S satisfies HB, then S
is a closed set.

These assertions are stated in Buck as [§1.8 page 69 #1,2]

8 Monday October 10, 2005—Characterization of
compact sets

8.1 Two remarks on the property HB

When you try to prove the false statement “every set is closed”, you find that it helps
if you assume that the set is compact.

Proposition 8.1 Fvery compact set in R™ is closed.

Proof: Let S be a compact subset of R". We show directly that R" \ S is an open
set by using the Heine-Borel property HB. Let p € R" \ S. For each ¢ € S, let
d, := |p —¢q|/2. Since p # q, 0, > 0. Now cover S:

S C UqESB(Q7 6q)

By HB, there exist finitely many points qi, ..., g, € S such that S C U, B(qg;, d,).
Then V = ﬂ;-":lB(p, 6q].) is an open set! containing p, in fact it is an open ball
B(p,min{é,, : 1 < j < m}). Since B(p, d,,) is disjoint from B(q;,d,, ), it follows that
V' is disjoint from U7, B(g;, d,, ), and hence from S, that is, V. C R" \ S. Thus S is
closed. This completes the proof.

hecause it is a finite intersection!! (this is the beauty of the Heine-Borel property)

10



Remark 8.2 In the proof of Proposition 7.1 it wasn’t shown yet that BW= HB, only
that BW implies that every countable cover of S by open sets could be reduced to a
finite subcover. On the other hand, the proof of HB= BW uses the full strength of
the property HB, namely that an arbitrary (that is, possibly uncountable) open cover
of S could be reduced to a finite subcover. So to complete the proof of Proposition 7.1,
we need the following lemma, whose proof is left for you to think about.

Lemma 8.3 Fuvery open cover of any set S C R" can be reduced to a countable cover

of S.

8.2 Another characterization of compactness

We now come to a major theorem. 2

Theorem 8.4 Let S be any subset of R". If S is closed and bounded, then S is
compact.

We shall prove this theorem by showing that a closed and bounded set satisfies BW.
In this form, the theorem is known as the Bolzano- Weierstrass theorem (in R™). Of
course you may want to prove this theorem by showing that a closed and bounded
set satisfies HB. In that form, the theorem is known as the Heine-Borel theorem (in
R™). You will find the Heine-Borel theorem in Buck as Theorem 24 on page 65 (for
n = 1) and Theorem 25 on page 65 of Buck for arbitrary n.

The following two lemmas, well known facts (by now) about subsequences of se-
quences of real numbers are the main tools in the proof of Theorem 8.4.

Lemma 8.5 (Bolzano-Weierstrass theorem in R) Every bounded sequence of real
numbers has a convergent subsequence.

Lemma 8.6 FEuvery subsequence of a convergent sequence of real numbers converges
to the same limit as the sequence.

Proof of Theorem 8.4:
Since S is bounded, there is a ball B(0, M) with S C B(0, M). Obviously

B(0,M)cnj_{p=(ar,...,a,) ER": =M < a; < M}.

Now let T' = {p1,p2,...} C S be an infinite sequence. We must find a point p € S
which is a cluster point of 7.

Choose a subsequence 17 = {q1, s, ...} of T such that the sequence of first coor-
dinates converges (you used Lemma 8.5 here since the first coordinates of 7" lie in the
closed interval [— M, M]). Call the limit of the sequence of first coordinates ;.

Now choose a subsequence T, = {ry,79,...} of 17 such that the sequence of second
coordinates converges (Lemma 8.5 again) and call this limit z,. By Lemma 8.6, the
first coordinates of T, also converge to the previous z;.

2This makes today a very important day in your life
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Continuing in this way, you obtain subsequences
I,cl, ,C---CT, CT

such that the n coordinate sequences of 7, each converge to some number. We
have decided to call these numbers xq,...,z,, and we have thus defined a point
p=(x1,...,2,) € R™

Our proof will be complete as soon as we show that p is a cluster point of T'. For
then, since T C S, p will be a cluster point of S, and since S is closed, p will belong
to S.

To help us prove that p is a cluster point of T, we need some notation. Let
T, = {s1, S2,...} and let

so that
lim 2 =2, 1<j<n. (4)

k— o0

Let 0 > 0. We must show that B(p,d) NT is infinite. Obviously, it is enough to
show that B(p,d) NT, is infinite, that is, we must show that

'p — sg| < 0 for infinitely many k.

By (4), there exist N; (1 < j < n) such that

|z —xgk)| < d0/y/n for k > Nj.

Then for & > N := max{Ny,...,N,} we have |p — s;|* = iy — mg-k))Q <
n(6*/n) = 6. Therefore
{SN, SN41; - - } cT,n B(p7 (5)
This completes the proof of Theorem 8.4. O

9 Wednesday October 12, 2005—More on bound-
ary and closed sets (Second Midterm Alert)

Proposition 9.1 (Part of (viii) on page 32 of Buck) For any subset S of R",
its boundary bdy S is a closed set.

Proof: Just note that for any set S, we have the decomposition®
R" = int SUbdy SUint (R"\ S)

of Euclidean space R"™ into three mutually disjoint subsets. It follows that bdy S =
R\ (int SUint (R™\ 5)) is the complement of an open set. O

Note that bdy S = bdy R™ \ S, for any set S C R™.

3Be sure to check this carefully
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MIDTERM ALERT NUMBER 2

The first midterm, (WHICH IS CLOSED BOOK AND NOTES!) will take place on
Friday October 21 and will cover sections 1.5 (pages 28-33 only) and 1.8 of Buck
(pages 64 65 only). Of particular interest are the 10 statements (Propositions) on
page 32. You should understand each step in the proofs of these propositions.

Assignment 7 (Due October 21—no penalty for turning it in on October 24, so you
can write it up elegantly)

e Buck page 36, #1,3,4,11 (any two of these four)
e Buck page 36, #7,8,12 (any one of these)

e Buck page 36, #9, Buck page 69, #3 (both of these) (For #3, see the hint at
the end of the book)

You will of course be responsible for all of these problems on the midterm.

For purposes of this midterm, you may ignore Young’s inequality, Holder’s in-
equality and the Schwarz inequality (in section 1.3), and the notion of connectedness
in section 1.8. We will use the Schwarz inequality in a significant way later in the
course but we may not have time to study the important topic of connectedness in
this course?

The important results in section 1.8 are the following: you should understand each
step in the proofs.

e BW=HB

e HB=BW

e BW= closed

e HB= closed

e BW= bounded

e HB=> bounded

e closed and bounded =BW

e closed and bounded =HB?

You may ignore Theorems 27,28,29,30 on pages 65 69 of Buck. We shall not discuss
them®. Note that the proofs of Theorems 24,25,26 on page 65 are contained in the
results listed above.

Make sure you understand the homework you turned in on September 30 and
October 7 and the homework you will turn in on October 14 and October 21 (or
October 24).

4You can do this on your own—TI will provide notes later

we did not discuss this one—this is included in the proof of Theorem 25 in [Buck, p.67] Of course
the result follows from the preceding fact since BW=- HB

Showever, you are in a good position to understand them
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10 Friday October 14, 2005—Even More on bound-
ary and closed sets; proof of Lemma 8.3

10.1 Two remarks on closed sets and boundary
Proposition 10.1 ((iii) and (iv) on p.32 of Buck)
(a) If A and B are closed subset of R™, then so are AN B and AU B.

(b) If {Ag}2, is a sequence of closed sets, then N3, Ay is closed but U, Ay need
not be closed.

(c) If {A,: o€ A} is a family of closed sets, then Naen is closed.

First proof: use De Morgan’s law:
R™\ M2, A = U2 (R Ay).

Second proof: Let S := N2, A and let p be a cluster point of S. We shall show
that p € S. Since S C Ay for every k, for every 6 > 0, B(p,0) NS C B(p,d) N Ay.
Thus p is a cluster point of A;. Since Ay is closed, p € Ay for every k, that is, p € S.

The same proofs work for (c). O

Proposition 10.2 (Another part of (viii) on p.32 of Buck) For any subset S of R",

bdyS = SN R\ 9).

Proof:

SN(R*\S) = (SUbdyS)Nn((R"\ S)Ubdy (R"\9))
= (SUbdyS)Nn ((R"\ S)UbdyS)
= bdyS.

10.2 Proof of Lemma 8.3

The lemma states: Every open cover of any set S C R"™ can be reduced to a countable
cover of S.

Proof: Let S be covered by a family G of open sets. For each p € S choose a set
G, € G containing p. Since G, is open, choose an open ball B(p,d,) C G,. Since Q
is dense in R, we can find a rational number r, € (0,,), hence p € B(p,r,) C G,.
Again, since Q is dense in R, we can find a vector g, with rational coordinates such
that ¢, € B(p,r,/2). By the triangle inequality, B(q,,r,/2) C B(p,r,) (Check this!),
so for each p € S, we have p € B(g,,7,/2) C G,. The collection {B(gy,r,/2) : p € S}
is countable, so we can enumerate it as {B(qp;,7p,/2)}3<,, where {p;} is a sequence of
points in S. For each j = 1,2, ... pick the corresponding G, € G. Then S C U2, G,
proving the lemma. O
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11 Monday October 17, 2005—Continuous func-
tions

11.1 Overview

Here is a preview of our next topic: continuous functions. There are only two
main theorems. The rest is either trivial modification of what you learned in 140AB
or consequence of these two theorems.

The main theorems on continuous functions deal with compact sets. They are

e Theorem 13 on page 93 of Buck”: The continuous real valued image of a compact
subset of R" is a compact subset of R.

e Theorem 6 on page 84 of Buck: A continuous real valued function on a compact
subset of R™ is uniformly continuous.

Both of these theorems are well known to you in the following form for n = 1.

e A continuous function on a closed interval [a,b] is bounded, and assumes a
maximum and minimum on [a, b]; that is, there exist points «, f € [a,b] (not
necessarily unique) such that f(«a) < f(z) < f(pB) for every = € [a,b]. (This is
stated for functions defined on compact subsets of R” as Theorem 10 on page
90 and Theorem 11 on page 91 of Buck)

e A continuous real valued function on a closed and bounded interval in R is
uniformly continuous on that interval.

Here is a description of the first five theorems of Chapter 2 of Buck

Theorems 1,2 page 73-74 These concern a characterization of continuity at a point
in terms of convergence of sequences, and are extremely useful.

Theorem 3 page 76 This is a global characterization of continuity. It becomes
messy if the domain D is not an open set, and for this reason we shall not
spend any time on it right now.

Theorem 4 page 77 This concerns the “algebra” of continuous functions, that is
sums, products, quotients, and is familiar from elementary calculus. This is
important to know but we shall not spend time on it. It is used in Buck to
give a proof of the extreme value theorem (|[Theorem 11,page 91| of Buck), but
we shall give an independent proof of the extreme value theorem, using only
compactness.

Theorem 5 page 78 This involves composite functions and we shall discuss it in
connection with our study of the chain rule, later in this course.

Do not read the proof of Theorem 13 in Buck, we will present a better one
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In [Buck, Section 2.3] we will discuss Defintion 2 on page 82 and Theorem 6 on
page 84. We will not have time for Definition 3 and Theorem 7, which can be ignored.

In [Buck, Section 2.4] Theorems 10 and 11 follow easily from Theorem 13, as we
will show. Before we do that, let us note that Theorems 8,9 and 12 can be skipped
(we need Theorem 8 later, but we can wait on that). Theorems 14,15,16 involve
connectedness and we may have to skip them now.

11.2 Continuous functions—continuous image of a compact
set

Definition 11.1 Let f : D — R be a function, where D is any subset of R", and let
po € D. We say that f is continuous at pg if

Ve > 0,30 >0

such that®
1f(p) — f(po)| < € for all p € D with |p — pg| < 6.

It is important to realize that this lengthy definition can be put in the compact ?
form
Ve > 0,36 > 0 such that f[D N B(py, )] C B(f(po),€)-

Here, we are using the notation

f(A) :={f(p):pe A} if AcC D.

We refer to f(A) as the image of A under f.

Please note that the above definition is a “local” one, that is, concerns a single
point pg, together with “neighboring” points. We say f is continuous on D if it is
continuous at each point of D. This gives a “global” definition of continuity.

Assignment 8 (Due October 28) [Buck, §2.2 page 80 #1 or 2,3 or 4,7 or 8,12 or
13,14 or 17] You are to hand in 5 problems, one from each of these 5 pairs. You will
of course be responsible for all of the problems.

Theorem 11.2 The continuous image of a compact set is compact. In other words,
if f: D — R is a continuous function on D, and D is a compact subset of R", then
f(D) is a compact subset of R.

Proof: We choose!® to show that f(D) satisfies the HB property. By Lemma 8.3, we
only need to deal with countable open covers. We shall use the fact that D satisfies
the HB property (for arbitrary covers!).

8§ depends in general on py as well as on €
%no pun intended
1%how many choices are there?
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Let
f(D) C U Gy

be an open cover of f(D). For each p € D, f(p) € f(D) and so there is a member of
the cover, say Gy, with f(p) € Gy, . Since the cover is an open cover, Gy is an open
set so there is €, > 0 such that B(f(p),e,) C G,. Since f is continuous at every
point of D, there exists d, > 0 such that

fB(p,d) N D] C B(f(p), )

We can now cover D'
_D C UpEDB(pa 6p)

Since D is compact, the HB property tells us there are a finite number of points
D1, - - -, Pm say, such that

DcC UT:IB(pj: 611]‘)'
It follows that D = UTL,[B(p;,dp,) N D], and therefore that

f(D) = U;":lf[B(pj, 61’]‘) NnD]C U;‘nle(f(pj)v epj) C U;n:IGPj'

We have reduced the given (countable) cover to a finite subcover, so the proof is
complete. O

An alternate proof would show that if S satisfies BW, then f(.S) satisfied BW, as
follows. Let {a,}°, be an infinite sequence in f(S), which we may assume without
loss of generality, consists of distinct points. For each n, choose a point p, € S such
that f(pn) = . Since f is a function (well-defined!), {p,}5°, is an infinite sequence
in S so there exists a vector p € S which is a cluster point of {p,}>°,. Now verify
that f(p) is a cluster point of {a, }?°; (details omitted).

Assignment 9 (Due November 4) [Buck, §2.3 page 88 #1,3 or 4,5 or 6,7]

Remark 11.3 Whenever a set in R” is defined by inequalities (or equalities) involv-
ing continuous functions, the set is open if all inequalities are strict (> or <), and
closed if all inequalities are not strict (< or > or =). Also, the boundary is obtained
by changing one or more of the inequalites to =. As an example, here is a proof of
the fact that the set S = {(z,y,2) € R® : zy > 2} is open in R? (Problem 3(c) on
page 37 of Buck).

Proof: Let py = (x0,%0,20) € S. We must find § > 0 such that [p — pg| < ¢
implies p € S. For any § we note that if p = (z,y,2) and |[p — py| < 6, then
(x — m)* < |p— pol* < 6? so that |z — xy| < § and similarly |y = yo| < § and
|z — 29| < §. Rewriting these last three inequalities as g — d < x < xg+ 9, yop — 0 <
y<yp+9d,and zyg — 0 < z < 2o+ 0 implies xy — z > (29 — 0)(yo — ) — (20 +0) =
ToYo — OYo — 0o + 0% — 20 — & = woyo — 20 + 6(8 —yo — xg — 1), which is strictly positive
for sufficiently small 6. This proves that B(pg,d) C S for some ¢ > 0. O

the redundant cover!
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12 Wednesday October 19, 2005—Continuity in
terms of sequences

12.1 Limits of sequences of points in R”

Definition 12.1 Let {p;}2; C R" be a subset indexed by the natural numbers, and
let p € R™. We say the sequence {p;} converges to p if

k—oc
that is, for every € > 0, there exists N such that
lpr. — p| < e for all k& > N.

Notation for this is: lim,_,.opr = p or lim, p, = p or limp, = p or pp — p as
k — oo, or just plain py — p.
Introduce coordinates of the points p, and p:

p=(x1,...,2,) and py = (xgk), .. .,:rglk)).

Then

n

D= =D (z; — xgk))Q > (z; — Z‘;k))2 forall1 <j <mn.
j=1

This proves the following:

Theorem 12.2 (Theorem 7 on page 42 of Buck) Let {pc}2, C R" be a se-
quence, and let p € R". Then

lim p, = p,
k—o00
if and only if
lim z¥) = xj for 1 <j<mn.

oo d
Theorem 12.3 (Theorem 3 on page 40 of Buck) A convergent sequence in R™
15 bounded.
Proof: Let p, — p. Choose N such that |py — p| < 1if £ > N. Then

okl < lpe = pl+ lpl <1+ |p| for k> N
and so {px}32, C B(0, M) where

M = max{l + \p|, |p1‘7"'7‘p]\7‘}7

that is, the sequence is bounded. O

Theorem 12.3 raises the following question. Does the set of points of a convergent
sequence constitute a compact set, that is, is it closed. The answer is easily seen to
be no. However, an illuminating informal exercise would be to prove that the set
consisting of the points of convergent sequence together with its limit is a compact
set. This exercise becomes even more instructive if you proved it in three ways, using
successively, BW, HB, and CB (closed and bounded).

18



12.2 Continuity and limits of sequences

Theorem 12.4 (Theorem 1 on page 73 of Buck) Let f : D — R, where D C
R", and suppose that f s continuous at the point py € D. Then for every sequence
pr from D, which converges to py, we have

Jim f(pe) = f(po).

Proof: Let € > 0. We have to prove there is an N such that |f(px) — f(po)| < € for
all k > N. Since f is continuous at pg, there exists 6 > 0 such that

fID N B(po, )] € B(f(po), €)- (5)

Since pr — po, and since § > 0, there exists N such that

pr € B(po,0) for k > N. (6)
Putting together (5) and (6) results in f(px) € B(f(po),¢€) for k > N. 0
Remark 12.5 e Theorem 2 on page 74 of Buck is an important converse to

Theorem 12.4. I suggest you read this theorem as we will not cover it in lecture.

e At this point you are in a position to give another proof of Theorem 11.2 above
using the property BW (at both ends). We did this in class but I strongly
suggest that you do this again for yourself as an informal exercise. The following
lemma, which we shall use in the extreme value theorem (Theorem 12.8 below)
may be helpful in that informal exercise.

Lemma 12.6 For any subset S C R", the set of cluster points of S coincides with the
limits of sequences of distinct points from S. In particular, a point is a cluster point
of a sequence if and only if it is a limit of a convergent subsequence of the sequence.

Proof: Let p be a cluster point of S. Pick py € B(p, %) N S. Since this set is infinite,
we can certainly assume that p, & {p1,...,pr_1}. Then |p, — p| < 1/k — 0, so
pr — P, as required. Conversely if p = limg_,, pr with p, € S all distinct, then for
any § > 0, there exists N such that {pyy1,Pn42,...} C B(p,d) NS, so B(p,d) NS is
an infinite set. O

Theorem 12.7 (Theorem 10 on page 90 of Buck) A continuous function on a
compact set is bounded. That is, if f : D — R s continuous on D C R" and D 1is
compact, then f is a bounded function on D.

Proof: This is now trivial, since by Theorem 11.2, f(D) is compact, hence bounded.

(Note that Theorem 11.2 does not depend on Theorem 12.7, so it is OK to use it in
the proof).
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Theorem 12.8 (Theorem 11 on page 91 of Buck, Extreme values Theorem)
A continuous function f on a compact set D C R™ assumes its mazimum and its min-
imum at some points of D.

Proof: By Theorem 12.7, f is bounded, that is f(D) is a bounded subset of R. Let

g :=sup{f(p) : p € D},

so that § € R. By definition of supremum, for each £ > 1, there is a point p, € D
such that

5o <SR <P ©

Since D is compact, BW implies the existence of a cluster point py of the sequence py,
and py € D. By Lemma 12.6, there is a subsequence py, such that lim; . px, = po.
In particular, from (7), for j =1,2..,

5 < o) < B

J

Now let 7 — oo to get < f(pg) < f3, that is f assumes its maximum at py € D.
Similar proof for minimum. O

Assignment 10 (Due October 28) [Buck, §1.6 page 54 #1 or 2,3 or 4,31 or 33,32 or
35]

13 Friday October 21, 2005—First Midterm

Do all problems. However, there is a choice in one of them, number 8

Problem 1 (12 points) Prove rigorously that the set Z = {...,-2,-1,0,1,2,...}
of integers is a closed subset of RY. Is it a closed subset of R*? (Yes or no, no proof
required for this part of the question). Is

S:={(m,k):meN,keZ}
a closed subset of R*? (Yes or no, no proof required).
Problem 2 (12 points) Find bdy S, intS, and all cluster points of S if
S={(z,y) eR*: 1 <2 +9* <2}U{(2,0): 0< 2 <1/2}
Just write down your answer, no proof is required.
Problem 3 (5 points) Prove or disprove: For every S C R™, S\ intS = bdyS.

Problem 4 (25 points) Let A be a bounded subset and B a closed subset of R" and
suppose that ANB # (). True or false (3 points for each correct answer, 2 more points
for the proof or example)
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(A) AN B is bounded

(B) AU B is bounded

(C) AU B is closed

(D) AN B is compact

(E) An(R"\ B) is bounded

Problem 5 (12 points) Prove that a compact set is bounded. You may use BW or
HB.

Problem 6 (12 points) Let S be a closed subset of R", that is R™\ S is an open
set. Prove

(A) bdyS C S.

(B) S=S

Problem 7 (12 points) Let A be any subset of a compact set S.
(A) Prove that if A is closed, then A is compact.

(B) Now suppose again that A is an arbitrary subset of the compact set S. Prove
that A, the closure of A, is a compact set.

Problem 8 (10 points) Let S be an arbitrary subset of R™. Do only one of (A) or
(B), not both.

(A) Let p € R™ and suppose that for every § > 0, B(p,d) NS contains at least one
point different from p. Show that p is a cluster point of S.

(B) Let clS be the set of cluster points of S. Prove that clS is a closed set. Hint:
Use the fact that open balls are open sets to show that cl(clS) C ¢l S

14 Monday October 24, 2005—More on closure;
Uniform continuity

14.1 A discussion of closed sets and closure

A closed set was originally defined to be a set whose complement is an open set and
the closure of a set was originally defined to be the union of the set and its boundary.
These definitions are not always workable so it is desirable to note that the following
five statements are all equivalent to a set S being closed and can therefore serve as
the definition of closed set. (The last one has not been discussed before and is proved
in the next subsection. I stated it as an equality in class; however, it is also correct
as stated here.)
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R"™ — S is an open set
e 5=235
cddScS

e bdy S C S (I failed to mention this one in class!)
o {limypy : {pp}p2, C S, the limit exists} C S

Besides being defined as the union of the set and its boundary points, the closure
of a set has also been shown to be equivalent to several other statements, listed below.
(The last one is proved in the next subsection.)

e S=SUbdyS
e S is the smallest closed set containing S

e S is the intersection of all closed sets containing S

e S=intSUbdyS

e S= {limy 00 i {pr} C S, limy py exists }

14.2 A characterization of closed sets in terms of convergent
sequences

Theorem 14.1 (Theorem 5 on page 40 of Buck) Let S be any subset of R".
Then

S = {klim pr: {pe} C S, li;np;€ exists }. (8)
—00

Proof: Suppose first that p = limy, p, for some sequence p, from S. If p € S =
bdy SU S, then p ¢ S and p € bdy S. Thus there exists 6 > 0 such that at least one
of B(p,d) NS or B(p,0) N (R™\ S) is empty. But the first one is non-empty since
it contains some elements of the sequence py. Thus the second one is empty, which
means B(p,d) C S. This is a contradiction to p ¢ S. We have proved that the right
side of (8) is contained in the closure of S.

Now let p € S, and suppose first that p € S. Then the sequence p; defined by
pr = pfor k =1,2,... converges to p. Next suppose that p € bdy .S, so that for every
k> 1, B(p, %) NS # (. Pick a point py € B(p, %) NS, so that py is a sequence from
S which converges to p since |p — px| < 1/k — 0. O

Corollary 14.2 (Corollary 2 on page 41 of Buck) A set S is closed if and only
iof it contains the limit of each convergent sequence of points from S.
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14.3 Cauchy sequences

The concept of Cauchy sequence is needed in Assignment 11.

Definition 14.3 (Definition 6 on page 52 of Buck) A sequence p; of points in
R" is said to be a Cauchy sequence if for every € > 0, there exists N such that
lpr — pj| < eforallk > N and j > N.

The following theorem follows easily from the case n = 1 by considering the se-
quences of coordinates of all the points involved.

Theorem 14.4 (Corollary on page 63 and exercise 32 on page 56 of Buck)
A sequence in R" is convergent if and only if it is a Cauchy sequence.

14.4 Uniform continuity

Definition 14.5 (Definition 2 on page 82 of Buck) A function f : F — R,
where £ C R", is uniformly continuous on E if for every € > 0, there exists § > 0
such that |f(p) — f(q)| < € whenever p,q € F and |p — ¢| < 4.

A function which is uniformly continuous on a set S is certainly continuous at
every point of S, that is, is continuous on S. However, a function continuous on a
set S need not be uniformly continuous on S. There are exceptions, as in the next
theorem.

Theorem 14.6 (Theorem 6 on page 84 of Buck) A function which is continu-
ous on a compact set D is uniformly continuous on D.

Proof: First an outline:

Given €, use €/2 to get a “continuity ball” B(p,d, for every p € S

Use d,/2 to get a “covering ball” for every p € S

Use HB to get a finite number of covering balls and pick ¢ to be the smallest of
their radii

Use the triangle inequality to get the uniform continuity

Now the details. Let ¢ > 0. For each p € D, there exists J, > 0 such that
f1B(p,d,) N D] C B(f(p),€e/2). We shall refer to B(p, J,) as a “continuity ball”. Now
cover D by the corresponding balls with radius halved, that is,

D C UpGDB(p; 6p/2)
We can refer to B(p,d,/2) as a “covering ball”’. By compactness, we have D C

UL B(py, 0p;/2). Now set § = minj<j<m{dy,/2}. It remains to prove that if z,y € D
and |x —y| < 6, then |f(x) — f(y)] <e.
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Since z € D there is a j such that » € B(pj;,d,,/2). Since |z —y| < 6 < 0,,/2 we
have |y — p;| < |y — 2| + |z — pj| < 6+ 6y,/2 < 6p,. In other words, z and y both
belong to the same continuity ball B(p;,d,,). Thus

f(@) = f(y) <1F(@) = F)l +1f(ps) — FW) < e/2+¢€/2 =€

The proof is complete. O

As the next assignment shows, there are non-trivial uniformly continuous functions
on non-compact sets.

Assignment 11 (Due November 4) In (A) and (B), show that f and g are uni-
formly continuous on R", where

(A) f(p) = |p| (Hint: triangle inequality)

(B) g(p) = zayh + - -+ + 2y, where p = (z1,...,2,) € R™ is a variable point and
Y1, .., Yn € R are fixed.

(C) [Buck, p.88#6], namely, a uniformly continuous function preserves Cauchy se-
quences.

15 Wednesday October 26,2005—Discussion of First
Midterm

15.1 Statistics
e Mean =49
e Median =41

e tentative letter grade 91-100=A, 85-90=A-, 80-84=B+, 72-80=B, 65-71=B-,55-
65=C+,45-54=C,40-44=C-,35-39=D+, 30-34=D,25-29=D-,0-24=F

e mean on each problem: #1 6.72=56%, #2 5.40=45%, #3 3.68=74%, #4 13.64=55%,
#5 6.88=57%, #6 7.40=62%, #7 3.24=27%, #8 2.68=27%

15.2 Answers to the problems

Problem 1 (a) R—Z = U,cz(n,n+1) is a union of open sets. Alternatively, given
x € R—7Z, pick n € Z with z € (n,n + 1) and define 6 = min{x — n,n +
1—x}. Then (z —d,x+d) CR—Z.

(b) yes
(c) yes
Problem 2 (a) bdy S = {(z,0) : 0 <z < 1/2} U{(z,y) : 2* + y* = 1} U {(=x,y) :
2+ y? =2}
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(b) intS = {(z,y): 1 <2?+y* <2}
(c) IS ={(2,0):0<z<1/2}U{(z,y): 1 <2*+y* <2}

Problem 3 False. Counterexample: S = {(z,y) : 2* +y* < 1}

Problem 4 (a) True; AN B is a subset of A
(b) False; A= (0,1), B=1[1/2,00)
(c) False; A= (0,1), B=11/2,3]
(d) False; A=(0,1), B=1[1/2,3]
(e) True; AN (R™ — B) is a subset of A

Problem 5 e Using BW: If S is compact and not bounded, then for every n > 1
there exists p, € S with |p,| > n. By BW there exists p € (cl{p,}3>,)NS
so that for any 6 > 0, B(p,d) N {p,} is infinite, say B(p,d) N {p,} =
{pn, }1321. Then ny < |py, | < |pn, — p|+ |p| < 5+ |p|, a contradiction since

e Using HB: The collection G = {B(/,\) : \ = o0, €, ...} is an open cover of
any set S C R". If S is compact then for some N > 1, S Cc UN_ B(0,n) =
B(0, N), that is, S is bounded.

Problem 6 (a) Let p € bdy S and suppose p ¢ S. Then 3B(p,d) C R"— S, so that
then B(p,0) NS = (), contradicting the fact that p € bdy S

(b) S=bdySUS C S by (a). But S is the smallest closed set containing S.
In particular, S C S. Hence S = S

Problem 7 (a) e Using HB: Let A C U2 Gy where Gy, is a sequence of open
sets. Then S C (R"— A)UUGY is an open cover of S | so that IN > 1
with S C (Rn - A) U U;(;VZIGIC' Then A C U;(;VZIGIC'

e Using BW: Let {p,} be an infinite sequence in A. Since A C S by the
BW property for S, Ip € cl{p,} N S. Since {p,} C A, p € cl A and
since A is closed (c1A C A), p € A. Thus A satisfies BW

e Using CB: A is given to be closed, and S is closed because it is compact.

Since A C S, A is also bounded, so A is closed and bounded, therefore
compact.

(b) S is closed because it is compact. So S is a closed set containing A. Since
A is the smallest closed set containing A, we have A C S. Then by (a), 4,
being closed, is compact.

Problem 8 (a) We need to show that for every § > 0, the set B(p,d) NS is infinite.
Given 6, pick ¢; # p and ¢; € B(p,d) NS and set 0; = |p — ¢1|. Then pick
q2 # p, and ¢u € B(p,d;) NS and make sure that ¢; # ¢. Continuing in
this was we obtain a sequence of distinct points {g;, g2,...} C B(p,d) NS
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(b) Let’s show (directly) that cl(c1S) C c1S. Take p € cl(clS) so that B(p,d)N
cl S contains a point ¢ # p. Choose §; such that B(q,d;) C B(p,d). But
B(g,d,) N S is infinite, so B(p,d) NS is infinite, proving that p € ¢l S.

15.3 An assignment related to Problem 8

Assignment 12 (Due November 4) Give three other proofs that the set c1.S of cluster
points of an arbitrary set S is a closed set, more precisely,

e Show R” — ¢l S is open
e Show bdy (clS) C clS

e Show {limypy : px € cl S} CclS

16 Friday October 28, 2005—A uniformly contin-
uous function extends (continuously!) to the
closure of its domain

16.1 Motivation and statement of the problem

There are two main applications of uniform continuity. In the theory of Riemann
integration the fact that a continuous function on a close rectangle in R? is integrable
follows very readily the fact that it is automatically uniformly continuous, a closed
rectangle being a compact set.

Today we consider the another application in the form of a solution to a particular
mathematical problem. Let S be any subset of R" and let f : S — R be a continuous
function. The problem is: can f be extended to a continuous function, call it f,
on the closure S of S? Stated again, given f continuous on S, does there exist a
continuous function f on S, such that f(p) = f(p) for p € S? Let me repeat this:
given a continuous function f on S, does there exist a continuous function fonS
such that ﬂg = f?

We know already that the answer is no, as the example f(z) = 1/zon S = (0,1) C
R shows. So to get a positive answer, we must put some restrictions on the function
f and/or on the set S. We will find that if we assume that f is uniformly continuous
on S, then the answer is yes for any set S.

To solve this problem we note first that our hands are tied by Theorems 14.1 and
12.4. That is, we have no choice, we must define the extension f as follows:

PN f(p) if pes;
fp) = { limg oo f(pr) ifp€S\S,

where p;, € S is such that limy pp = p.
To make this construction legitimate, we must answer three questions:
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e Why does limy f(px) exist?
e Why is limy, f(px) independent of the sequence py chosen in S?

e Why is f (which is a function by positive answers to the first two questions)
continuous on S7

In order to get affirmative answers to the first and third questions, we have to
make an assumption on f, but not on S. The first two questions are easy to answer,
so let’s get them out of the way first.

Assume now that f is not merely continuous on S, but uniformly continuous on
S. If py is any sequence from S which converges'? to p € S, then p; is a Cauchy
sequence, and by uniform continuity of f, Assignment 11(C) tells us that f(pg) is
a Cauchy sequence in R. Hence the limit exists and the first question is answered
affirmatively.

We now answer the second question. Let {p,} and {gx} be any two sequences
from S which converge to p € S. By the answer to the first question, the limits
a = limg f(pg) and B := limy f(gx) exist. We must show that « = S. To do
this, consider a third sequence, obtained by interlacing the two given sequences:
D1, q1, P2, qa, . . .,. Obviously, this sequence converges to p also, so the sequence of
function values f(p1), f(q1), f(p2), f(q2), ..., converges, say to a number . Since
every subsequence of this sequence must also converge to 7, it follows that o = v and
B =1, so a= [, as required. The second question is answered affirmatively.

17 Monday October 31, 2005—The extension the-
orem

This section is devoted to the answer to the third question raised in the last lecture.
Let us state this as a theorem.

Theorem 17.1 Let f : S — R be a uniformly continuous function defined on a
subset S of R". Define a function f : S — R by

W) ifpes;
fp) = { lim oo f(pr) ifp €S\ S,

where pr, € S is such that limg p, = p. Then f is continuous™ on S.

Proof: Let p € S and let € > 0. We shall produce a § > 0 such that fIB(p,6)NS] C
B(f(p), ). that is.

1f(p) — f(g)| < eifgeSand|qg—p <0

Discussion (sidebar): here are the basic ideas of the proof. Make sure you under-
stand the reason for each assertion below.

12Guch a sequence exists by Theorem 14.1
13The proof will show that actually f is uniformly continuous on S
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1. The points p,q (€ S) have “neighbors” pg,q; € S: for example |p — pi| < 1/k
and |g — ¢;| < 1/j.

2. f(p) and f(pg) are “close”; so are f(g) and f(g;).

3. if p, and g; are close, so are f(py) and f(g;).
4. if p and ¢ are close, so are p; and g;.
5

. end of sidebar

We now make these statements precise. We begin with the triangle inequality:

1F(p) = F(@)| < () = Flou)l + £ (pe) — Fa))] + 1 f () — F(a)l- 9)

There exists N; = Ni(e/3, p) such that [f(p) — f(px)| < €/3 for all k > Ny and
there exists Ny = Ny(e/3, q) such that | f(q) — f(g;)| < ¢/3 for all j > N,. (This takes
care of the first and third terms on the right side of (9)).

There exists 1 = §1(f, €/3,5) such that |f(x) — f(y)| < €/3 whenever z,y € S and
|z—y| < 6. In particular, for the middle term on the right side of (9), | f(px)— f(¢;)| <
6/3 if ‘pk — q]| < 0.

Now note that (again by the triangle inequality)

e — q;l <lpe —pl+1p—q +qg— gl (10)

Thus, if we define § := §;/2, then from (10), if |p — ¢| < J, and k,j are large
enough, then |p; — ¢;| will be less than ;.

Conclusion: if [p—g¢| < &, where § = 0,(f,€/3,5), then, |f(p)— f(q)| < €¢/3+¢/3+
€/3 =€, by (9), where k, j are chosen so that k > Ny,j > Ny and 1/k+1/j < 6;. O

Assignment 13 (Due November 14)

(A) Let S € R" be a bounded set and let f : S — R be a continuous function. Prove
that f has a continuous extension to S if and only if f is uniformly continuous

on S.
(B) Let f: R — R be continuous and suppose that
Jim f(z) = lim f(z) = 0.

Prove that f is uniformly continuous on R.

18 Wednesday November 2, 2005—Differentiability
implies continuity for functions

There will be another version of this later—see the coordinate-free definition of deriv-
ative later in the course.

Let’s begin by recalling the mean value theorem in one variable. We shall use
Lemma 18.1 (a result in one dimension) in the proof of Theorem 18.3 below (a theorem
in n > 1 dimensions).
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Lemma 18.1 (Mean Value Theorem in one variable) If f : (a,b) — R is dif-
ferentiable on (a,b), then for every x1,x9 € (a,b) with xy < x4, there exists ¢ € (x1,x9)

such that
f(ffl) - f(%)

Ty — X2

= ['(¢).

Rhetorical question: is f' a continuous function? NO!, in general. (See the
textbook for 140AB by Ross, page 160. The function f defined by f(0) = 0 and
f(z) = x*sin(1/z) for = # 0 is differentiable for every real z, but the derivative f’ is
not continuous at « = 0.) However, only the existence of a derivative, not the con-
tinuity of the derivative, is required in Lemma 18.1 and Theorem 18.2. This is one
difference between these two one-dimensional results, and the n-dimensional theorem
Theorem 18.3.

Now let’s recall the proof in one variable that differentiability implies continuity.

Theorem 18.2 (Differentiability implies continuity—one variable) If f : (a,b) —
R is differentiable at a point ¢ in (a,b), then f is continuous at c¢. In particular, if f
is differentiable on all of (a,b) then it is continuous on (a,b).

Proof: If f : (a,b) — R is differentiable on (a,b), then for any fixed ¢ € (a,b), and

any r # c,

f) - g0 = 12T gy
Thus, f(z) = f(c) + % - (z = ¢) so that

lim £(2) = £(e) + F'(e)- 0= £(¢)

We now consider a notion of differentiability for functions f : D — R defined on

open subsets D of R". For such a function and a point py = (29,...,2%) € D, the
partial derivatives at py are defined by
o flagad, o al) = f(al 2l 2?) d
D = lim - e T1, 19, T Y
1f(p0) P T — .’L'U dl‘l L f( 15 L9y L3, ) n)a
1 1 r1=127
0 0 0 0 ,.0 0
D,fp) = tim Tt t) LT g 0 0)
22— Tg — To dx -
and so forth, until
o f@b b ) — f(aY, 2, D) d 0
an(p[]) = wllﬁnio T g0 = dx f(mla y Ty 13 Tn)
n n n n |y —g0

—n

Some common notations for this are
D. — f. _ of
i.f (po) = f;(po) oz, (po)-
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You can also write (if you prefer)

a_f(po) — lim f(x[l]a v ':nglax]’ +t,$2-+1, v ,LE[T]L) - f(x(l):xga SR ,JI?Z)
Ox; t—0 t

Other common notations can be found in [Buck, page 127].

We want to prove an analog of Theorem 18.2 for functions of n variables. We will
see that it differs both in statement and difficulty of proof from the case n = 1. The
following example (Problem 4 on page 135 and part of Assignment 14) indicates a
striking difference between one variable and two variables.

Let f(z,y) = zy/(z* + y?) for (z,y) € R* — {(0,0)} and f(0,0) = 0. Then
e D;f(0,0) and Dy f(0,0) exist
e f is not continuous at (0, 0)

e D;f and D, f are not continuous at (0, 0)

Theorem 18.3 (Corollary on page 129 of Buck) Let f : D — R be defined on
an open subset D of R™, and suppose that f € C'(D). Then f is continuous on D.

Restated, if Dif,..., D, f exist and are continuous at all points of D, then f s
continuous on D.

Proof: Fix py € D and let p € B(py, ) C D for some r > 0.

Sidebar: We shall travel from py = (2¥,...,2%) to p = (21,...,2,) by
going parallel to the coordinate axes, one axis at a time, using only the
existence of each partial derivative f; and the mean value theorem in one
variable to obtain an expression of the form

F(0) = fpo) = fila) (@1 —29) +folae) (@2 —23) ++ -+ frlan) (20— 23) (1)

for certain vectors ¢,...,q, € B(pg, ).
Next we shall use the continuity of the partial derivatives to get | f(p) —
f(po)| < efor |p—po| <.

Let’s get down to business. For simplicity, we do the proof in the case n = 3
(otherwise we will get lost in the notation, but the proof we shall give works in any
dimension). Accordingly, we shall use the notation py = (¢, yo, 20) and p = (z,y, 2).

Step 1 Let p; = (,yo, 20). Then by the mean value theorem in one variable
f(p1) — f(po) = %(c, Yo, 20) (x — xg) for some ¢ between z and .

(Question: what does ¢ depend on?)
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Step 2 Let py = (x,9, 20). Then by the mean value theorem in one variable
f(p2) — f(p1) = %(m, d, 20)(y — yo) for some d between y and yq.
(Question: what does d depend on?)
Then by the mean value theorem in one variable

Step 3 Let p3 = (z,y,2) (=p

).
f(p) — f(p2) = %(m, y,e)(z — zg) for some e between z and z.

(Question: what does e depend on?)

Step 4 Lettlng q1 = (CJ Yo, ZU);QQ = (:EJ d; Z[]),Qg - (nyJ 6)7 we have

f) = fpo) = [f(p1) = f(po)] + [f(p2) — f(p)] + [f(p) — f(p2)]
= filg))(x — ) + falq2) (v — wo) + f3(g3)(z — 20)-

This proves (11).

Ip—pols [y —v0l < |p—pol,|2—20] < |p—po|- The continuity of the partial derivatives,
together with (11) now shows that for any € > 0 there exists § > 0 such that |f(p) —
f(po)| < €for |p—po| <6 and p € D. O

By construction, |gr — po| < |p — po| for k = 1,2,3 and of course |z — zo| <

We repeat that if n = 1, you do not have to assume that the derivative is con-
tinuous, only the existence is required. For n > 1, existence and continuity of the
derivatives is required'*.

Assignment 14 (Due November 14) [Buck, §3.3 page 134 #4,5,11]

19 Friday November 4, 2005—Differential as a Lin-
ear approximation (the case of functions)

Let’s examine the equation (11). If we write it in vector notation we get some new
insight which leads us to the notion of gradient (or differential) of a function and to
the notion of approximating a function by a linear function (namely, the differential
of the function). The equation (11) can be rewritten as a dot product of vectors:

f(p) - f(pﬂ) = (fl(QI): fQ(Q2)= o afn(QTL)) ) (xl - JI?,(EQ - xg: IR T 332); (12)

or, f(p) — f(po) =V - (p—po), where V'is the vector V' = (fi(q1), f2(q2). -+ . fulan))-
Recall that the assumption is that f € C'(D), D is an open set, py € D and the

conclusion is that the points ¢q,...,q, can be chosen in any ball with center pq
containing p.

Two questions can be asked in connection with (12).

¢this is a little white lie, see Problem 5 in the next assignment
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1. Can we pick the qq,...,q, all to be the same point (call it p*) lying on the line
segment from py to p? The answer is: YES! This is the Mean Value Theorem
in several variables, see [Buck, Theorem 16,page 151] and a theorem below in
the section on Mean Value Theorems. As in the case of one variable, a mean
value theorem may not be so interesting in its own right, but it is an important
tool which will be very useful in our lifetime.

2. Carrying the previous question one step further, we can be greedy and ask
whether the point p* can be equal to py. The answer here is NO! (See Assign-
ment 15)

Assignment 15 (Due November 14) Give an example for n = 1 where p* cannot be
chosen to be py. (Hint: almost any example works). What about n = 27

The following is a fundamental definition. It has occurred implicitly in the above
two questions.

Definition 19.1 If f : D — R is defined on an open set D C R”, the gradient of
f at p € D is the vector Vf(p) = (D1f(p), Daf(p),---,Dnf(p)). Of course Vf is
defined only at those points of D where all first order partial derivatives of f exist.

Even though the answer to the second question above is negative, something is,
nevertheless true. To see what it is that interests me, let us just write down the fact,
in a different way, that a function (of one variable) is differentiable. This will enable
us to formulate an analogous property for functions of several variables.

If f is differentiable at the point ¢ € (a,b) C R with derivative f'(c), then

f(2) — £(0) — F(Q)(a —

lim = 0.
Tr—c €T — C
This is the same as ,
@) - FO - @@ -l )

T |J§ — C‘

The following is the analog, for functions of several variables, of (13). It says that

a C'-function can be approximated, in some sense, by an essentially linear function,

namely the function T'(p) := f(po) +V f(po) - (p—po). Note that (14) is much stronger

than the obvious statement that |f(p) — f(po) — V.f(po) - (p — po)| — 0 as p — py,
which follows from the continuity of f at pq.

Theorem 19.2 (Theorem 8 on page 131 of Buck) Let f be of class C' on an
open set D C R". For any po € D,

lim [f(p) — f(po) — Vf(po) - (p— po)
P=po p — pol

Since we have not used the notation lim,_,,,, we should explain that it simply means
the following: for every e > 0, there exists 6 > 0 such that

‘f(P) - f(po) - Vf(Po) ) (P - po)‘
\p - po‘

= 0.

< € whenever p € B(py,d) N D. (14)
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Proof: Let R := f(p) — f(po) — Vf(po) - (p — po). By (12) (which is the main point
in the proof of Theorem 18.3), f(p) — f(po) = V - (p — py), where V is the vector

V= (fl(ql)’ fQ(QQ), T fn(qﬂ)) Therefore
R = V-(p—po) fo(p) ) (p*po) = [V*Vf(po)} ) (p*po)-

Now use the Schwarz inequality:

Rl =|[V—=Vf®)l-p—pll <IV—=VF®)llp—mr)
that is
R
|p—p0\

and if you write out the coordinates of V' — V f(py) you will see that |V — V f(po)],
and hence by (15) |R|/|p — po|, approaches zero as p approaches py.
Here are the details:

V- Vf(po) = [fl(QI): fQ(QQ): Ty fn((Jnﬂ - [fl(pﬂ)a f2(P0)a Ty fn(Po)]
= [fl(QI) - f1(p0); f2((J2) - f2(p0); B fn(‘Jn) - fn(po)],

<[V =V /f(p)l, (15)

so that

V=V Fwo)l> = (fi(er) = fi(po))” + (f2(q2) — f2(p0))* +- -+ (fulan) — fu(po))?. (16)

Since each f; is continuous and since

‘ 2 0 0 0

g — = |((:1:1,:1:2, . ,:rj,l,cj,:rgﬂ, o)y — (Y, s, 2l

= ZTk—Tk (Cj*mg)QS\p*pd

for each j, we see from (15) and (16) that (14) holds.

20 Monday November 7, 2005—Higher derivatives;
Transformations

20.1 Higher order partial derivatives

When you differentiate a function the result is another function, which you can then
proceed to (try to) differentiate again. This gives rise to higher derivatives in one
variable, f, f', f", f",.... We can do the same thing in several variables, where we
have a lot more variety. That is, given a function f on an open set D in R", its
“first” derivatives (when they exist!) are the functions Dy f, Dof, ..., D, f, which are
themselves functions on D. Each one of these new functions has n partial derivatives,
so the list of “second” derivatives of f is very large, and the number of “third” or
even higher order derivatives grows very quickly (Question: what is that number?)

33



Higher order partial derivatives are denoted as follows: for example, for order 2,

82
Di(D;f) = (fi)i = fji = %m(%) - 6:1:-3fZL"'7
iOTj

and if 1 = j,
0 f

D}f = Dy(Dif) = (h); = fiy = 2 (35) = 55
2

Definition 20.1 Let k be any positive integer, k = 1,2,.... A function f defined on
an open set D in R" is said to be of class C* on D, notation f € C*(D), if all of its
partial derivatives up to and including order k exist and are continuous functions on
D. A continuous function on D is said to be of class C?. 1

To be explicit, a function f is of class C* on D if the following n functions are all
continuous on D: D, f,..., D, f. The function f is of class C? if the following n? +n
functions are all continuous on D:

D;f (1<j<n), D,(D;f) (1<i<mn,1<m<n).
We have
C'(D)>C*(D)>--->CHD)D>C" (D) D --- (17)
In particular, if n = 1, and D is an open interval I in R, then
c(H>ci ) >C*)o--->CH) > (1) o - (18)

Notice that (18) has an extra inclusion at the beginning, namely C°(I) D C'(I),
due to Theorem 18.2. We have shown in Theorem 18.3 that (17) has an extra inclusion
too, namely C°(D) D C'(D). (Question: how do these two extra inclusion relations
differ from eachother?)

20.2 Transformations

We now begin the study of transformations. First a formal definition.
Definition 20.2 A transformation is any function 7' : D — R™, where D C R".

Here, m > 1 and n > 1, so this includes the special case of a function f considered
up to now (that is, m = 1, n arbitrary). Every transformation gives rise to coordinate
functions as follows: if p = (z1,---,2,) € D, and T'(p) = (y1,-* -, ym) € R™, then
each y; is a function of p = (z1,...,2,), which we can denote by f; or f7 1%, Thus

T(p) = (f'(p), - ")),

5Tn [Buck, Definition 1,page 128], the definition of C* requires that f be continuous. By Theo-
rem 18.3, Buck’s definition of C* and our Definition 20.1 are equivalent

16the latter notation is preferable in order to avoid confusion with the notation f; for a partial
derivative of some function f
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where each f7: D — R is a function of n variables z1, ..., ,.

Transformations are the subject of [Buck, Chapter 7] and their geometric prop-
erties are discussed in [Buck, Section 7.2]. Although these geometric properties are
important to know for a better understanding of transformations, we will have to take
the moral high ground and concentrate on analytic properties of transformations, that
is, continuity, and most importantly, differentiability.

Fortunately, the study of continuity of transformations is no more difficult than
the study of continuity of functions of several variables. This will be established in
the following assignments, namely Assignments 16 to 23.!7

The following is the analog of Definition 11.1

Definition 20.3 Let T": D — R™ be a transformation, where D is any subset of
R", and let py € D. We say that T is continuous at py if

Ve > 0,40 >0

such that
T(p) — T(po) < eforall pe D with |p— py| <.

This definition can be put in the compact form
Ve > 0,35 > 0 such that T'(D N B(py,d)) C B(f(po),e€).

Notice that if f: D — R is a function which is of class C! on a subset D C R",
the V f is an example of a transformation. In this case, m = n. The main purpose of
the rest of this course, (and much of classical and modern mathematics) is to study

properties of transformations 7' : D — R, such as continuity and differentiability
(suitably defined).

Assignment 16 (Due November 21) Let T'(p) = (f'(p), -, f™(p)) be a transfor-
mation with coordinate functions f!,..., f™. Prove that T is continuous at py if and
only if each coordinate function f7, 1 < j < m, is continuous at py.

The following is the analog of Theorem 11.2.

Theorem 20.4 (Theorem 4 on page 333 of Buck) The continuous image of a
compact set 1s compact. In other words, if T : D — R™ is a continuous transfor-
mation on D, and D is a compact subset of R", then T'(D) is a compact subset of
R™.

Assignment 17 (Due November 21) Prove Theorem 20.4.

The following is the analog of Theorem 12.4.

"Don’t worry, not all of these assignments will be handed in
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Theorem 20.5 Let T : D — R™, where D C R", and suppose that T is continuous
at the point py € D. Then for every sequence py from D, which converges to py, we
have

lim T'(py) = T'(po)-

k—o0

Assignment 18 (Due November 21) Prove Theorem 20.5.

Assignment 19 (Due November 21) State and prove an analog of the Extreme val-
ues theorem, Theorem 12.4. (Hint: Since R™ has no order structure, you have to
express the theorem in terms of |T'(p)]|.)

The following is the analog of Definition 14.5

Definition 20.6 A transformation : T : E — R™, where £ C R", is uniformly
continuous on E if for every € > 0, there exists § > 0 such that |T'(p) — T(q)| < €
whenever p,q € F and |p — ¢q| < 9.

The following is the analog of Theorem 14.6.

Theorem 20.7 A transformation which is continuous on a compact set D is uni-
formly continuous on D.

Assignment 20 (Due November 21) Prove Theorem 20.7.

Assignment 21 (Due November 21) Show that a linear transformation (see [Buck,
Section 7.3]) is uniformly continuous. (Hint: Use [Buck, Theorem 8,page 338])

The following is the analog of Theorem 17.1

Theorem 20.8 Let T': D — R™ be a uniformly continuous transformation defined
on a subset D of R™. Define a transformation T : D — R™ by

S T (p) if p € D;
) = { limy o T(p) if p € D\ D,

where py € D is such that limy, py = p. Then T egists, is well defined, and is contin-
wous on D.

Assignment 22 (Due November 21) Prove Theorem 20.8.

Assignment 23 (Due November 21) Let D C R” be a bounded set and let T : D —
R™ be a continuous transformation. Prove that T has a continuous extension to D
if and only if 7" is uniformly continuous on D.
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21 Wednesday November 9, 2005—Approximation
by the differential —the case of transformations

Our next main result is the analog for transformations of (14) in Theorem 19.2. First
we need to define the replacement for the gradient.

Definition 21.1 If T : D — R is defined on an open set D C R", with coordinate

functions f!,..., f™, the Jacobian matriz of T at p € D is the m by n matrix
af! af!
g—?(p) o %(p
Jr(p) = a_ml(P) m(p)
[ %20) - L) ]

Of course Jr(p) is defined only at those points of D where all first order partial
derivatives of each coordinate function f? exist.

We can also write this in the form

Jr(p) = (55 (0)li<icma<jcn = [Dif (p)l1<i<mi<j<n

We shall use x to denote matrix multiplication. Thus, for example, if ¢ is any
(row) vector in R™, Jr(p) X ¢' is a (column) vector in R™, where ¢' is the transpose
of g. In particular, for the dot product of two (row) vectors p,q, p-q=p x ¢".

Later on, for the inverse function theorem, we will have m = n, and it will be
very important to consider the Jacobian determinant of T, which is defined to be
det Jp(p)."®

At this point it is necessary to include the following obvious definition. A trans-
formation 7" = (f',..., f™) is said to be of class C* on an open set D C R" for a
fixed integer k > 1, if each of its coordinate functions f? is of class C* on D.

Assignment 24 (Due November 21) Prove that a transformation of class C'! is con-
tinuous.

Theorem 21.2 (Theorem 10 on page 344 of Buck) LetT : D — R™ be a trans-
formation of class C' on an open set D C R™. Then'®, for any p, € D,
lim IT(p) — T(po) — Jr(po) x (p —po)'| _
p—po |p — p0|

18Be careful. Some authors (including Buck) define the Jacobian to be what I am calling Jacobian
determinant. Others, like me, who are sensible, distinguish between the two definitions: Jacobian
matrix and Jacobian determinant

19G¢trictly speaking, T'(p) and T'(pg) are row vectors and Jr(pg) X (p—po)? is a column vector, so to
be perfectly truthful this should be written as lim,_,,, ‘T(p)t7T(p°)‘tpi‘]p7;(‘p°)x(p7p°)
we won’t do this as it makes the notation cumbersome and it is clear that we are talking about
vectors, and it doesn’t matter if we call them row vectors or column vectors.

t
L= 0. However,
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The meaning here is: for every e > 0, there exists 6 > 0 such that

T(p) — T(po) — Jr(po) x (p — po)|
\p - po‘

< € whenever p € B(pg,d) N D. (19)

Proof: Let T = (f!,---, f™). By Theorem 19.2, for each 1 <i < m

‘fi(p) - fi(po) - Vfi(po) ) (p —P0)|

— 0 as p — po. (20)
p — pol

Using the notation R;(p) = f'(p) — fi(po) — V.fi(po) - (p — po), (20) becomes

‘Ri (p) |

— 0, (21)
\p - P0|

and we have

T(p)=Tpo) = (f'(») = f'po),-, () = " (m0))
= (Vf'(po) - (p—po), -+, Vf™(po) - (p — o)) + (Ri(p), -+, Ruu(p))
f

= (s ). 3 )y )+ () ).
j= j=
On the other hand,
g}ﬁ (po) %(po) r) — Y
Jr(po) X (p—po)' = o (70) i CONINE
) . Uiy | Ll
= (s ) 3 )y — o))
j= j=

Now let us subtract the last two equations. We get

T(p) — T(po) — Jr(po) X (p— po)' = (Ri(p),- - . Rin(p)).

Now use (21) to obtain

T (p) — T(po) — Jr(po) x (p — po (Z

1/2
) —0
\p—p0|

as p — po. ([

\p po

22 Friday November 11, 2005—Holiday

(Veteran’s day)
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23 Monday November 14, 2005—Chain rule I. The
one-dimensional case

We begin our by recalling the statement and proof of the one-dimensional chain
rule that we encounter as freshmen (or as seniors in high school) and use every day
(sometimes without realizing it). Here, we are very lucky, since we shall write the
proof in one-dimension in such a way that the proof in arbitrary dimensions of the
chain rule for transformations will require only notational changes. The key idea
underlying this scheme is to write every formula “horizontally”, or on a line. In other
words, you can divide by numbers, but not by vectors.
We denote the composition of functions by f o g, that is,

foglx)=flg(x)).
In order for this to make sense, the range of g must be a subset of the domain of f.

Theorem 23.1 (One-dimensional chain rule) Let g be a real valued function de-
fined on an open interval containing a € R and suppose that g is differentiable at a
with derivative ¢'(a). Let f be a real valued function defined on an open interval
containing g(a) and suppose that [ is differentiable at g(a) with derivative f'(g(a)).
Then f o g is differentiable at a with derivative

(f e g9)'(a) = f'(g(a)) g'(a).
Proof: Since g is differentiable at a, Ve’ > 0,36" > 0 such that
19(2) — 9(a) — g(@) (& — )| < v —a| if|r—a] <. (22)
Since f is differentiable at g(a), Ve’ > 0,36” > 0 such that
f(y) = flg(a) = f'(g(a)(y — g(a))| < €'ly —gla)] if [y —gla)] <" (23)
We need to prove: Ve > 0,39 > 0 such that
() — F(9(@) — Fo(@)g @)z —a) < ez —al if[s—al <5 (24
Since ¢ is continuous at a, 39, > 0 such that
lg(z) — g(a)] < " if |z — a] < 0. (25)
Using (25), we may replace y in (23) by g(x) to obtain
£ (9(x)) = f(g(a)) = f'(9(a))(9(x) — g(a))| < €"|g(x) — g(a)] if |z —af < b (26)
Now set ¢ := min{d,, d'} and n(z) := g(x) — g(a) — ¢'(a)(z — a) so that
g(x) = g(a) = ¢'(a)(z — a) + n(z) (27)
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and by (22),
n(z)| < €|z —al if |z —a| < 0. (28)

Now substitute (27) into (26) (in two places!) and set
A= f(g(z)) — flg(a)) — f'(g(a)]g'(a)(z — a) +n(z)] (29)
to obtain from (26)
Al < €'|g'(a)(x —a) +n(z)| if |z —a| <0. (30)
Finally, if |z — a| < 8, we have,

1 (9(x)) = f(g(a)) = f'(g(a))g'(a)(z — a)]

= A+ f'(g(a))n(x)| (by (29))

< 1AL+ (g(a)n(x)]

< @lg@)lle—al + @]+ Fe@)n@] (by (30)
< [l @]+t @)l —al (by (28))

< €z —al,

the last step provided we simply choose €' and €” so that [¢”|g'(a)|+€"€'+]f'(g(a))|€'] <
e. This proves (24). O

24 Wednesday November 16, 2005—Coordinate-
free definition of derivative

24.1 Composition of transformations

We now consider composition of transformations and the chain rule in arbitrary di-
mensions.

Definition 24.1 Let T be a transformation defined on a subset A of R" with T'(A) C
R™. Suppose that S is a transformation defined on a subset C of R™ with S(C') C R*.
We suppose that C' C T'(A). Under these circumstances, the composition of S and T
is the transformation S o T (also denoted® simply by ST) defined by

SoT(p)=STk) ((eA.

EXAMPLE: If T'(x,y) = (xy, 2z, —y) and S(z,y,2) = (x—y,yz), then ST (z,y) =
S(T(z,y)) = S(zy,2z,—y) = (zy — 2z, —2zy). In this case, T'S is defined and
TS (z,y,2) =T(S(r,y,2)) =T(x —y,yz) = ((r — y)yz,2(x — y), —yz). Note that in
this case, ST # T'S.

20T here is some logic to this notation: fg (in place of f o g) can be confused with the ordinary
product of the two functions f and g, whereas S7T' cannot, because you cannot multiply vectors
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Theorem 24.2 (Theorem 3, page 333 of Buck) If S : A — R™ is a transfor-
mation which is continuous at a point pp € A C R", and T : B — RF is a trans-
formation which is continuous at the point S(py) € B C R™, then the composition
ToS:A— R is continuous at the point py.

Assignment 25 (Due November 28) Prove Theorem 24.2.

24.2 Coordinate free definition of derivative

Before stating the general chain rule we must give a “coordinate-free” definition of
derivative and discuss some of its properties.

Definition 24.3 (Coordinate-free definition of derivative) Let 7' be a trans-
formation defined on a subset A of R™ with T(A) € R™. We say that T is dif-
ferentiable at py € A if there exists a linear transformation L : R” — R™, such

that T T I
) Tw) L py)
p=po [P — pol

We denote L by T"(pg) (this is justified by Assignment 26) and call it the derivative

of T at py. (Other names for this are total derivative, differential, Frechét derivative,
; other notations are dT'|,,, DT (py), - - .)

= 0. (31)

Assignment 26 (Due November 28) Prove that, for a fized py, at most one linear
transformation L can satisfy (31). (This is the same as Exercise #10, page 352 in
Buck)

Since at most one linear transformation can satisfy (31), the notation T"(pg) is jus-
tified, that is, 7" is a function (single valued, or well-defined) with domain {p € A :
T is differentiable at p}, which has its values in the set of all linear transformations
from R™ to R™.

The next three remarks can be thought of as examples or as informal exercises.
Each one is a special case of its successor.

Remark 24.4 If m = 1 and n = 1, then a transformation T is just a function
f:A— R, where A C R. In this case, if [ is differentiable at xq, that is, f'(zo)
exists, then the transformation T is differentiable at xo, with derivative T'(xy) which
is the linear transformation L : R — R given by L(z) = f'(xo)x. (What is the
justification for this?)

Remark 24.5 If m = 1 and n > 1, then a transformation T is just a function
f: A— R, where this time A C R". In this case, if f is of class C' on an open set
containing py, then the transformation T is differentiable at py, with derivative T'(py)
which is the linear transformation L : R™ — R given by L(p) = V f(po) - p. (What is
the justification for this?)
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Remark 24.6 If m > 1 and n > 1, then a transformation T is just a function
T : A — R™, where A C R". In this case, if T is of class C' on an open set
containing py, then the transformation T is differentiable at py, with derivative T'(py)
which is the linear transformation L : R" — R™ given®' by L(p) = Jr(po) X p'.
(What is the justification for this?)

We now see one reason for introducing the coordinate-free definition of the deriva-
tive of a transformation 7. In the first place, it is more general than the “coordinate”
definition given by the Jacobian matrix Jr. For, according to Remark 24.6, if T" is of
class C!, that is, all the first order partial derivatives exist and are continuous, then
T is differentiable with derivative T'(py) = Jr(po). On the other hand, for a differ-
entiable transformation, the first order partial derivatives of its coordinate functions
all exist (see the next Assignment), but they are not necessarily continuous.

Assignment 27 (Due November 28) If T = (f',..., f™) is a differentiable trans-
formation at pg, then the partial derivatives %(po) exist for all 1 < j < n,1 <
J

i < m. In other words, the Jacobian matriz Jy(py) exists. (Hint: In the definition
of partial derivative, let p = py + te; where t € R and ey = (1,0,...,0), ey =
(0,1,0,...,0),..., en=(0,...,0,1)).

24.3 What the second midterm will cover

Assignments: Assignments 8-24
Text pages covered: %? 72-74, 81-85, 89-93, 109-110, 127-131, 328-333, 341-344

Lecture Material: 23

e Continuous real valued functions, continuous image of a compact set (Oct
17)

e Continuous functions and sequences, extreme value theorem (Oct 19)

e Closure of a set, continuous functions on compact sets are uniformly con-
tinuous (Oct 24)

e Extension theorem for functions (Oct 28 and 31)

e Differentiability implies continuity for functions (Nov 2)
e Linear approximation (Nov 4)

e Properties of transformations (Nov 7)

e Differentiability implies continuity for transformations, linear approxima-
tion for transformations (Nov 9)

21Recall that p’ is the transpose of the row vector p and that strictly speaking L(p) is a row vector
and Jp(po) x p' is a column vector. As stated in an earlier footnote, we shall ignore this notational
inconsistency since it does not cause any confusion

221 suggest you rely on these notes rather than on these pages of the text

23The second midterm is a take home midterm which will focus on the first four of these items;
the last four items are covered in the Assignments which are due on November 21
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25 Friday November 18, 2005—Chain rule II. The
general case; applications

25.1 Proof of the chain rule

We are now ready to prove the chain rule for composition of transformations. We
only have to assume that the transformations are differentiable (not necessarily of
class C'). There is very little work to do, in fact, this proof is a word processor’s
dream—just make the notational changes to the proof, already printed above, of
Theorem 23.1.

Theorem 25.1 (Chain Rule,Theorem 11, page 346 of Buck) LetT : D — R™
be a transformation which is differentiable on an open set D C R"™, and let S : £ —

R* be a differentiable transformation on an open subset E of R™ containing T'(D).
Then S o T is differentiable on D, and if p € D, then

(SoT)(p) = S"(T(p) o T'(p)-

To make life simpler, we shall isolate two lemmas, which are themselves of inde-
pendent interest. We first met Lemma 25.2 in Assignment 21.

Lemma 25.2 (Theorem 8,page 338 of Buck) A linear transformation L from R"
to R™ is continuous. In fact, L is uniformly continuous and there is a constant C
such that |L(p)| < C|p| for every p € R™. More precisely, if L is given by an m X n
matric A = [ijl1<i<mi<j<n as follows:

n n m
L()_xje;) = > x;L(e;) where Le; = A X e = > age;
7=1 7=1 =1

7

and e; = (1,0,...,0), eo =(0,1,0,...,0),..., e, = (0,...,0,1) is the usual basis for
R"™ (and ey, ..., e, is the usual basis for R™!), then

Lp) < (323 ai) .
i
Proof: With p =377, z;e;,

L(p) = >_x; 3 aijei = ) _(D_wjaij)es,

yi [

so, by the Schwarz inequality,

L) = Y1 ma < Y (a3 ad) = (Y a?)lpl?. ©

J J

Lemma 25.3 (Differentiability implies continuity II) A transformation which
15 differentiable at a point py is continuous at that point.
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Proof: We know that

lim |T(p) - T(Po) - T'(po)(P - Po)‘

=0.
P=po lp — pol

Let € = 365. Then there exists a > 0 such that

| 7' (p) = T(po) — T"(po)(p — po)
[P — Do

‘\<365f0r D — po| <.

Writing this “horizontally”, you get
T(p) — T(po) = T"(po) (p — po)| < 365|p — pol for [p — po| < 4.

Now write T'(p) —T'(po) = T'(p) — T'(po) — T"(po) (p — po) +T"(po)(p — po) to arrive at

T(p) =T(po)l < [T(p) = T(po) = T'(po)(p = po)| + |T"(po) (p — po)|
< 365[p — po| + Clp — po| = (365 + C)Ip — pol-
(The constant C' comes from Lemma 25.2.) Thus T is continuous at py. O

Question: What is the difference between Lemma 25.3 and Assignment 24.

In the proof of Theorem 25.1 which follows, the names of the characters were
changed to protect the innocent. Any similarity with any characters, living or dead,
is purely intentional.

Proof of Theorem 25.1 (Chain Rule): Let py € D. Since T is differentiable
at pg, Ve' > 0,39" > 0 such that

T(p) = T(po) = T"(po) (p = po)| < €lp—pol if |p—pol <" (32)
Since S is differentiable at T'(py), Ve” > 0,36"” > 0 such that
1S(q) = S(T(po)) — S"(T(po))(q — T(po))| < €"lg —T(po)| if ¢ = T(po)| <" (33)
We need to prove: Ve > 0,4 > 0 such that
|SoT(p) —SoT(po) — S (T(po)) o T"(po)(p — po)| < €elp—po| if [p—po| < 6. (34)
By Lemma 25.3, T is continuous at pg, so 36. > 0 such that
T (p) — T(po)| < 0" if [p — po| < 0. (35)
Using (35), we may replace ¢ in (33) by T'(p) to obtain
1S(T'(p)) — S(T(po)) — S"(T(po))(T'(p) — T(po))| < €"|T(p) — T(po)| if Ip — po| < b
Now set ¢ := min{d.,d'} and n(p) :=T(p) — T'(po) — T'(po)(p — po) so that 0

T(p) — T(po) = T'(po)(p — po) + n(p) (37)
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and by (32),

In(p)| < €lp— pol if [p — po| < 4. (38)
Now substitute (37) into (36) (in two places!) and set
A(p) := S(T(p)) = S(T(po)) = S"(T(po))[T"(po) (p — o) + 1(p)] (39)
to obtain from (36)
[AP)| < €"[T"(po) (p — po) = n(p)| if |p— po| <. (40)

Finally, if |p — po| < ¢, we have,

1S(T(p)) — S(T(po)) — S(T(po) o T"(po)(p — po)|

= [A(p) + S"(T(po))n(p)] (by (39))

< [A(p)|+ S (T (po))n(p)|

< €"[T'(po)(p — po)| + €"n(p)| + [S"(T(po) )n(p)] (by (40))

< "Cilp — pol + €"€'|p — po| + Cuoé' |p — po (by (38) and Lemma 25.3)
< ¢€|p—pol,

the last step provided we simply choose € and €’ so that [¢'C| +€"€' + Cq€’] < €. This
proves (34). 0

The power of Theorem 25.1 is that by setting m = n = k = 1 you get the one-
dimensional chain rule (Theorem 23.1), and by setting m = k = 1 and leaving n > 1
you subsume the discussion of the chain rule in [Buck,section 3.4]. To make this last
statement really accurate we need to discuss the difference between a transformation
being differentiable and being of class C''. This was already broached in an earlier
assignment.

First, let’s have some fun with coordinates in the setting of the chain rule. Let
T = (fY....,f™), S = (¢%...,¢%), and SoT = (h',..., h*) where, for 1 < i <
m,1 <j<k1<r<k,

ff*D—-R, ¢:E—=R,andh": D —R.
Since

SoT(p) = S(T(p))=5(f'(p)....["(»)
= (@' @) "W). g" (), (D)),

we see that h"(p) = ¢"(f'(p),..., f™(p)) for 1 < r < k. Using this you should have
no problem with the next assignment.

Assignment 28 (Due November 28) Let T be a transformation which is of class C*

on an open set D, and let S be a transformation of class C'!' on an open set containing
T(D). Then SoT is of class C' on D.
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25.2 Baby chain rule

The following is the “coordinatized” version of the chain rule. Notice that it requires
the stronger assumption of the transformations being of class C', not just differen-
tiable. Notice also that there is nothing to prove, given Theorem 25.1, Remark 24.6,
and Assignment 28.

Corollary 25.4 Let T be a transformation which is of class C* on an open set D,
and let S be a transformation of class C* on an open set containing T(D). Then
SoT is of class C' on D, and if p € D, then

Jsor(p) = Js(T'(p)) x Jr(p).

As an illustration of the power of Corollary 25.4, we prove the following theorem
from [Buck,section 3.4].

Theorem 25.5 (Baby chain rule,Theorem 14, page 136 of Buck) Let F'(t) =
f(x,y), where x = g(t), y = h(t), the functions g, h are assumed to be of class C' on
an open interval containing ty € R, and the function f is assumed to be of class C*
in an open ball with center py = (o, yo) = (g(to), h(to)). Then F is of class C* on an
open interval containing ty € R, and for t in that interval,

F'(t) = 5L (g(2), h()g'(t) + 35 (9(2), h())H'(t).

Proof: Set T'(t) = (g(t),h(t)) and S(z,y) = f(x,y). Then F(t) = S oT(t), and by
Corollary 25.4,

F'(t) = Jp(t) = Jsor(t) = Js(T'(t)) x Jr(t)

Assignment 29 (Due November 28) Let F(x,y) = f(g(x,y),h(z,y)), where g :
R? — R and h : R?> — R. Use Corollary 25.4 to prove that

Fi(z,y) = filg(@,y), h(z, y)) g1 (z. y) + folg(@,y), bz, y)) (2, y)

and
Fy(z,y) = filg(®,y), Mz, y))g2(z, y) + fa(g(x,y), bz, y))ha(z, y).
(Compare using Corollary 25.4 with the method on page 137 of Buck.)

Assignment 30 (Due November 28) [Buck, §7.4 page 351, #2.5,(7 or 8)](three prob-
lems)
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26 Monday November 21, 2005—Mean value the-
orems; local invertibility

26.1 Mean Value Theorems

Up to now we have used the mean value theorem in one variable (Theorem 18.1).
But we mentioned the mean value theorem in several variables above (see the first
question at the beginning of the lecture for November 4), so we might as well talk
about it. There are two several-variable versions, one for functions and one for trans-
formations. We shall state and prove both of them in what follows, and use the one
about transformations to give an alternate proof to Theorem 21.2 (linear approxima-
tion for transformations). This is just one application, and there are many others.
For example, we shall use it to prove the local invertibility of a C! transformation
(Buck, Theorem 14, page 355)—see Theorem 26.3 below.

We note that the version for functions (Theorem 26.1), nicknamed the “Little
Mean Value Theorem” will be used in the proof of the version for transformations
(Theorem 26.2), nicknamed the “Big Mean Value Theorem”. Also, the “Baby Chain
Rule” (Theorem 25.5) is needed in the proof of the “Little Mean Value Theorem”?*.

Theorem 26.1 (“Little” Mean Value Theorem, Theorem 16,page 151 of Buck)
Let f: B(py,r) — R be of class C* on a ball B(py,7) C R™. Then for any two points
p1, P2 € B(po, 1), there is another point p* on the line*® segment L := {tpy+ (1 —t)p; :

0 <t <1} connecting py and py such that

f(p2) = f(p1) = V(") - (p2 — p1)-
Proof: Define a function F': [0,1] — R by
F) = f(Ap2+ (1 = XN)p1).

We note that F' = f o ¢ where ¢ : [0,1] — R" is the function ¢(N) = Aps + (1 — N)py
and that Jy(\) = (p2 — p1), VA € [0, 1].
By the one-variable mean value theorem, since f(py) — f(p1) = F(1) — F(0),

f(p2) = f(pr) = F' (o) (41)

for some Ay € (0,1).
Letting p* = ¢(Ag) we get by the “coordinatized” chain rule (Corollary 25.4),

F'()\o) = Vf(¢()\0)) X J¢()\0) = Vf(¢()\0)) X (p2 - pl)t = Vf(P*) ) (P2 - p1)- (42)

Compare (41) and (42). O

24We have a little and big mean value theorem. Question: what is the “tiny mean value theorem”?
Z5Note that this line segment is a subset of B(pg,r)
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Theorem 26.2 (“Big” Mean Value Theorem, Theorem 12,page 350 of Buck)
Let T : D — R™ be a transformation of class C* on an open set D C R™. Let
P, p" € D and suppose that the line segment L := {tp' + (1 —t)p" : 0 <t <1} is a
subset of D. Then there exist points p}, ..., p5 € L such that*

T(pl/) _ T(pl) — M % (p/l _ pl)t7

where M is the matriz (D;f(p}))1<i<mi<j<n, that is™*8,

1 * 1 *

g_%(%) %(M)

Vo | e 5
L) o S (oh)

Proof: Apply the Little mean value theorem (Theorem 26.1) to each f': D — R to
get points p; € L such that

Fr@") = f0) =V e —p) 1<i<m) (43)

Now write down the coordinates of the vector T'(p") —T'(p'), thinking of it as a column
vector, and use (43):

T -TW) = (f'@"), . 0" = ('), . )
= (Ff'&") - r'e), . e - e))
= (V') - " =1, V() - (0" =)

On the other hand,

Of' (.« of! /.«
T%(pl) %(pl) pll'—p'l
Of: * af" *

M x (pll . pl)t _ 3_51 p2) cee %(Zb) « p,2/ - pIQ
T L
Vfipi) Py — i Vi) - (0" —p)
VTP P~ P V() - (0" = 1)

Now compare the last two displayed equations. O

For no particularly good reason, we now give an alternate proof to the approxima-
tion property of the Jacobian matrix (Theorem 21.2).

Second Proof of Theorem 21.2: By the Big mean value theorem (Theo-
rem 26.2), T'(p) — T'(po) = L* x (p — po)" where L* := (D; f'(p;)). Look at the matrix

26Note that in the following equation, vectors of the form T'(p) are column vectors
2THow does M differ from the Jacobian matrix of T'?
*Note that M = (Vf'(p}), -, V. " (®},)"
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entries of L* — Jr(py) = (ay;); they are a;; = D;f'(p;) — D;f'(py). By Lemma 25.2,
for all column vectors ¢ € R",

m n 1/2
[(L* = Jr(po)) % q| < (ZZUWQ) ql.
Since T'(p) — T (po) — Jr(po) X (p—po)t = (L* — Jr(po)) X (p — po)’, we have,
T(p) = T(po) — Jr(po) x (p — po)’| (L = Jr(po)) x (0 — po)’|

<
Pl P

1/2
_ (Sata)?) oo
B |P - po\

1/2
= (Z(Djfi(pf) - Djfi(PO))2>
i,j
— 0 as p— pg,
because, as p — py, each p; — py and T is of class C. 0

26.2 The local invertibility theorem

The following simple one-dimensional illustration gives the flavor of the statement
and proof of the local invertibility theorem, Theorem 26.3. Let f : D — R be
differentiable on an open set D C R and suppose that f'(x) # 0 for every x € D.
Then f is locally one-to-one on D, that is, for every xy € D there exists 6 > 0 such
that B(zg,0) C D and f is one-to-one on B(zg,d). Proof: Since D is open, given
xo € D, just choose any interval I = B(xg,d) C D and apply the one-variable mean
value theorem: if 2/, 2" € I, then for some T between z’ and x",

f@") = f@) = f(@) (2" = a'). (44)
If f(2") = f(z'), then since f'(z) # 0, (44) implies 2" = 2.

Theorem 26.3 (Local invertibility, Theorem 14,page 355 of Buck) LetT : D —
R" be a transformation of class C' defined on an open set D C R™ and suppose that®®

det Jp(p) # 0 for all p € D.

Then T is locally one-to-one in D, in the sense that for every py € D, there is a § > 0
such that B(pg,d) C D and the restriction of T to B(pg,d) is one-to-one on B(pg,0).

Proof: Consider the open® set Q:= D x --- x D C R" x --- x R". The set Q is a
subset of R™’. Here is the trick: define a function F: Q — R by

F(pi,...,pn) = det[Djfi(pi)] for pr,...,p, € D.

2note that Jp(p) is an n by n matrix, so its determinant makes sense
U (p1,...,pn) € D x --- x D, let B(p;,86;) C D and let § := min{dy,...,6,}. Then

3

B((plalpn) 5)CDXXD

3
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We note first that F' is a continuous function on €2 since, each T being of class
C*, all of the functions D, f* are continuous, and F', being a determinant, is a sum of
products of these functions.

We note next that the value of F' at a special point of Q of the form (p,...,p) is
given by F(p,...,p) = det[D; f'(p)] = det Jr(p) and so for every p € D, F(p,...,p) #
0.

It follows from the last two paragraphs that, given a point, let’s call it py now,
there is a ¢ > 0 such that B(py,d) C D and

F(p1,...,pn) # 0 for every (p1,...,pn) € B(po,d) X -+ x B(po, ). (45)

CLAIM: T is one-to-one on B(py, d)

To prove this claim, we use the Mean value theorem for transformations, The-
orem 26.2. Let p',p" € B(pg,0) and suppose that T'(p') = T'(p"). We shall prove
that p' = p”. Now the line segment L connecting p' and p” lies in B(py, d) and the
Mean value theorem tells us that there are points pj,...,p; € L such that, with

M = [D; f'(p})];

TE") =T@)=Mx " —p). (46)
Now det M = F'(p7,...,p;) # 0 by (45), so M is non-singular. Since we are assuming
T(p") = T(p'), (46) shows p" —p' = 0. o

27 Tuesday November 22, 2005—Open Mapping
Theorem

In the next theorem, we shall use the following elementary “critical point” result.

Lemma 27.1 (Theorem 11,page 133 of Buck) Let f: D — R be of class C on
an open set D C R" and suppose that f has a local minimum at a point po € D. Then
all the first order partial derivatives of f vanish at py: D;f(po) = 0 for 1 < j < n.
Stated another way, V f(py) = 0.

Proof: The meaning of “local minimum” is that there exists a ball B(pgy,r) C D such
that f(p) > f(po) for all p € B(py,r). By definition,

D; f(py) = lim f(po + tei-) _ f(po)_

(47)

In (47), the numerator is non-negative whenever py + te; € B(py,r). Thus if we let
t approach zero through positive values, we get D;f(py) > 0, whereas if we let ¢
approach zero through negative values, we get D, f(po) < 0. Thus D;f(p) =0. O

We shall also use the following fact about compact sets.
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Assignment 31 (Due December 2) Prove that if K is a compact set in R™ and
q ¢ K, then
inf{|[p—¢q|:p € K} > 0.

Theorem 27.2 (Open mapping,Theorem 15,page 356 of Buck) Let T: D —
R" be a transformation of class C' defined on an open set D C R™ and suppose that

det Jr(p) # 0 for all p € D.
Then T'(D) is an open subset of R".

Proof: Let ¢y € T(D). Choose a point py € D such that ¢qo = T'(py). By Theo-
rem 26.3, there is a § > 0 such that T is one-to-one on B(pg,20) C D. Thus T is
one-to-one on the closed ball N := {p € D : |p —py| < §} C D. The boundary
C={peD:|p—py =0} of Nisacompact set and therefore so is its image T'(C),
and clearly ¢y ¢ T'(C). Thus by Assignment 31, d := inf{|qy — ¢| : ¢ € T(C)} > 0.

CLAIM 1: B(qy,d/3) C T(D).

This claim shows that T'(D) is an open set. Thus we are done if we prove this
claim. We shall show that each point ¢; € B(qg, d/3) belongs to T'(D). So fix a point
q1 € B(qo,d/3). Define a function ¢ : N — [0, 00) by the rule: ¢(p) = |T(p) — ¢:1|*
The function ¢ is continuous on the compact set /N, so by the extreme values theorem,
it attains its minimum at some point, call it p* € N. Thus ¢(p) > ¢(p*) for all p € N,
which can be expressed as:

VpeN, [Tp)—al >ITF) - al (48)

CLAIM 2: p* € int N, that is, p* & C.

To prove claim 2, note first that, by the definition of d, for allp € C, |T'(p) —qo| > d,
and thus by the backwards Schwarz inequality, for p € C,

T(p) =@l > 1T(p) = qol — lgo — | > d —d/3 =2d/3. (49)

Note that T'(po) = qo, and |go — ¢1| < d/3. Suppose now that p* € C. Then we would
have on the one hand, by (49), |T'(p*) — ¢1| > 2d/3, and on the other hand, by (48),
T (p*) — 1] <|T(po) — q1| < d/3, a contradiction, proving claim 2.

By claim 2, p* is an interior point of N so that by Lemma 27.1, D,¢(p*) = 0 for
1<j<n.

We now need to write down some explicit formulas for the function ¢. At this point,
for convenience, we assume that n = 2. We can write T'(z,y) = (f(z,y),9(z,v)),
where f and g are the coordinate functions of T, and if we set ¢; = (a,b) and
p = (x,y), we have

o(z,y) = (f(z,y) — a)® + (g(z,y) — b)*
2 (w,y) =2(f (2, ) — a) 5 (w, ) + 2(g(x, y) — b) 52 (x, y)
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and so (plugging in p*)
0=2(f(p") — a)5L(r") +2(9(p*) — ) (¥")

0=2(f(p") — )5 (p") +2(g(p") — B)52(p").

The matrix of coefficients of this two by two system of linear equations is J;(p*), which
has a non-zero determinant by assumption. Thus f(p*) —a = 0 and g(p*) — b = 0,
that is

T@*) = (), 90") = (a.b) = q,
and thus ¢; € T(D), as required. O

28 Friday November 25, 2005—Holiday

(Thanksgiving)

29 Monday November 28, 2005—Inverse Function
Theorem

29.1 Automatic continuity of the inverse

The special case of Theorem 29.2 below, in which m = n =1 and D is a compact
interval, is proved in [Ross 18.4,18.6]. Before stating and proving Theorem 29.2, let’s
state a very simple and very useful lemma.

Lemma 29.1 A sequence of points in R" converges to a point p € R™ if and only if
every subsequence of the given sequence has a subsequence which converges to p.

Assignment 32 (Due December 7 the day of the final exam) Prove Lemma 29.1.

Assignment 33 (Due December 7 the day of the final exam) If a transformation
preserves convergent sequences, then it is continuous. (Same proof as [Buck, Theorem
2,page 74].)

The following theorem in the case of functions was a problem on the take-home
midterm.

Theorem 29.2 (Automatic continuity of inverse,Theorem 13,page 353 of Buck)

Let T : D — R™ be a continuous one-to-one transformation defined on a compact set
D C R"™. Then the inverse transformation T~ (which exists since T is one-to-one)
is continuous.
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Proof: Let p; be a sequence from D, let p € D and suppose that lim_,., T'(p) =
T(p). According to Assignment 33 all we need to do is prove limy_, o, p = p. For this
we shall use Lemma 29.1. So let pg; be a subsequence of p,. By the BW property
there is a further subsequence py;, and a point ¢ € D such that

li - =q.

fim pe, = g
Since T is continuous, limyoo T'(pr;, ) = T'(q). But T'(py;,) is a subsequence of T'(py) so
T'(px;,) = T(p). Thus T'(p) = T'(q) and since T' is one-to-one, p = ¢. By Lemma 29.1,
limg, p, = p. O

29.2 The inverse function theorem

The inverse function theorem (Theorem 29.4 below) is the n-dimensional analog of
the following result in one-variable which we state here for comparison purposes.

Theorem 29.3 (Theorem 29.9,page 165 of Ross) Let f be a one-to-one contin-
uous function on an open interval I C R and let J = f(I). If [ is differentiable at
xg € I, and if f'(xo) # 0, then f~' is differentiable at f(xo) and

b
f'(wo)

Theorem 29.4 (Inverse Function Theorem, Theorem 16,page 358 of Buck)
Let T : D — R" be a transformation of class C* defined on an open set D C R™ and
suppose that

(f71)(f (o)) =

det Jr(p) # 0 for allp € D3

Suppose also that T is one-to-one on D. Then the inverse T—' (which exists and is
defined on the open subset T'(D) C R") is of class C' on T(D) and

Jr1(T(p)) = [Jr(p)]~" for all p € D. (50)

Proof: Since T is of class C', by Theorem 21.2, (considering T'(p) and T (py) as
column vectors)

T(p) — T(po) = Jr(po) x (p — po)" + R(p) (51)

where R
lim [R(p)|

pP—po |p — p0|

By assumption det Jr(py) # 0 so Jr(py) is non-singular. Multiplying (51) (on the
left) by [Jr(po)] !, you get

[J7(po)l " (T'(p) — T(po)) = (p — o) + [Jr(po)| " (R(p))- (53)

3150 that Jr(p)~! exists

(52)
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Let us now denote by ¢ and g, the column vectors which are the images of p' and pj
under T'; that is ¢ = T(p') and ¢y = T(p})), so that p' = T'(q),py = T *(qy). Then
by (53),

T q) =T a0) = (p = po)" = [Jr(po)] " (T(p) = T(po)) — [Jr(po)] " (R(p)),
that is (eliminating the middle person (p — py)?),
T ) =T '(a0) — [Jr(po)] " (T(p) — T(po)) = ~[Jr(po)] '(R(p)).  (54)
If we can show that the right hand side of (54) satisfies

oo D)) (R ()

149 g — qof

=0, (55)

then (54) will say that (50) is true. So we need to prove (55).
First recall that by Lemma 25.2 there is a constant M such that |[J7(po)] " (u)| <
M |u| for all w € R™. Therefore,

[ r(po)] '(R(p))| o M|R(p)

< : (56)
14— qo 14 — qo|
By (53), (p —po)" = [Jr(po)| (T (p) — T(po)) — [Jr(po)] =" (R(p)) so
P —pol < Mlg — qo| + M|R(p)|, (57)
and by (52),
|R(p)| < €|lp — po| for |p —po| < (0 depending on ). (58)
Therefore, (57) becomes
[p — pol < Mg —qol + Me|p — pol,
or,
(1 —eM)lp —po| < M|q — qol,
that is,
|p*p0\§1_€M|Q*QO\f0r [p — pol < 0. (59)
Taking recriprocals in (59) you get
1 M 1
for |p — po| < 0. (60)

<
lg—al — 1 —eM [p—pol
Now by (56),(60), and (58), we have, for |[p — pg| < 4,

[Jr(po) " (R(p))| M eM?
lq — qo] S]M‘R(p)‘\p*p[ﬂ(l—eM) = 1 eM’
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The quantity
eM?
1—eM
is “just as good” as € (since it goes to zero as € does). Therefore (55) holds. Note
that we have used the fact that 7' is continuous (Theorem 29.2). That is, if ¢ — o,
then p' = T 1q — T 1qy = ph, so |R(p)|/|Ip — po| < €if [p— po| < 4.

We still need to prove that 7' is of class C'. To see this, just notice that the
matrix entries of Jy(p) are continuous functions by assumption and therefore the
entries of the inverse matrix Jr(p)~! are continuous functions (Why?). By (50) then,
the entries of Jr—1(7T'(p)) are continuous functions of ¢ = T'(p). O

Assignment 34 (Due December 7) [Buck, §7.5,page 361,#11,14]

30 Wednesday November 30, 2005—Implicit Func-
tion Theorem

30.1 Motivation

In much of analysis, the linear functions are the easiest to work with®?. Let F': R" —
R be a linear function, that is, there are real numbers ay, ..., a, such that

n
F(J’Il, .. ,Jl‘n) == Zaj:rj.
j=1

Note that for such a function, gTFk(ml, ..., T,) = ag, and moreover, if a; # 0, we can
solve the equation F(zy,...,2,) = 0 for x4 in terms of the other n — 1 variables.

Explicitly,

Thus we have seen that we can easily solve for one of the variables in terms of the
others if the partial derivative with respect to that variable does not vanish. This is
the idea behind the implicit function theorem for non-linear functions.

For a second example let F'(z,y) = 2* +y*> —1 for (z,y) € R*so that F: D - R
where D = R?. Note that %—Z(m, y) = 2y.

Suppose that (zg,yy) € R? is such that F(xq,y) = 0, that is, (zo, yo) is a point on
the unit circle. We wish to find a function ¢, defined in an interval (xg—r, zo+7), such
that y = ¢(z) is a solution of the equation F(x,y) = 0 for every x € (g — r,zo + 1),
that is, 22+ (¢(z))?—1 = 0 for every x € (xg—1,zo+71), and ¢(z9) = yo. Moreover we
want the function ¢ to have a continuous derivative at every point of (zg — r, 29+ ).

In this example, it is easy to know when such a function exists and it is also easy
to find it. Obviously (draw a circle), we can take r = 1 — |z, and set ¢(z) =

32This is not necessarily the case for linear algebra
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+v1 =22 for v € (xg — r,79 + 7). The only problem arises when |zy| = 1, that is
oF

yo = 0, which is precisely where B vanishes. Another solution is obtained by taking
¢(x) = —v/1 — 22, Before we leave this example, let’s note that we can interchange
the roles of the variables x and y and obtain a function x = 1(y) satisfying, among
other things (¥(y))*+y* —1=0.

Let’s now consider a third example, which is not so easy (correction: impossible)
to solve with our bare hands. Let F(x,y) = x + 2y + 2%y® — 8, for (z,y) € R Note
that F'(2,1) = 0. We wish to find a solution y = ¢(z) of the equation F(x,y) = 0 for
all z in an interval of the form (2 — r,2 4+ r), in such a way that ¢(2) = 1, and ¢ has
a continuous derivative on (2 — 7,2 + r). For this example, it is not clear that there
will be a solution y of the equation z + 2y + 2%y® — 8 = 0 for any x (this is a fifth
degree equation in y for each fixed x). But we are greedy and want even more. We
want a function ¢ which systematically produces a solution ¢(x) to the equation for
a given x, and moreover, we want this function to be continuous, even differentiable,
and furthermore, we want the derivative to be continous.

Let’s return to our second example, that is, F(x,y) = 22 + y* — 1 for (z,y) € R?
so that F : D — R where D = R2. Of course F is a function. Let’s construct a
related transformation Tr : D — R* as follows: Tr(x,y) = (x, F(x,y)). Note that if
we set G(z,y) = x then G and F are the coordinate functions of the transformation
Tp, that is Tr = (G, F'). Hereafter, we’ll just write T instead of Tr.

Assignment 35 (Due December 7) Show that, for F = 2>+ y? — 1, T = Ty is not
one-to-one on D = R? and T(R?) is not an open subset of R?.

Suppose again that (zg,yo) € R? is such that F(zg,y0) = 23 +y2 — 1 = 0, that
is, (zo,%0) is a point on the unit circle. Note that T'(xg,ys) = (x9,0). Finally we
construct the Jacobian matrix of T

wen= (G 300) = (st ge0)

It follows that the Jacobian determinant is

det Jr(z,y) = %—’;(I,y).

30.2 Implicit function theorems

Since we have just introduced most of the ideas in its proof, it seems appropriate now
to state the implicit function theorem.

Theorem 30.1 (Theorem 17,page 363 of Buck,“downgraded” to two variables)
Let F: D — R be of class C' on an open set D C R?, let (xg,y0) € D, and suppose
that F(zo,y0) = 0 and %—’;(xg,yo) # 0. Then there exists a r > 0 and a function

¢ : (vg —r,z9 + 1) = R of class C' on (xg — r,xy + 1), such that ¢(xy) = yo and
F(z,¢(x)) =0 forallx € (xo — 1,20+ 7).

Before going into the proof of Theorem 30.1, let’s reiterate exactly all that it says.
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There is (theoretically!) a function ¢, such that for each x close enough to o,
y = ¢(x) is a solution®® of the equation F(z,y) =0

e As a function of x, ¢ is continuous

Actually, ¢ is differentiable

Actually, the derivative of ¢ is a continuous function*

Question: Can we calculate ¢'(x) by implicit differentiation and the chain
rule??

Proof of Theorem 30.1: Define a transformation 7' = (G, F') by setting G(z,y) =
x. Let py denote (xo,y). Since Jr(py) # 0, by the “local invertibility theorem”
(Theorem 26.3), T is locally one-to-one at py. That is, there is a ball B with center
po such that the restriction of 1" to this ball is one-to-one, so has an inverse trans-
formation T-' : T(B) — B. Since T is of class C', by making the radius of B even
smaller, we may assume that Jr is not zero anywhere in this smaller ball®®. Thus,
if we call this new ball B’, then T is one-to-one on B’ with inverse 7' on T(B’),
and by the “open mapping theorem” (Theorem 27.2), T(B') is an open set . Since
(x0,0) = T'(xg,y0) € T(B'), there is an open ball B((xg,0),r) C T(B'). Let us write
the inverse transformation 7' in terms of its coordinate functions, call them ¢ and
h: T~' = (g, h). We have the relation

(w,y) =TT (2,y) = T~ (T(x,y)) =T ' (z, F(x,y)) = (9(. F(x,y)), h(z, F(x,9)))
for all (x,y) € B'. Therefore, comparing coordinates, for (z,y) € B,

v = g(z, Pz, ) and y = h(z, F(z,y)).
But we also have the relation
(u,v) = ToT ' (u,v) = T(T "(u,v)) = T(g(u,v), h(u,v)) = (g(u,v), F(g(u,v), h(u,v))
for all (u,v) € B((%0,0),r). In particular, u = g(u, v) and

v = F(g9(u,v), h(u,v)) = F(u, h(u,v)). (61)

Substitute for (u,v), any point of the form (x,0) € B((x,0),r). From (61), we

have
0= F(x,h(z,0)) for all |x — x| < 7

Thus, if we define ¢(x) = h(x,0) for |z — x| < r, we have the desired function ¢.

Note that by the chain rule, ¢'(z) = 2%(z, 0) so that ¢ is of class C" on (zg—r, zg+7).

This completes the proof. O

33This already says a lot! If you stop here you got a bargain.

34This statement implies the previous two statements

35Yes, but it is not entirely satisfactory because the answer is in terms of ¢(z)
36What is the reason for this?
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We now state a version of the implicit function theorem in 3 variables. We refer
to Buck for the proof, which is not significantly different from the above proof.

Draw a diagram (=graph) for the next theorem. If that seems difficult, draw a
diagram for the previous theorem first.

Theorem 30.2 (Theorem 17,page 363 of Buck—three variables) Let F': D —
R be of class C' on an open set D C R3, let (vo,y0,20) € D, and suppose that
F(zo,y0,20) = 0 and %—f(xg,yg,zo) # 0. Then there exists a r > 0 and a function
¢ = B((wo,v0),7) — R of class C' on B((wg,y0),7), such that ¢(xg,y0) = 2z and

F("ana ¢(Tay)) =0 fOT all (Tay) < B((mﬂayﬂ)’r)'

It is now easy to state (and prove) a general theorem of implicit function type in
any number of variables. There are no new ideas needed to prove this theorem so we
do not write the proof here.

Theorem 30.3 Let F : D — R be of class C' on an open set D C R", let
(2%, ...,22%) be a point of D, and suppose that

F(29,25,...,2%) = 0 and for some k, 2& (20, 23,... 2°) # 0.

Then there exists r > 0 and a function

¢:B((2),..., 20 1, 2041, 20),7) > R
of class C" on B((2f,...,a)_ 1, a0, 1, ...,x0),r) C R", such that
(.. Ty Ty, Th) = T
and
F(zy, .. xp1,0(x1, o T 1, Tty e oy X))y Thtdy e ooy L) = 0
forall (xy, ..., Tp_1, Tpgr, ... xn) € B((2), ..., 2y, 20, ..., x0), 7).

If we introduce a little notation we can make the last theorem easier to read.

Let ' : D — R be of class C' on an open set D C R", let py =
(2%,...,2%) be a point of D, and suppose that F(py) = 0 and gfk (po) #0

for some k. Let p{ = (a¥,... LTy 1, Xp4qs. .-, xp). Then there exists
r > 0 and a function ¢ : B(p[(]k), r) — R of class C"' on B(p[(]k),r) c R
such that, with p = (z1,...,2,) and p*) = (z1,..., 241, Tppr, ..., T,

we have ¢(p[(]k)) = 2% and F(21,..., 251, 0(p"™), 2441, ..., 2,) = 0 for all
k
p® e B, ).
There are versions of the implicit function theorem in which more than one of the
independent variables xy,..., 2, can be solved in terms of the remaining variables.

The situation is described in [Buck, Theorem 18,page 364|, and the discussion on
page 366 of Buck.

We now present some examples in the form of exercises.
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Assignment 36 (Due December 7) Let F(x,y,2) = 2° +y*+2% — 1 and take a point
(w0, Y0, 20) on the unit sphere in R*: z2 + y2 + 22 = 1, that is, F(zo,yo,20) = 0.

“Prove” that’” z = ¢(x,y) := /1 — 22 — y? satisfies F(z,y, ¢(z,y)) = 0. According

to the implicit function theorem, we need %—l:(:ro, Yo, z0) # 0, that is, 229 # 0, so take,
for exzample py = (1/v/2,0,1/+/2). Now find r > 0 such that

1
(2———=) +@y—-0°<r=2"+y" <1

V2

Assignment 37 (Due December 7) Let F(x,y,2) = 2* + y2° — 3wyz + 2, take the
point (1,0, 1), and note that F(1,0,-1) = 0 and %—5(1,0, ~1) =1 # 0. Conclude
that there exists r > 0 and a function ¢(z,y) of class C' in the ball

‘(xay) - (170)| <r
such that F(x,y, ¢(x,y)) = 0 for all (z,y) with (v —1)* + y* < r?, that is

Assignment 38 (Due December 7) Let F(x,y,z) = sinzy + e* — e, take the point
(x9,0,1), and note that F(xy,0,1) = 0. Also

g_i(x[])o; ]-) = 0; %(xﬂaoa ]‘) = Xy, 88_12:‘(1‘0’0’ 1) =€

What does the implicit function theorem say in this case? Can you solve for any of
the three variables without the help of the implicit function theorem?

Assignment 39 (Due December 7) Let F(z,y,2z) = (sinx)e? + (cosy)e™ + sin z,
take the point (0,7/2,m), and note that F(0,7/2,7) = 0. Also

G0, m/2,m) =e™?, L0, m/2,m) = —1, GE(0,7/2,m) = 1.
By the implicit function theorem, you have
2 = 6(z,) for (3,y) close to (0,7/2),

as well as
v = ¥y 2) for (4.2) close to (r/2,m),
etc. Now let S(x,y) = (x,y, ¢(x,y)) and apply the chain rule to F oS to derive

f%_i(r,y, ¢(Ta y))

99 —
2 () = B o))
and
_8_F(x7y7¢(x=y))
g_i(xay): 8?‘31

E(CU, Y, ¢(JZ‘, y)) -
Assignment 40 (Due December 7) [Buck, §7.6,page 366,#1,2,5]

3"Don’t laugh, you need to assume that 22 + y? < 1
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31 Friday December 2, 2005—Review of course

31.1 COURSE SUMMARY (from Buck)
1.3 Schwarz inequality—Theorem 1

1.5 topology—open,closed,interior,boundary,closure,cluster point

1.6 sequences characterization of closure: Theorem 5

1.8 compactness Bolzano Weierstrass,Heine Borel, Theorem 24,25,26,27.
2.2 continuity—sequential criteria, Theorem 1,2; composition Theorem 5
2.3 uniform continuity on compact sets, Theorem 6

2.4 extreme values Theorem 10,11,13

2.6 extension—Theorem 24

3.3 gradient—D = C:Corollary (page 129), approximation:Theorem 8
3.4 baby chain rule Theorem 14

3.5 little mean value theorem—Theorem 16

7.2 transformations—continuity,compactness Theorem 3,4

7.3 linear transformation-uniform continuity of them, Theorem 8

7.4 coordinate free derivative approximation Theorem 10, chain rule Theorem 11

7.5 inverse functions—automatic continuity of inverse Theorem 13, local invertibility
Theorem 14, open mapping Theorem 15, inverse function Theorem 16

7.6 implicit functions—implicit function theorems, Theorems 17,18

31.2 The four theorems on transformations

We proved these four theorems in class on November 21,22,30. The last one is a
famous one, called the Inverse function theorem. The inverse function theorem is the
key tool in the implicit function theorem, which is the climax of this course, and is a
very useful result in almost any branch of analysis. Even in one variable, the inverse
function theorem is not so easy. We recalled the statement (but not the proof) of the
one-variable result below for motivation (see Theorem 29.3).

Here is a summary of the four theorems. We presented them in a slightly different
order from that of [Buck, §7.6]. We shall give each of these theorems a “nickname”.
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“Automatic continuity of inverse”

Theorem 29.2 ([Buck, Theorem 13,page 353])

Hypothesis

Conclusion

T continuous,one-to-one
on compact D C R”

T~" is continuous

“Local invertibility”

Theorem 26.3 ([Buck, Theorem 14,page 355])

Hypothesis

Conclusion

T is of class C' on open D C R"
and det Jr(pg) # 0

T is locally one-to-one at py

“Open mapping”

Theorem 27.2 ([Buck, Theorem 15,page 356])

Hypothesis

Conclusion

T is of class C' on open D C R"
and det Jr(p) # 0 for all p € D

T(D) is an open set

“Inverse function”

Theorem 29.4 (Buck, [Theorem 16,page 358])

Hypothesis

Conclusion

T is of class C' on open D C R"

T-"is of class C' on T(D)

and det Jy(p) # 0 for all p € D
T is globally one-to-one on D

and (T~

and Jp-1(T(p)) = (J.

D'(T(p)) = (T"(p)

r(p) "

31.3 Functions vs. Transformations
thing to be function function transformation
differentiated f:R—=R f R" - R T:R"—R™
notations for derivative | f'(a) 31, L (p),D;f(p), V(p) T'(p), Jr(p)
differentiability [Ross, 28.2] [Buck, Cor,p129] Lemma 25.3

implies continuity

of these notes

approximation

(13) p.32
of these notes

[Buck, Thm8,p131]

[Buck, Thm10,p344]

algebra of continuity
and differentiation

[Ross, 17.4,28.3]

[Buck, Thm4,p77]

just a
vector space

chain rule [Ross, 17.5,28.4] [Buck, Thm14,p136] [Buck, Thm11,p346]
critical points [Ross, 29.1] [Buck, Thm11,p133] doesn’t make sense

Rolle’s theorem [Ross, 29.2]

Mean value theorem [Ross, 29.3] [Buck, Thm16,p151] Ross, Thm12,p350]
Inverse function theorem | [Ross, 29.9] doesn’t make sense

local invertibility

p-49 of these notes

Buck, Thm14,p355]

automatic continuity
of inverse

[Ross, 18.4,18.6]

[
[Buck, Thm16,p358]
[
[

Buck, Thm13,p353]

open mapping theorem

[Buck, Thm15,p356]

implicit function
theorem

doesn’t make
sense

[Buck, Thm17,18,p363-4]
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32 Wednesday December 7, 2005—Final Exami-
nation 1:30-3:30 pm
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