MATHEMATICS 140C  SPRING 2007  MINUTES OF THE MEETINGS

   (pasted from the emails sent after each class)

Monday April 2

In section 1.3 of Buck: scalar product (=inner product=dot product), norm,

distance, Schwarz inequality, Triangle inequality, backwards triangle

inequality  (Proofs can be found in Buck or the "minutes" for Math 140c,

fall 06. https://math.uci.edu/~brusso/140cdec3.pdf (Theorem 1.1 and Corollary 2.1)

Assignment 1   due April 6     Buck, page 10, #5,10,23

                                                Buck, page 18  #1,2,5,6

..............................................

Wednesday April 4

In section 1.5 of Buck:  open ball, interior of a set, open set, closed

ball

Proposition 1    An open ball is an open set

Proposition 2    For an arbitrary set S, int S is the largest open set

                 contained in S.

(Proofs can be found in Buck or the "minutes" for Math 140c, fall 06 https://math.uci.edu/~brusso/140cdec3.pdf (Proposition 2.3, Proposition 2.4)

Assignment 2  due April 11   Buck, page 27   #3,15,16

                             Buck, page 36   #1,5,9,13

Assignment 3  due April 11   Show that the complement of a closed ball is

an open set  (Hint: use backwards triangle inequality)

Friday April 6

Correction:  due date for Assignments 2 and 3 is April 13, not April 11.

Completion of the proof of (vi) on page 32 of Buck.  (See Proposition 2.4

in the minutes for Math 140C, fall 06)

Remark: Every open set is a union of (countably many) open balls.  If n=1,

the balls can be taken to be disjoint.  (We did not prove the part about

countability or the disjointness in the case n=1)

Propositions (i) and (ii) on page 32 of Buck.

Definition of closed set; closed ball is a closed set.  DeMorgan laws of

set theory. Propositions (iii),(iv)  on page 32 of Buck (See section 3.2

of the minutes for Math 140c, fall 06)

Assignment 4: due April 13   For any set S,

  int S  is the union of all open subsets of S.

Monday April 9

Proposition 1

Every open set in R is a countable disjoint union of open intervals.

(For the proof given in class, you can refer, if you are so inclined, to

the minutes for Math 140c for fall 2005, Theorem 3.6.  Note that this is

the minutes for Fall 2005, not Fall 2006---both sets of minutes (Fall 2005

and Fall 2006)  will be linked to on the web page for our course this

quarter)

Proposition 2

Every open set in R^n is a countable union of open balls.

(For the proof given in class, you can refer, if you are so

inclined, to the minutes for Math 140c for fall 2006, section 10.2)

Assignment 5: due April 20

Prove that for any set S in R^n, every open cover of S by open sets has a

countable subcover.

REMARK: Not all of the terms in Assignment 5 have been defined yet.  That

is the reason I have made the due date April 20, rather than April 13.

Assignment 5 is a key to the study of compactness, which we take up  after

discussion closed sets more thoroughly.

Wednesday April 11

A. Three clarifications about open sets from April 9.

 1. We proved that every point x of an open set in R lies in an open

interval whose endpoints are not in S.  Then I stated that any two of

these intervals either coincide or are disjoint. (Reason: if they

intersect and are not equal, then an endpoint of one of them belongs to

the other and therefore to S, contradiction)

2.  In the proof of the proposition that stated that every open subset in

R^n is a countable union of open balls there is an assertion that a

certain open ball is contained in a certain other open ball. More

precisely,

                   B(q_p,r_p/2) is contained in B(p,r_p)

(Reason: the triangle inequality)

3. We defined and discussed the terms in Assignment 5 (cover, subcover)

...........................................................

B. Two new assignments

Assignment 6: due April 20

Prove that The closure of any set S is the intersection of all closed sets

containing S

Assignment 7; due April 20   Buck, page 36  #2,6,10,11

.............................................................

C. Definitions and some properties  of boundary and closure

1. Proof of part of (viii) on page 32 of Buck, namely:  bdy S is the

intersection of the closure of S and the closure of the complement of S.

2. Statement of (vii) on page 32 of Buck, namely: the closure of a set S

is the smallest closed set containing S.

Friday April 13

Definition:   A set is compact if every open cover of it has a finite

subcover.

1.  [0, + infinity)  is NOT compact

2.  A compact set is bounded (proved in class)

3.  [0,1)  is NOT compact

4.  A compact set is closed (part of Assignment 8; see below)

5.  A closed and bounded interval on the real line is compact (proved in

class; see Theorem 24, page 65 of Buck)

6.  A closed subset of a compact set is compact  (part of Assignment 8;

see below)

7.  In a compact set, every infinite sequence has a cluster point in the

    set.  (We'll discuss cluster points  next time)

8.  A closed and bounded subset of R^n is compact. (This is one of the

main theorems about compact sets.  We'll discuss it next week)

Assignment 8: due April 20

Prove statements 4 and 6 above.

(This is also stated as Buck, page 69, #2,3)

Monday April 16

Definition:   A point p is a cluster point of a set S if every open ball

with center p intersects S in infinitely many points.   Equivalently, if

every open ball with center p intersects S in at least two points.

Proposition 1 (A characterization of closed sets---(ix) on page 32 of

Buck)

A set is closed if and only if it contains all of its cluster points.

Proposition 2 (Assertion 7 from April 13---Theorem 26 on page 65 of

Buck)  Any infinite sequence in a compact set K has a cluster point in K.

Remark:  The converse of Proposition 2 is true and will be discussed next

time.  Proposition 2 provides a characterization of compact sets.

Theorem (Assertion 8 from April 13---Theorem 25 on page 65 of

Buck---Another characterization of compact sets)  A set is compact if and

only if it is closed and bounded.

The theorem will be proved next time.  It uses the following lemma.

Lemma (Theorem 28 on page 66 of Buck)  Any decreasing sequence of

non-empty compact sets has a non-empty intersection.

Assignment #9  due April 20    Buck, page 69  #6

Wednesday April 18

1. Countdown to the midterm on April 25

Assignment 10  due April 23 (Monday)  Buck page 54  #1,2,3,4.

Assignments 5,6,7  are due on April 20

Assignments 8,9,10  are due on April 23

(WARNING: These will probably not be returned to you before the midterm)

There will be a sample midterm handed out in class on April 23 (and

possibly posted the night before)

The midterm will cover the following two topics:

A. Topological Terminology (section 1.5 of Buck, except for

connectedness): interior, open set, boundary, closed set, cluster point.

Propositions (i)-(x) on page 32 of Buck. Structure of open sets.

B.  Compact sets (section 1.8 of Buck) Necessary conditions:  closed;

bounded; every infinite sequence has a cluster point.  Sufficient

conditions: closed and bounded; every infinite sequence has a cluster

point in the set

2. The proof was given for Assertion 8 from April 13=Theorem 25 on page 65

of Buck:     A set is compact if and only if it is closed and bounded.

(Contrary to what I said last time, this proof does not use Theorem 28 on

page 66 of Buck)

3.  Some elementary properties of sequences of points.

Proposition 1 (Theorem 7 on page 42 of Buck)  A sequence converges if and

only if each of its coordinate sequences converges.

Proposition 2 (Theorem 3 on page 40 of Buck)  A convergent sequence is

bounded.

Friday April 20

1. THEOREM  A set S is compact if and only if every infinite sequence from

S has a cluster point belonging to S.

(See Proposition 6.1 and section 7.1 of the minutes for Math 140C, Fall

06.  This theorem is stated as Exercise 5 on page 69, which was not

assigned)

2. THEOREM  A set S is closed if and only if it contains the limit of

each convergent sequence from S.

(See Theorem 14.1 and Corollary 14.2 of the minutes for Math 140C, Fall

06. See Theorem 5 and Corollaries 1 and 2 on pages 40-41 of Buck. This

theorem was used to give an alternate proof to Exercise 6 on page 69,

which was assigned)

3. PROPOSITION  A point p is a cluster point of the set S if and only if

there is a sequence of DISTINCT points from S which converges to p.

(This proposition is just another way of stating the theorem in 2.

Correction: I failed to mention that the word DISTINCT needs to be added

to the statement)

Monday April 23

Assignment 11   due May 4    page 80   #1 or 2,  3 or 4, 7 or 8, 12 or 13,

14 or 17.    You should do all problems but only hand in one from each

pair (total of 5 problems)

1.  Definition of continuous function

(See section 8.1 of the minutes for Math 140C fall 2006 for an overview of

continuous functions)

2. THEOREM  The continuous image of a compact set is compact.

(This is Theorem 13 on page 93 of Buck.  The proof in Buck is different

from the one I gave in class. The proof I gave in class can be found in

section 8.2 of the minutes for Math 140C, Fall 2006.)

Friday April 27

Assignment 12   due May 4    page 88   #1,2,6,7

1.  SOME TERMINOLOGY FOR COMPACT SETS

     Heine Borel property (HB): every open cover of S has

     a finite subcover

     Bolzano-Weierstrass property (BW): every infinite sequence from S has

     a cluster point belonging to S

THEOREM 1: The following are equivalent for a set S:

    (i) HB    (ii)  BW   (iii)   C&B (closed and bounded)

(We proved HB <---> BW and HB <---> C&B.  As an informal exercise try

proving directly that BW <---> C&B .  The proof is written out in section

7.2 of the minutes for 140C, Fall 2006)

2.   CONTINUITY AND LIMITS

THEOREM 2: The following are equivalent for a function f on a set S and a

point p_0 in S

 (i)   f is continuous at p_0

 (ii)   the limit as p ---> p_0 of f(p) is f(p_0)

 (iii) for each sequence p_k  in S converging to p_0, it follows that

       f(p_k) converges to f(p_0).

(The fact that a continuous image of a compact set is compact leads to a

proof of the EXTREME VALUE THEOREM by using BW and part (iii) of Theorem

2.  This will be done in the next class. See section 9.2 of the minutes

for Math 140C, Fall 2006)

3.  UNIFORM CONTINUITY

THEOREM 3: A continuous function on a compact set is uniformly continuous

on that set.

(See section 10.2 of the minutes for Math 140C, Fall 2006)

Monday April 30

NO NEW ASSIGNMENT TODAY

1. midterm results

   The solutions were handed out in class today.  Further questions can be

directed to the instructor (me) or the TA (Ben Vargas).

   average = 51   median = 55

   tentative letter grade

   80-85  A   (1)

   68-71  A-  (3)

     62   B+  (2)

     58   B   (1)

   54-56  B-  (4)

     51   C+  (1)

   41-44  C   (4)

     33   C-  (1)

     27   D   (2)

     17   F   (1)

2.  Extreme Values Theorem

See Theorem 18.1 in Ross for the one variable case, Theorem 11 on page 91

of Buck and section 9.2 of the minutes for Math 140C, Fall 2006 for the

multivariable case.

3.  Intermediate Value Theorem

See Theorem 18.2 in Ross for the one variable case.

Definition of CONNECTED OPEN SET: an open set is connected if it cannot be

written as the disjoint union of two non-empty disjoint open sets.

Facts, some of which were proved, and some of which will be proved later.

A. An open connected set in R^n is never a disjoint union of two or more

open balls.  (Just apply the definition of open connected set)

B. An open connected set on the real line must be an open interval. (Apply

(A) to the structure theorem for open sets on the real line)  The converse

is also true (NOT PROVED YET).

C. The Cartesian product of open connected sets is connected (NOT PROVED

YET).  Hence, an open rectangle in R^2 is an example of an open set which

is not the disjoint union of open balls (although it is a union of open

balls)

D. The closure of a connected set is connected (NOT PROVED YET).  The

Cartesian product of two connected sets is connected (NOT PROVED YET).

Thus a closed interval, or even a half-open interval is connected and an

open rectangle in R^2 is connected.

WAIT A MINUTE; WE HAVEN'T YET DEFINED WHAT IT MEANS FOR A SET TO BE CONNECTED IF THE SET IS NOT AN OPEN SET. WHEN WE DO THAT, WE CAN DISCUSS THE MULTIVARIBLE VERSION OF THE INTERMEDIATE VALUE THEOREM AND ESTABLISH FURTHER PROPERTIES.

Wednesday May 2

Assignment 13 (due May 11)  Prove the two remarks at the end of this

message.

1. Correction to midterm

Problem 1 should have stated that k=1,2,...  instead of k=2,3,....  . With

this correction, the set is closed and the answer I gave in the solutions

handed out on April 30 is correct. On the other hand, as stated, the set S

in Problem 1 is not closed. If you would like me to look at your solution

to Problem 1 for a possible adjustment, please show it to me at the latest

by Friday.

2. Correction to solutions to midterm.

In part (a) of Problem 2, you need to add

        {(x,x): |x| not greater than the square root of 2}

3. PROPOSITION 1:   An open connected set is polygon connected

(See Theorem 2 on page 35 of Buck)

4. Definition of connected set (not necessarily open)

A set S which is not necessarily open, is said to be connected if it

satisfies either of the (equivalent) conditions (A) or (B) in Proposition

2 which follows.  (I stated (B) incorrectly in class today; I omitted the

word 'NOT')

  PROPOSTION 2:  For a subset S of R^n, the following are equivalent:

(A)  S is NOT the union of two non-empty sets A and B with A being

disjoint from the closure of B and B being disjoint from the closure of A.

(B)  S is NOT the subset of the union of two disjoint open sets V and W

such that S has points in common with both V and W.

Remarks

(1)          (A) is equivalent to (A'), where

(A')  S is NOT the union of two non-empty DISJOINT sets A and B with A

being disjoint from the boundary of B and B being disjoint from the

boundary of A.

(2)  If S is an open set, then it is connected according to the "new

definition" (given today)  if and only if it is connected with respect to

the "old definition" (given on April 30)

Friday May 4

Assignment 14 (due May 11)

Let S be a connected set and suppose T is a set which contains S as a

subset and is contained in the closure of S.  Prove that T is connected.

(Use the definiton of connected set given in part (B) of Proposition 2

from May 2)

Consequence: all intervals on the real line (open, closed, half-open)

are connected)

Assignment 15 (due May 11)  Buck page 96   #6,7,8,9

1.  CONTINUOUS VECTOR-VALUED IMAGES OF CONNECTED AND COMPACT SETS.

THEOREM 1   Let f be a continuous function defined on a subset D of R^n

with values in R^m.   If D is CONNECTED, so is f(D).

Consequence: For m=1 you get the intermediate value theorem

for continuous functions (IVTC)

THEOREM 2   Let f be a continuous function defined on a subset D of R^n

with values in R^m.   If D is COMPACT, so is f(D).

(The proof for the case m=1 applies word for word)

2. UNIONS AND CARTESIAN PRODUCTS OF CONNECTED SETS

PROPOSITION 1  If S and T are connected subsets of R^n, and if the

intersection of S and T is not empty, then the union of S and T is a

connected set.

(We use the definiton of connected set given in part (B) of Proposition 2

from May 2)

PROPOSITION 2 If a set S has the property that each pair of its points lie

in a common connected subset of S, then S is connected.

(Note that the converse is trivially true)

(We again use the definiton of connected set given in part (B) of

Proposition 2 from May 2)

PROPOSITION 3  If S is a connected subset of R^n and T is a connected

subset of R^m, then the Cartesian product S X T is a connected subset of

R^k   where k=m+n.

Consequence: An open rectangle in R^2 is connected, and is therefore not

the DISJOINT  union of open balls.

(The proof of Proposition 3 will be given next time)

Monday May 7

1.  CONTINUOUS TRANSFORMATIONS

SUPER THEOREM  Let f be a transformation defined on a subset D of R^n

with values in R^m, and let f_1,...,f_m be its coordinate functions.

(1) f is continuous at a point p_0 of D if and only if each coordinate

function f_i is continuous at  p_0.

(Buck, Exercise 17, page 80 and Exercise 6, page 334)

(2) f is continuous at a point p_0 of D if and only if for each sequence

of vectors p_k from D converging to p_0, the sequence of vectors f(p_k)

converges to f(p_0).

(3) If f is continuous and D is compact, then f(D) is a compact subset of

R^m.  (Buck: Theorem 4 on page 333)

(4) If f is continuous and D is connected, then f(D) is a connected subset

of R^m.

(5) If f is continuous and D is compact, then there are points p_0 and q_0

in D such that      |f(q_0)| less or equal |f(p)| less or equal |f(p_0)|.

(6) If f is continuous and D is compact, then f is uniformly continuous on

D. (Buck: Exercise 8, page 334)

2. CORRECTION TO THE DEFINITION OF CONNECTED SET

DEFINITION (CORRECTED FROM MAY 2) A set S which is not necessarily open,

is said to be connected if it satisfies either of the (equivalent)

conditions (A) or (B) in the Proposition which follows.

  PROPOSTION:  For a subset S of R^n, the following are equivalent:

(A)  S is NOT the union of two non-empty sets A and B with A being

disjoint from the closure of B and B being disjoint from the closure of A.

(B)  S is NOT the subset of the union of two open sets V and W such that S

has a point in common with V and a point in common with W, but no points

in common with both V and W. (V and W do not have to be disjoint)

(We proved in class that (A) implies (B))

3.  With this corrected definition of connected set, we will be able to

prove part (4) of the SUPER THEOREM and then Propositions 1,2,3 from May

4, not to mention Assignments 13,14,15.

Wednesday May 9

Assignment 16  (due May 18)   Buck page 134  #4,11

(In class I mistakenly said the assignment was #5,11)

1.  DIFFERENTIABILITY IMPLIES CONTINUITY (see the minutes of Math 140C for

fall 2006, section 11)

The example f(x,y):= xy/(x^2+y^2), doe (x,y) not equal to (0,0) and

f(0,0)=0 shows that existence of all partial derivatives of f at (0,0)

does not imply f is continuous at (0,0). (This function is the one that

appears in problem 4 on page 134 of Buck--Assignment 16)

THEOREM 1 If f is a function from D to R where D is an open subset of R^n,

and if all partial derivatives of f at a point p in D exist and ARE

CONTINUOUS at p, then f itself is continuous at p.

THEOREM 2 If T is a transformation from D to R^m where D is an open subset

of R^n, and if all partial derivatives of the coordinate functions of T

exist and ARE CONTINUOUSs at p, then T itself is continuous at p.

(We will discuss a different version of Theorem 2 later on (see Lemma 21.2

of the minutes for Math 140C, fall 2006)

2.  CONNECTED SETS---UNFINISHED BUSINESS

The proofs I gave on May 4 for Theorem 1 and Propositions 1 and 2 there

are valid with the new (and corrected) definition of connected. I restate

those results here:

THEOREM 1 (from May 4)  Let T be a continuous transformation defined on a

subset D of R^n with values in R^m.  If D is CONNECTED, so is f(D).

PROPOSITION 1 (from May 4)  If S and T are connected subsets of R^n, and

if the intersection of S and T is not empty, then the union of S and T is

a connected set.

PROPOSITION 2 (from May 4) If a set S has the property that each pair of

its points lie in a common connected subset of S, then S is connected.

(Note that the converse is trivially true)

By using the preceding three results we then (elegantly) proved the

following:

PROPOSITION 3  If S is a connected subset of R^n and T is a connected

subset of R^m, then the Cartesian product S X T is a connected subset of

R^k   where k=m+n.

Friday May 11

Assignment 17  (due May 18)   Buck page 351  #1,6,8

1.  AN UNUSUAL CONNECTED SET

I mentioned that the set

E={(x,0): x in [-1,0]} union {(x, sin(1/x): x in (0,1]}

in R^2 is connected but not pathwise connected.  These facts will be

proved next week (and path connected will be defined).

2.  EXISTENCE OF THE DERIVATIVE (or DIFFERENTIAL)

(see the minutes of Math 140C for fall 2006, sections 15 and 18)

Definition:  The DERIVATIVE (or DIFFERENTIAL) of a transformation T  from

an open subset D of R^n to R^m at the point p_0 of D is a

linear transformation L from R^n to R^m such that the limit as p

approaches p_0 of

           |T(p)-T(p_0)-L(p-p_0)|/|p-p_0|  is zero.

Notation: if L exists it is denoted by T'(p_0), or dT|p_0 or just dT

CASE 1  m=n=1 and D=(a,b).  If T=f is a function such that the derivative

f'(x) exists at the point x in (a,b), then T'(x) exists and is the linear

transformation from R to R given by   L(y)=f'(x)y

(We called this THEOREM 0)

CASE 2 m=1, n and D arbitrary.  If T=f is a function such that the partial

derivatives D_jf exist and are each continuous at p_0, then T'(p_0) exists

and is the linear transformation from R^n to R given by the 1 by n matrix

(D_1f(p_0),...,D_nf(p_0)). (We called this THEOREM 1---see Theorem 15.3 of

the minutes of Math 140C for fall 2006 and Theorem 8 on page 131 of Buck)

CASE 3 m,n,D arbitrary.  If T=(f_1,...,f_m)  is a transformation such the

partial derivatives D_jf_i of the coordinate functions all exist and are

continuous at p_0, then T'(p_0) exists and is the linear transformation

given by the m by n matrix [D_jf_i(p_0)].  (We called this THEOREM 2---see

Theorem 18.5 of the minutes of Math 140C for fall 2006 and Theorem 10 on

page 344 of Buck)

Monday May 14

Assignment 18  (due May 18)

Let f(x,y) = (x^3-y^3)/(x^2+y^2)   for (x,y) not equal to (0,0) and

f(0,0)=0.

(a) Show that f does not have a differential at (0,0)

(b) Show independently of Theorem 2 from May 11 that either D_1f(0,0)

doesn't exist, or if it exists, that D_1f is not continuous at (0,0).

Same for D_2f(0,0)

1. SOME TERMINOLOGY FOR A TRANSFORMATION FROM R^n to R^m

m=1,n=1           "baby calculus"   derivative  =  f'(x)

m=1,n arbitrary   "function"     derivative = Df=(D_1f,...,D_nf)

m=1,n=3           "function" derivative = gradient=(D_1f,D_2f,D_3f)

m=2 or 3, n=1     "curve"   derivative  f'(t)=(x'(t),y'(t),z'(t))

m=3,n=2           "surface"

m,n arbitrary     "transformation"

2.  Example: The function f(x,y)=xy/(x^2+y^2) for (x,y) not equal to (0,0)

and f(0,0)=0 does not have a differential at (0,0).

(Does D_1f(0,0)  exist?  If so, it D_1f continuous at (0,0)?  Same

questions for D_2f(0,0).)

3.  We proved Theorem 2 from May 11 (see CASE 3 from the May 11 minutes)

4.  We proved Theorem 12 on page 133 of Buck, namely

THEOREM Let f be a real-valued function defined on an open set D in R^n

and suppose that the partial derivatives all exist and are zero at every

point of D.   If D is CONNECTED, then f is a constant function.

(PROOF: Use the fact that the partials are zero and the mean value theorem

to show that f is locally constant on  D.   The use Exercise 8, page 97.)

(this will help in Assignment 17)

Wednesday May 16

Assignment 19  (due May 25)  Buck, page 134  #5,7,12,13

1. DIRECTIONAL DERIVATIVE

DEFINITION  See Buck p. 126

REMARKS (a) interpretation as the rate of change of a function at a point

in the given direction

(b)  replacing the direction by its negative changes the sign of the

directional derivative

(c)  if the direction is a basis vector (1,0,...,0) etc. you get the

partial derivatives.

(Later we will return to discuss Theorems 10 and 11 on page 133 of Buck;

Theorem 11 is needed in Assignment 19))

2.  UNIQUENESS OF THE DIFFERENTIAL OF A TRANSFORMATION

(a) the case of real-valued functions defined on an open interval (a,b)

(see Remark 17.1 of the minutes for Math 140C Fall 2006)

(b) the case of real-valued functions defined on an open set D in R^n

(see Proposition 17.2 of the minutes for Math 140C Fall 2006)

(c) the case of a transformation defined on an open set D in R^n with

values in R^m

((c) will be discussed next time; in the meantime, you can look at

Proposition 17.4 of the minutes for Math 140C Fall 2006)

Friday May 18

Assignment 20  (due May 25)

Let f(x,y)=(x^2+y^2) sin [1/(square root of x^2+y^2)] for $(x,y) not (0,0)

and f(0,0)=0.    Prove that f is differentiable at (0,0) but is not of

class C' there, that is, the partial derivatives are not continuous at

(0,0).

1. COMPLETION OF THE DISCUSSION OF UNIQUENESS

We finished proving (b) and (c) from last time, namely: Proposition 17.2

and Proposition 17.4 of the minutes for Math 140C Fall 2006.

NOTE: in Exercises 5 and 10 on page 352 of Buck, which were not assigned,

you are asked to prove the result in said Proposition 17.4)

2.  FUNCTIONS OF CLASS C'

DEFINITION A function f: D ---> R, where D is an open subset of R^n is

said to be of class C' if its partial derivatives exist and are CONTINUOUS

on D.  (A transformation is said to be of class C' if its coordinate

functions are of class C')

(A) Restatement of Existence:  A function of class C' is differentiable.

The same holds for transformations.

   (The converse is false:  see Assignment 20; or   x^2 sin [1/x])

(B) Restatement of Uniqueness:  If a function is differentiable, then its

derivative is given in terms of its partial derivatives, which exist. The

same holds for transformations.

   (The converse is false:  see Assignment 18; or xy/(x^2+y^2))

(C) Restatement of "differentiability implies continuity":  A function of

class C' is continuous. The same holds for transformations.

   (Next time we shall prove that a differentiable function is continuous;

this is a stronger result that (C) and is needed in the proof of the chain

rule for transformations)

Monday May 21

Assignment 21  (due May 25)  Buck, page 145, #1,2

1. COMPOSITION OF TRANSFORMATIONS

Definition:  Let T be a transformation from an open subset A of R^n to R^m

and let S be a transformation from an open subset B of R^m which contains

T(A) to R^k.  S o T is the transformation from A to R^k given by

S o T (p) = S(T(p))

PROPOSITION If T is continuous at p and S is continuous at T(p), then

S o T is continuous at p.

(see Proposition 20.2 of the minutes for Math 140C Fall 2006)

THEOREM (CHAIN RULE)

If T is differentiable  at p and S is differentiable  at T(p), then

S o T is differentiable  at p and

  (S o T)'(p)= S'(T(p)) o T'(p)

(this will be proved later; see Theorem 20.3 of the minutes for Math 140C

Fall 2006 and its proof in section 21  of those minutes)

2. EXAMPLES

(a) Let w=f(u,v), u=g(x,y), v=h(x,y) and set  F(x,y)=f(g(x,y),h(x,y)).

Then

F_1=f_1g_1+f_2h_1   and F_2=f_1g_2+f_2h_2

(see Buck, page 137)

(b) (NOT DONE IN CLASS!)  Let w=f(x,u,v), u=g(x,v,y), v=h(x,y) and set

F(x,y)=f(x,g(x.h(x,y),y),h(x,y)).   Then

F_1 = f_1 + f_2 g_1 + f_3 h_1 + f_2 g_2 h_1

and

F_2 = f_2 g_3 + f_3 h_2 + f_2 g_2 h_2

(see Buck, pp. 137-139 and section 23.1 of the minutes for Math 140C Fall

2006)

(c)  Let w=F(x,y,t), x=f(t), y=g(t) and set w=F(f(t),g(t),t).   Then

dw/dt = F_1 dx/dt + F_2 dy/dt  + F_3   and

d(dw/dt)/dt = F_33  + 2 F_32 dy/dt

            + [F_11 (dx/dt) + 2 F_13] dx/dt + F_1 d(dx/dt)/dt

            + [2 F_21 dx/dt +F_22 dy/dt] dy/dt + F_2 d(dy/dt)/dt

(see Buck, page 139; the answer was reduced from 11 terms to 8 terms by

assuming that F was of class C^2 and using the Corollary on Buck, page

189. See Corollary 30.2 of the minutes for Math 140C Fall 2006)

Wednesday May 23

NO NEW ASSIGNMENT TODAY

1. TAKE HOME MIDTERM

THE TAKE HOME MIDTERM WAS HANDED OUT TODAY. IT IS ALSO POSTED ONLINE.

IT IS DUE ON MAY 30 AT 10 AM.

IMPORTANT: YOU ARE TO WORK INDEPENDENTLY ON THIS

MIDTERM.  IF YOU HAVE A QUESTION, SEND IT TO ME BY EMAIL.

IF YOU NEED ANOTHER COPY OR DID NOT RECEIVE A COPY, YOU CAN DOWNLOAD THE

MIDTERM FROM THE WEB PAGE.

2. SOME EXAMPLES OF CONTINUOUS FUNCTIONS

(a)  length     f(p)=|p|   (proof: use backwards triangle inequality)

(b)  scalar product    f(p)= p . q   (q is a fixed vector)

 (proof uses the Schwarz inequality)

(c) any linear transformation

(See Lemma 21.1 of the minutes for Math 140C Fall 2006 or Theorem 8 on

page 338 of Buck;  proof uses the Schwarz inequality)

NOTE THAT ALL THREE EXAMPLES ARE UNIFORMLY CONTINUOUS

3. DIFFERENTIABILITY IMPLIES CONTINUITY, REVISITED

Proposition  A differentiable transformation in continuous

(See Lemma 21.2 of the minutes for Math 140C Fall 2006)

4.  PROOF OF THE CHAIN RULE

For the case when the transformations S and T are functions from R to R,

see Theorem 20.4 of the minutes for Math 140C Fall 2006.  The proof given

there for this case is longer than it should be, because no fractions are

used.  However, the proof is valid almost word for word for the general

case of two transformations.  For this general proof see section 21.2 of

the minutes for Math 140C Fall 2006.  We discussed steps 1 through 4 in

class today.

Friday May 25

Assignment 22 due Monday June 4

Buck, page 154 #18, Buck, page 352 #11,12

1. PROOF OF THE CHAIN RULE

The key to the proof is to avoid fractions (you cannot divide by vectors)

and to avoid inequalities (or more poetically, epsilons).

(See a (forthcoming) note on the web page for details of the proof given

in class today, which is more elegant than the proof found in the minutes

for Math 140C Fall 2006 or in Buck)

2. FIVE CONSEQUENCES OF THE (BIG) CHAIN RULE

(Only the first two were discussed today. The next three will be discussed

in class on May 30. One of these (d) is essential to Assignment 22. That

is why Assignment 22 is due on Monday June 4 instead of Friday June 1)

(a) Baby Chain Rule

(see Theorem 21.4 of the minutes for Math 140C Fall 2006 and Buck, Theorem

14, page 136)

(b) Little Mean Value Theorem

(See Theorem 23.1 of the minutes for Math 140C Fall 2006 and Buck, Theorem

16, page 151)

(c) Big Mean Value Theorem (not discussed yet)

(See Theorem 23.2 of the minutes for Math 140C Fall 2006 and Buck, Theorem

12, page 350)

(d) Lipschitz conditions on compact convex sets (not discussed yet)

(See Corollary on page 351 of Buck)

(e) An alternate proof for the existence of the differential (not

discussed yet)

Wednesday May 30

Assignment 23 due Monday June 8

Buck, page 361 #2,3,4,11

1. Proof of the BIG Mean Value Theorem

(See Theorem 23.2 of the minutes for Math 140C Fall 2006 and Buck, Theorem

12, page 350)

2. THREE consequences of the BIG Mean Value Theorem

(a) Lipschitz conditions on compact convex sets

(See Corollary on page 351 of Buck)

(b) An alternate proof for the existence of the differential

(See section 24.1 of the minutes for Math 140C Fall 2006)

(c) The LOCAL INVERTIBILITY THEOREM (this was stated only; the proof still

needs to be done)

(See Theorem 24.1 of the minutes for Math 140C Fall 2006, and Theorem 14

on page 355 of Buck)

Friday June 1

Assignment 24 due Friday June 8 Buck, page 366 #2,6,10

(NOTE: Assignment 23 is also due on Friday June 8, not Monday June 8 as

stated incorrectly on Wednesday's minutes)

1. THREE EXAMPLES TO MOTIVATE THE IMPLICIT FUNCTION THEOREM (IMFT)

(see section 25.1 of the minutes for Math 140C Fall 2006)

(a) F=linear function from R^n to R

(b) F(x,y)=x^2+y^2-1

(c) F(x,y)=x+2y+x^2y^5-8

2. THREE MAIN THEOREMS USED IN THE PROOF OF THE IMPLICIT FUNCTION THEOREM

(these three theorems will be proved next week)

(a)  local invertibility theorem  (LIT)

(see Theorem 24.1 of the minutes for Math 140C Fall 2006; and Theorem 14,

page 355 of Buck)

(b)  open mapping theorem (OMP)

(see Theorem 25.2 of the minutes for Math 140C Fall 2006 for the statement

and section 27 of those minutes for the proof; and Theorem 15, page 356

of Buck))

(c)  inverse function theorem (INFT)

(see Theorem 25.3 of the minutes for Math 140C Fall 2006 for the statement

and section 29 of those minutes for the proof; and Theorem 16, page 358

of Buck))

3. PROOF OF THE IMPLICIT FUNCTION THEOREM

We began the proof, which will be completed together with a diagram in

the next class. (see section 25.2 of the minutes for Math 140C Fall 2006;

and Theorem 17, page 363 of Buck)

Monday June 4

Assignment 25 due Friday June 8 Buck, page 366 #4,5,9,11

(Assignment 25 is the final assignment of the course. Assignments 23, 24

and 25 will be graded, but because the FINAL EXAMINATION is on Monday at

10:30, these three assignments cannot be returned to you before the

final examination)

1. SECOND MIDTERM RESULTS

Average was 53/80=66%.   Grade assignment is

71-80 A

63-65 A-

59-62 B+

53-56 B

49-51 B-

40-47 C+

33-36 C

25-30 C-

2. PROOF OF THE IMPLICIT FUNCTION THEOREM-(conclusion)

We completed the proof in the case of two variables. (see section 25.2 of

the minutes for Math 140C Fall 2006)

For the case of three variables, see Theorem 17, page 363 of Buck. The

case for n varibles is stated as Theorem 26.2 in the minutes for Math 140C

Fall 2006.  These results are all examples of what I called the FIRST

VERSION of the IMPLICIT FUNCTION THEOREM, that is, when can you solve for

one of the variables (called the "DEPENDENT" variable) in terms of all of

the others (the "INDEPENDENT" variables, if you will).

3. IMPLICIT FUNCTION THEOREM-SECOND VERSION

(a) EXAMPLE  Buck, page 366 #3

(b) This exercise was used to motivate the SECOND VERSION of the IMPLICIT

FUNCTION THEOREM, namely, solving for several of the variables in terms of

the remaining variables.  In this version, the number of equations must be

the same as the number of "DEPENDENT" variables.

For the case of 2 equations and 5 variables, See Theorem 26.4 of the

minutes for Math 140C Fall 2006, and Theorem 18 on page 364 of Buck. The

general case is stated at the end of section 26 of the minutes for Math

140C Fall 2006 and on page 366 of Buck. (This will be discussed more in

the next lecture)

Wednesday June 6, 2007

1. IMPLICIT FUNCTION THEOREM-SECOND VERSION-continued

I discussed the case of 2 equations and 5 variables (See Theorem 26.4 of

the minutes for Math 140C Fall 2006, and Theorem 18 on page 364 of Buck.)

I did not complete the proof, it being entirely parallel to the proof of

the first version of the implicit function theorem.

For the definition of Jacobian, see Definition 26.3 of the minutes for

Math 140C Fall 2006 and page 366 of Buck, as well as pp. 140-141 of Buck.

2. TWO REMARKS IN CONNECTION WITH IMPLICIT FUNCTION THEOREMS

(a) What can you say if the partial derivative in the hypothesis is zero?

The answer is, in general, NOTHING (or I DON'T KNOW).  However, in some

cases, by a closer examination of the data, it is possible to show that

solving for one variable in terms of the other is not possible.

(b) You can calculate the partial derivatives of the solutions in case

those solutions exist, by using the chain rule.

Friday June 8

1. FINAL EXAMINATION LOGISTICS

(a) The exam takes place on Monday June 11 at 10::30-12:30 in MSTB 118.

(I'll take the group photo before the exam starts)

(b) OFFICE HOURS---today 11:00-11:45 and 1:30-3:30 in MSTB 263 (my office)

(c) Review Problems/Sample Midterm---the solutions will be posted late on

Saturday June 9. Don't look at the solutions before attempting the

problems.   If you have questions on any of the problems, send me an

email.  (The questions were handed out today and will be posted later

today)

(d) Assignments 23,24,25---these are due today by 4 pm.  The solutions

will also be posted on June 9.

2. FINAL WORD ON THE INVERSE FUNCTION THEOREM.

I began a discussion of a proof of the formula

  [Inverse of T]'(T(p)) = Inverse of T'(p)

(This formula was not used in the proof of the implicit function theorem)
END OF COURSE


