Course information—Math 147, Winter 2008

- **Course**: Mathematics 147 MWF 11:00–11:50 ET201
- **Prerequisite**: Math 140AB or consent of the instructor (if you have had 140A and are taking 140B concurrently, that is acceptable)
- **Instructor**: Bernard Russo MSTB 263 Office Hours MW 10:00-10:40 or by appointment (a good time for short questions is right after class just outside the classroom)
- **There is a link to this course on Russo’s web page**: www.math.uci.edu/~brusso
- **Discussion section**: TuTh 11:00–11:50 HICF 100M
- **Teaching Assistant**: Kenn Huber
- **Homework**: There will be approximately 10-12 assignments with at least one week notice before the due date.
- **Grading**:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First midterm</td>
<td>February 1 (Friday of week 4)</td>
<td>20 percent</td>
</tr>
<tr>
<td>Second midterm</td>
<td>February 29 (Friday of week 8)</td>
<td>20 percent</td>
</tr>
<tr>
<td>Final Exam</td>
<td>March 21 (Friday 8:00-10:00 am)</td>
<td>40 percent</td>
</tr>
<tr>
<td>Homework</td>
<td>approximately 12 assignments</td>
<td>20 percent</td>
</tr>
</tbody>
</table>

- **Holidays**: January 21, February 18
- **Text**: George Cain “Complex Analysis”, Freely available on the web (see Russo’s web page or go directly to http://www.math.gatech.edu/cain/winter99/complex.html)
- **Material to be Covered**: All of the text with the possible exception of chapters 8 and 11. However, there will be some material that is not in the text.
- **Math 147 is replacing the old Math 114B, and is intended for mathematics majors. The sequence 114A-147 is acceptable for the specialization in applied mathematics. You cannot take 114A after taking 147.**
- **Some alternate texts that you may want to look at, in no particular order. There are a great number of such texts at the undergraduate and at the graduate level.**

 Undergraduate Level
 1. S. Fisher: Complex Variables
 2. R. Churchill and J. Brown; Complex Variables and Applications
 3. J. Marsden and M. Hoffman, Basic Complex Analysis
 4. E. Saff and A. Snider: Fundamentals of Complex Analysis

 Graduate Level
 1. L. Ahlfors; Complex Analysis
 2. J. Conway; Functions of one Complex Variable
 3. J. Bak and D. Newman; Complex Analysis