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MINIMAL LINEAR REPRESENTATIONS OF FILIFORM LIE ALGEBRAS AN D THEIR
APPLICATION FOR CONSTRUCTION OF LEIBNIZ ALGEBRAS

I.A. KARIMJANOV, M. LADRA

ABSTRACT. In this paper we find minimal faithful representations ofesal classes filiform Lie algebras by means
of strictly upper-triangular matrices. We investigatelrez algebras whose corresponding Lie algebras are filiform
Lie algebras such that the actidnx L — I gives rise to a minimal faithful representation of a filifotrie algebra.
The classification up to isomorphism of such Leibniz algslisayiven for low-dimensional cases.

1. INTRODUCTION

According Ado’s Theorem, given any finite-dimensional cdenpl ie algebray, there exists a matrix algebra
isomorphic tog. In this way, every finite-dimensional complex Lie algebaa be represented as a Lie subalge-
bra of the complex general linear algelptén, C), formed by all the complex x n matrices, for some € N.

We consider the following integer valued invariantgof

u1(g) = min{dim (M) | M is a faithfulg-module

It follows from the proof of Ado’s Theorem that(g) can be bounded by a function depending on anlihis
value is also equal to the minimal valuesuch thagl(C, n) contains a subalgebra isomorphiggto

Given a Lie algebra, a representation gf in C" is a homomorphism of Lie algebrgs g — gl(C") =
gl(n,C). The natural integen is called the dimension of this representation. We condalthful representa-
tions because such representations allow us to identifyendiie algebra with its image under the representa-
tion, which is a Lie subalgebra gf(n, C). Representations can be also defined by using arbitraiiynensional
vector space¥ (seel[8]). In such a case, a representation would be a honptrisar of Lie algebras from
to the Lie algebra of the endomorphisms of the vector spacgl(1'), which is called g-module. However,
it is sufficient to consider representations @ because there always exists a unigque N such thatV is
isomorphic toC™ .

Many works are devoted to find the valuég) of several finite-dimensional Lie algebras. [n [5], the walu
of u(g) for abelian Lie algebras and Heisenberg algebras is fourdtir@reover the estimated value ofg)
for filiform Lie algebras is given. In the works1[3,[7, 9] thethars find the matrix representation of some
low-dimensional Lie algebras.

In paper[[7] the minimal faithful representation of the 6lifn Lie algebra’,, is shown and the authors denote

7i(g) = min{n € N | subalgebra of,, isomorphic tog},
whereg,, is an upper triangular square matrix of dimensioMoreover, they prove the next proposition
Proposition 1 ([[7]). Letg be ann-dimensional filiform Lie algebra. Themn(g) > n.

The paper is devoted to find minimal linear representatidrsbme classes of filiform Lie algebras of di-
mensionn. Exactly we find a minimal faithful representation of theféiim Lie algebraQs,,, R,, andW,,.
Moreover we construct Leibniz algebras using these reptatens of filiform Lie algebras.

Leibniz algebras, which are a non-antisymmetric geneatitin of Lie algebras, were introduced in 1965
by Bloh in [4], who called themD-algebras and in 1993 Loday [10] made them popular and stutlier
(co)homology.
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Definition 1. An algebra(L, [—, —]) over a fieldF is called a Leibniz algebra if for any,y,> € L, the
so-called Leibniz identity

[z, 2] = [[z, 2], 9] + [, [y, 2]
holds.

One of the method of classification Leibniz algebras is théysof Leibniz algebras with given corresponding
Lie algebras. In the papefs[[2,6]111,12], Leibniz algebriasse corresponding Lie algebras are naturally graded
filiform Lie algebrasL,,, Heisenberg algebras, simple Li& and Diamond Lie algebras are studied. let
be a Leibniz algebra. The ideédlgenerated by the squares of elements of the algébthat is by the set
{[z,z] : € L}, plays an important role in the theory since it determinegiossible) non-Lie character bf
From the Leibniz identity, this ideal satisfies

[L,I] = 0.
Clearly, the quotient algebra/I is a Lie algebra, called theorresponding Lie algebraf L. The mapl x
L/I — I, (i,T) — [i, 2] endowsl with a structure ofl. /I-module (se€[1]).
Denote byQ(L) = L/I @ I. Then the operatio-, —) defines a Leibniz algebra structure @iL), where

@,9) =lz,yl, @i =I[z4, (7)=0, (i,j)=0, wzyel ijel

Therefore, given a Lie algebi@ and aG-module M, we can construct a Leibniz algebf&, M) by the
above construction. The main problem which occurs in thimegtions is a description of a Leibniz algelira
such that the corresponding Leibniz algefrd. ) is isomorphic to a priory given algeb(é, M).

Now we give definitions of nilpotent and filiform Lie algebras

For a Lie algebrd. consider the following lower central series:

L'=L, L[MM'=[LYL" k>1

Definition 2. A Lie algebral is called nilpotent if there exists€ N such that.* = 0.
Definition 3. A Lie algebral is said to be filiform iflim L* = n — 4, wheren = dim L and2 < i < n.

We list some classes afdimension filiform Lie algebras with bas{g,...,e,}.
1. Let£,, be the Lie algebra defined by
le1,ei) = —lei,er] = ey, 2<i<n-—1

2. LetQs; (n = 2s) be the nilpotent Lie algebra defined by

[el,ei]:—[ei,el] = €i+1, 2S’L§2S—2,
[east1—isei] = —[es, e2541—4) = (—1)" €2, 2<1<s
3. LetR,, be defined by
le1,ei] = —les,e1] = €1, 2<i<n-1,
lea, €] = —lei,e2] = €i42, 3 <1 <n—2,
4. LetW,, be the Lie algebra whose brackets in the basis are:
leisej] = —[ej,ei] = (j —i)eir;, i+j<n

The algebrag,, andQ,,, are naturally graded filiform Lie algebras. The algeiais the finite-dimensional
Witt algebra.

2. MINIMUM LINEAR REPRESENTATION OF FILIFORMLIE ALGEBRAS

Proposition 2. Let Qa,, be a2n-dimensional filiform Lie algebra with bas{g; } 2, . Then its minimal faithful
representation is given by

0 az —az ... asp—2 —azu—1 —2a2,

0 0 a 0 0 A2n—1

O O O e O O aA2n,—2
ajey + agez + -+ -+ agpean — | 1 : ' : :

0 0 0 0 ay as

0 0 0 0 0 as
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Proof. Consider a bilinear map: Qs, — gl,,, given by
2n—2
ple1) = Z Erpr1, @le)=(=1)'Eri+ Eopiv1on 2<i<2n—1, @(ean) = —2E1 2n,
k=2

whereFE; ; is the matrix with ¢, 5)-th entry equal td and others zero.
Checkingp(e;), p(e;)] = plei)ple;)—p(e;)p(e;) forall 1 < i, j < 2n,we verify thaty is an isomorphism
of algebras. Then by Propositibh 1 we obtain that it is mitima O

Let us denote by = C2" the naturalp(Q2,,)-module and endow it with @,,,-module structure by
(z,e) = zp(e).

Then we obtain
Ti,e1) = Tig1, 2<i<2n—2,

(
(r1,€;) = (=1)'w;, 2<i<2n-—1, )
(Tong1-i,€i) = T2n, 2<40<2n—1,
(71, €2n) = =212y,
and the remaining products are zero.
Proposition 3. Let R,, be an-dimensional filiform Lie algebra with basig:; }?_,. Then its minimal faithful
representation is given by

0 a1 as O 0 0 O an
0 0 ay ag 0 0 0 an—1
0 0 0 a 0 0 0 ap2
0O 0 0 O 0 0 0 ap-s
aje; +ageg + -+ anep > |

0 0 0 0 0 a1 az ay
0O 0 0 O 0 0 a as
0O 0 0 O 0 0 O as
0 0 0 O 0 0 O 0

Proof. We take bilinear mag : R,, — gl(n, C) given by

n—2 n—3
P(er) = Z Eiiv1, vY(e2) = Z Eiivo+ En1n, (&) =FEnt1-in, 3<i<n.
1=1 1=1
Checkingy(e;), ¥(e;)] = ¥(ei)w(e;) —(e;)y(e;) foralll < i,j < n, we verify that) is an isomorphism
of algebras. Then by Propositibh 1 we obtain that it is midima O
Now, we construct a modulé x R,, — V, such that

(z,€) = zp(e).

Then we obtain

(@i, e1) = Tit1, 1<i<n-2,
(xi,€2) = Tita, 1<¢<n-3,

(Tnt1—j,€5) = Tpn, 2<j<n.
the remaining products in the action being zero.
Denote byC”. = () the binomial coefficient.

Proposition 4. LetW,, be ann-dimensional filiform Lie algebra with basig;}? ;. ThenW,, is isomorphic
to a subalgebra ofl(n, C) by ¢ :

n—2 n—3

1
pler) = Bk, ple2) = Z mEk,kJrQ + Ep_1.n,
k=1 k=1
n—i—1 -2 ;
1 (_1)1+SC§_2
;) = T g+ B _n) 3<i<n,
o(e;) (1_2)|(; (S:O n—Fk— s ) kk+i T Enti1—q, <i<n
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and this faithful representation is minimal.

Proof. We take the isomorphisga: W,, — gl(n, C) such that

n—2
1) =Y Brit, wle
k=1

Now we consider

p(es) = [p(e1), ple2)] = p(e1)plez) — ple2)pler) =
n—3 n—2
( Z asEs,s+2 + En—l,n) ( Z Ek,k-l—l) =
s=1 k=1
1 1
ples) = 5lpler), ples)] = 5 (pler)ples) —ples)ple

Z at1 — ) EBr s + En_on (ZES,SH)) =
Pt =

Let us suppose that

plei) = (nfl S
p=1 =0

N =
—

) = i asEs,s+2 + Enfl,n-

n—3

Z asEs,s+2 + En—l,n) -

s=1

(:2 Er1) (

n—4

Z(ak-'rl — ag) By k3 + En—2n,
k=1

n—

4
Z Oék+1_ak)Ek,k+3+En72,n)
k=1

:%( ZEserl

n—>5

(o — 2041 + Qg 2) B oga + Enf&n)a
k=

—

)03 a0p1s) Eppyi + Enﬂ_m), 3<i<n.

Let us we suppose the previous equality trueifer k and we will consider foi = k + 1.

1 1

n—2 n 1

e
|
N

RATS o

= p=

—
Il
o

S

,_.
e
|

N

(i

p=1

S

2

S‘@

k‘l\
o

)

I |
=)

("i

p=1 s

2

E

From the multiplications, where+ j < n

—

Il
=)

= 7 (wle)pler) — pler)e(en))

k+
*Ch_ 2ap+S)Ep7p+k + En-i-l—k,n)

n—2

)M Cy o0 ss) Bppik + Engi—kn) (D Brir )

t=1

k
DM Oy _g(aprstr — ap+8))Ep,p+k+1 +En—k,n)

k 1
Terley 1ap+S)Ep,p+k+l + En—km)'
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= ;'(( _Z ( (- )HSCS 2ap+5)Ep,p+i +Eﬂ+1—ix")

J
( Z (Z(_l)j-wcglzaq-kr)Eq,qﬂ'+En+1—j,n)

n—j—1 j—2

J
Z (Z( 1)‘j+TC;72aq+r)Eq7q+j+En+1—j7n)
0

r=
n—i—1 -2

( i (Z( 1ecy QO‘;DJrS)Ep.,eri"'EnJrlfi,n))

p=1 s=0
1 n—i—j—1 1—2 j—2
T G-2)1( 2)|< (( (—1)"Cs gap1) (D (1) CT_s0ptity)
p=1 s=0 r=0
Jj—2 _ i—2
N (Z(_I)J+TO;—2QP+T)( (-1)*C; 2O‘p+J+s))Ep,p+i+j
r=0 s=0
i—2 j—2
* (Z DO ptm1—inj Z(_l)ﬁ_rc;2O‘n+T+1—i—j)En+l—i—j7">.
5= r=0
On the other hand
n—i—j—1 i+75—2
. D ] Jii+s
bolea), oleg)] = (=tlplecs) = (z +75-2)! ( Z +J+ (& itj— 2O‘p+s)E:D7;D+i+j+En+l—i—j7n).

p=1 5=0
Next, we have the following system of equations

i—2 j—2 j—2

(L) (L) (£

i+j 2

(if(—l)iJFSOS Qpii ) + (i =) —2)!(j —2)! ZJﬁiz( 1)1+J+SOS a —0 @
= i—29p+j+s (Z +] — 2)' yrt i+j—2%p+s — Y

wherel <p<n—-i—j5—1, i+j5<n-—2.

= (—E-2G -2
+TC n+r i— H_SCS n—+s i—j — 3 . B <n.
TE::O( 1)/ —2Q0ntr41—i—j SE::O( 1) 20ntstl—i—j i+j—2) ttjJs=n
3)
One of the solutions of the system of equatidis (2) ahd (3) is
1 .
o = -, 1 <i1<n-3.
n-—1
Now we will check it. We using the next property of binomiakficients
- ka m!

k=0
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By putting all the values aof; in the system[{2)£{3), and by using the propdrty (4), we get
(i —2)! (j—2)

(n—i—p+2)n—i—p+3)---(n—p) (n—i-j-—p+2)(n—i-j—p+3)---(n—i—p)

B (j—2)! (i —2)!
m—j—p+2)n—j—p+3)---(n—p) (n—i-j-p+2)n—i-j—p+3)---(n—j—p)
(i—4)(i—2)'(j —2)! o .
=0, 1<p<n—i—73-1 <n-—2
(n—id-pt2m—i—j-pt8) - m-p o SPENTITITL rTIsnTE
and
(-~ 2) B (i —2)! GG
G+D)GE+2)-(i+j—1) G+DE+2)--(G+5—1) (i+j—2)! ’ =
So, the values af; satisfy the system of equations (Z)}-(3).
From Propositionll we get that this representation is mihima O

Now, we construct a modulé x W,  — V, such that

(z,e) = zp(e).
Then we obtain
(w4, e1) = ziq1, 1<i<n-2,
(i, €2) = 75 Tit2, 1<i<n-3,

Jj=2 Jt+s s
. D\ — 1 (=1) ijz L
(1'7,76]) = G20 X n—i—s Titjs
s=

3<j<n-2, 1<i<n—j—1,

1 B
(Tnt1-5:€5) = G=g1%n; 2<j<n,

and the remaining products in the action are zero.

3. LEIBNIZ ALGEBRAS CONSTRUCTED BY MINIMAL FAITHFUL REPRESENRTIONS OF LIE ALGEBRA

Now we investigate Leibniz algebrdssuch thatl /T = Q,,, andl = V as aQ,,,-module.
Further we define the multiplications;, e;] for 1 < ¢, j < 2n. We put

2n

ei+1+za»ﬁ1xk7 7’:172S]§2n_23
k=
30
—€ejt1 + Za’fjxk, j=1,2<i<2n-2,
= ,
. 12n
[eivej] = (_1)18271 + Z O‘i'c,jxkv 1 =2n _.] + 13 2 S.] < n, (5)
k=1

. 2n
(_1)Z+182n+k2_:104§j17k, j:2’fL—’L—|—1, 2SZ§TL,

2n .
3 aﬁjxk, otherwise
k=1

In the multiplication[[b), by taking the basis transformoati

2n—2 n—
;o k+1 2n 2n o k+1 k41
e =e; — kz iy wp — (o + gl )Tan-1, €5 =€z — kZ (ary +a5y )z,
—9 =2
! i ! - i _ i !
e; =le1,ei 4], 3<i<2n—1, €on, = [€5,_1, €],
we obtain
_ 1 2 2 _ 1 2
le1,e1] = a3 171 + a1 172 + a7’ Ton, le2,e1] = —e3 + 03171 + 05 1 T2,

: (6)
le1, el = eip1, 2<i<2n—2, le2n—1,€2] = ean.
There are difficult to classify the general case, therefoeeciassify low-dimensional Leibniz algebras of
such type. Itis well known that, = Q,, therefore we start classifying Leibniz algebras such fydt= Q.
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Using the multiplicationd {1)E{6), and by checking Leibitentity, we get the following family of algebras
denoted by’\(alaa270437a4704570467a770487a9) :

le1, e1] = an s, le1, €3] = [z1, €6] = —2x6,

[e3, e1] = —eu, [657 es] = 411043176, le2, e1] = —e3 4+ azx1 + a3z,

lea, e1] = —es, [x1,e3] = —3, le2, 2] = as3 + arxy + agws,

les,e1] = —auzs,  [74,€3] = 6, [e3, 2] = 4anxe — a3 — 20775 — 9T,
e, 1] = —Lasws, [e1,eq] = es, lea, 2] = —2a0w3 + 24,

[x2,e1] = 23, [e3, e4] = eg, le2, €3] = =3z + apr3 — asrs + a7Ts + a9,
[x3,€1] = 24, [x1,e4] = 24, [es, €3] = —2aw3 + Fa624,

(24, €1] = 5, (23, e4] = e, [ea, €3] = —ep + 20214 — %%5657

[e1, e2] = es, e1, e5] = aazs, le2, €4] = dagas — 2wy + asws,

[e5, e2] = e, [z1,e5] = —s5, [ea, €4] = —20075 — 3Q3%6,

6, e2] = —agzs,  [T2,e5] = w6, [e2, e5] = —e6 — 3wy + 565,

[21, €2] = 22, [e2,e6] = Sasxe,  [es, e5] = 200w5 + Sz,

(x5, 2] = s, [es, e6] = 206,  [e1, 6] = —200015 — Saswe.

Theorem 1. Let L be al2-dimensional Leibniz algebra such thayI = Qg and I is a natural L/I-module
with a minimal faithful representation. Thenis isomorphic to the one of the pairwise non isomorphic atgeb
given in Appendix A.

Proof. Let L(«) := L be the 12-dimensional Leibniz algebra given Xyv, as, as, aq, as, ag, ar, as, ag).
Lety: L(a) — L(a’) be the isomorphism of Leibniz algebras:

6 6 6 6 6 6
1) = Z Aper + ZBka, p(ez) = Zpkek + Z Qrrr, (o) = Z Myep, + Z Ryxy,
k=1 k=1 k=1 k=1 k=1 k=1

and the other elements of the new basis are obtained as psaifiibe above elements.
Then, we obtain the following restrictions:

ARy #0, Ay=B1 =P =M;=0, 1<i<6,

—A% + 2A3As5 P? AsRq AsRy AsRq
Ag = —4 775> p — 3 = Ra = — Ry =
6 2A1 ) 4 2P27 2 Al ) 3 Al ; 4 Al )
2A2a2 —40&2A3A4 — OégAQ 20&2142 + O[6A3A4
By =223 Bs = 3 By= 2
2 Al ) 3 2A1 ) 4 2A1 )
B- — 40(2P22(A%R6 — A4A5R1 — A1A3R5) — OéﬁAin 4A 047P
b 4A,P2R,
0%} (4A1A5P2P3R1 — 2A1A4P32R1 + 4A1A3P2P5R1 — 4A%P2P6R1 + 4A%P22R5)
1A, P2R, ’
3ag(AsPs — AyPs) — as Ay P
Ql = —062P37 Q? = 042( 3 /;11 2) Saie 37

20&2(4A5P22 — A4P2P3 — A3P32) + 013A1P32 + 2OL5A3P22 + 20[6(A4P22 - 2A3P2P3)
2A1P2
(2A4P2R1 + A1P2R5 - 3A5P2P3R1 + 2A1P2P6R1 - 2A3P2P5R1)
Qa =
A1P2R1
—4()[3A1P2P5 — 4OL5A4P2 + OZG(A3P3 - 6A5P2 + 2A4P2P3) + 4OZ7A3P2
4A1 P>
a3(AsPEP2Ry — AyPyP3Ry + 2A3P2P3Ps Ry — 2A, P2PsPs Ry — Ay P3P3R5)
QS = 3 +
A1 Py Ry
8asAsPARy + ag(12A3P3PsRy — 8A,PEP2Ry — 124, P PsR, + 12A5P3P3R1)
8A| PR,

Qs =
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O[gAl (P22P3P5 - Pgl) + a7(A4P24 — 2A3P23P3) + O[8A3P24

A P3
And
o = aq ol = A1 Py o = aSAl o = as Ay ol = as P ol = ag Py
! A1P22R1 ’ 2 Rl ’ 3 Rl ’ 4 P2R1 ’ g AlRl ’ 6 Rl ’
o/:2OZ7P23+042(P33—6P22P5) 0/24048P23—O[6(P33—6P22P5)
7 2A2P2R, rE 4A3P2R, ’

O/ - (674) 2042(2A5P22P3R1 — A4P2P32R1 — 2A1P22P6R1 + 2A1P23R5 + 2A3P22P5R1) 043(P33 — 6P22P5)

97 AR, A3PSR? SA?PS Ry
Considering all the possible cases, we obtain the famifiedgebras listed in the theorem. O

Now we give the classification of Leibniz algebrasuch thatl./T =~ W; andL/I = R,. We denote the
next families of algebras b”(FYla Y2573, Y4, V5, V6, 77) andn(ﬂlv BQ} ﬂ:)’a ﬂ4):

le1,e1] = ns, [ea, €1] = —e3, [es, e1] = —2ey,

[ea,e1] = —3e5,  [es,e1] = —y2ws, [e2,eq] = 5(7324 + Y225),

[x2,€1] = w3, [z3,€1] = 24, [e1, e2] = es,

[T2, e2] = %564, [x3, €3] = x5, lea, €2] = —%72%,

[85, 62] = —5Ts, [$17 62] = if?n [827 62] = Y3T2 + V4T3 + V624,

(24, €2] = @5, [e1, e3] = 2eq, le2, €3] = e5 — Y323 + Yawa + Y75,

[es,e3) = Bysas,  [w1,€3] = 1574, e, €2] = —€5 — 2414 — Y7,

le1, e4] = 3es, [11,e1] = 22, le3, e4] = 3755,

[I2,64] = %%, [61,85] V2T5, [82765] = V5T5,

[21,e5] = 25.

and

le1, e1] = B, [e1, e2] = es, [e1, 3] = eu, [e1, e4] = €5,
le1, e5] = es, le1, e6] = e, le1, e7] = Bawr, le2,e1] = —es3,
le2, 2] = Bawy + Baws, [e2,e3] = e5 — B3z, [e2,eq] = es + B3xs, [e2,e5] = ex,
[e2, e6] = Bawr, [e3, e1] = —eu, es, e2] = —es, [ea, €1] = —es5,
les, e2] = —es, s, e1] = —es, e, ea] = —e7, [e6, €1] = —er,
les, 2] = — a7, lez, e1] = — oy, [z1,e1] = 22, [z1,e2] = 23,
[x1,e7] = w7, [z2, 1] = w3, (22, e2] = 74, (22, e6] = @7,
[13,e1] = 24, [x3,e2] = x5, [x3,e5] = 27, [T4,€1] = x5,
[x4, €2] = w6, (24, e4] = w7, [z5, e1] = e, [z5, €3] = @7,
[x6, €2] = x7.

Theorem 2. Let L be al0-dimensional Leibniz algebra such thafI = W;s andI is a natural L/I-module
with a minimal faithful representation. Thdnis isomorphic to the one of the pairwise non isomorphic atgeb
given in Appendix B.

Theorem 3. Let L be al14-dimensional Leibniz algebra such thafI = R, and is a natural L/I-module
with a minimal faithful representation. Thdnis isomorphic to the one of the following pairwise non isopiic
algebras:

1(0,0,0,0,0), n(0,0,0,1), n(0,0,1,0), n(0,1,0,1), n(0,1,5s,0)s,%0,
n(1,0,0,0,0), n(1,0,0,1), n(1,0,1,0), n(1,1,0,8s), n(1,1,Bs,0)p,%0,
with 35, 84 € C.
The proofs of Theoreild 2 and TheorEin 3 are carried out by appbriguments used in Theoréin 1.
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APPENDIXA. FIRST APPENDIX

A(0,0,0,0,0,0,0,0,0) | A(0,0,0,0,0,0,0,0,1) | A(0,0,0,0,0,0,0,1,0) A(0,0,0,1,1,1, 7,0, avg)
A(0,0,0,0,0,0,1,0,0) | A(0,0,0,0,0,0,1,0,1) | A(0,0,0,0,0,0,1,1,0) A(1,0,0,0,1,0,1, as, avg)
A(0,0,0,0,0,1,0,0,0) | A(0,0,0,0,0,1,0,0,1) | A(0,0,0,0,0,1,1,0,0) A(1,0,1,0,1,0, a7, g, 0)
A(0,0,0,0,1,0,0,0,0) | A(0,0,0,0,1,0,0,0,1) | A(0,0,0,0,1,0,0,1,0) A(0,0,1,1,0,0,1, ag, 0)
A(0,0,0,0,0,0,0,1,1) | A(0,0,0,1,0,0,0,1,1) | X(0,0,0,0,1,1, ar,0,0) A(0,0,0,0,1,1,7,0,1)
A(0,0,0,1,0,0,0,0,0) | A(0,0,0,1,0,0,0,0,1) | A(0,0,0,1,0,0,0,1,0) A(0,0,0,0,1,0,1, a5, 1)
A(0,0,0,1,0,0,1,0,0) | A(0,0,0,1,0,0,1,0,1) | A(0,0,0,1,0,0,1,1, ag) A(1,0,0,1,1,0, a7, g, xg)
A(0,0,0,1,0,1,0,0,1) | A(0,0,0,1,0,1,0,0,0) | A(0,0,0,1,1,0,0,0,0) A(0,0,0,1,1,0,1, ag, avg)
A(0,0,0,0,0,0,1,1,1) | A(0,0,0,1,1,0,0,0,1) | A(0,0,0,0,1,0,1, cg,0) A( ,071,070,171,048,0)
A(0,0,1,0,0,0,0,1,0) | A(0,0,1,0,0,0,1,0,0) | A(0,0,1,0,0,0,1,1,0) A(0,0,1,0,1,1, ay, g, 0)
A(0,0,1,0,0,1,0,1,0) | A(0,0,1,0,0,0,0,0,0) | A(0,0,1,0,1,0,0,0,0) A(0,0,1,1,0,1, @7,0,0)
A(0,0,0,0,0,1,1,0,1) | A(0,0,1,0,0,1,0,0,0) | A(0,0,1,1,0,0,0,0,0) A(1,0,1,1, 5,0, 7, a5, 0)
A(0,0,0,0,1,0,0,1,1) | A(0,0,1,0,1,0,0,1,0) | A(1,0,0,0,0,0,1,1, ag) A(0,0,1,1,1,0, a7, g, 0)
2(0,1,0,0,0,0,0,0,0) | A(0,1,0,0,0,0,0,1,0) | M(0,1,0,0,0,1,0,8,0) | __A0,1,0,0, L, ag, 0, g, 0)
X(0,1,0,1,0,0,0,0,0) | X(0,1,0,1,0,0,0,1,0) | A(0,1,0,1,0,1,0,s,0) | 0, 1,0, 1,1, a, 0, g, 0)
2(0,1,1,0,0,0,0,0,0) | A(0,1,1,0,0,0,0,1,0) | M0,1,1,0,0,1,0,08,0) | __A0,1,1,0, L, ag,0, ag, 0)
3(0,0,0.1,0,0.0.1,1) | A(1,0,0,0,0,0.0,0,0) | A(1,0,0,0,1,0,0, T, 0) | ML0, L, 1, 5, xg, 7, 0, 0)
X(1,0,0,0,0,0,0,1,1) | A(1,0,0,0,0,0,1,0,0) | M(1,0,1,0,0,1,7,0,0) | 0,0,1,1,1, g, a7,0,0)ag20
2(1,0,0,0,0,1,0,0,0) | A(1,0,0,0,0,1,0,0,1) | M1,0,0,0,0,1,1,0,a0) | ML 1,0, L, s, @, 0, s, 0)
X(1,0,0,0,1,0,0,0,1) | M(0,0,1,1,0,0,0,1,0) | A(0,0,0,1,1,0,0,L,a0) | A(1,0,0,0,1, 1, ar, 0, cxg)
2(1,0,0,1,0,0,0,0,0) | M(1,0,0,1,0,0,0,0,1) | M(1,0,0,1,0,0,0,1,a0) | __M1,0,0,1,0,0, L, s, cvo)
X(1,0,1,0,0,0,0,0,0) | M(1,0,1,0,0,0,0,1,0) | X(0,0,0,1,0,1,1,0, ) | \(1,0,0, 1,1 7a6,a770,a9)a6¢0
X(1,0,0,0,1,0,0,0,0) | M(1,0,0,0,0,0,1,0,1) | (0,0,1,0,1,0,1,0s,0) | A(1,0,1,0, 1, a, 7, 0, 0)arg %0
X(1,0,0,0,0,0,0,1,0) | M(1,0,0,0,0,0,0,0,1) | \(1, 1,0,0,0, 1,0, as, 0) X1, 1,0,0, 1, o, , s, 0)
2(1,1,0,0,0,0,0,0,0) | M(1,1,0,0,0,0,0,1,0) | M(1,0,1,0,0,0,1,80) | AL 1,1, as,as,a,0,as,0)
with ayq, 05, g, 07, 08, Olg € C.
APPENDIXB. SECOND APPENDIX
12(0,0,0,0,0,0,0) | 2(0,0,1,0,1,0,0) | (0,1,0,0,0, 7, 0) 1(0,0,1,1,75,0,0)20
11(0,0,0,0,0,0,1) | x(1,0,0,0,0,0,0) | (1,0,0,0,1,7,0) 2000,1,0, 1,75, 76, 0)s %0
£2(0,0,0,0,0, 1,0) 1(1,0,0,0,0,0,1) | (0,1,0,1,0,76,77) (0,1, 1, 74,75, 0,0)7. 20
H(anaovo 0, 151) u(0,0,0,l,O,l, 7) H(170507150776577) Y 150705177557670)75?50
,LL(0,0,0 O 17050) ,LL(0,0,0,L’Y5,1,0) ,LL(I,O, 7747050777) M 1507137477570 O)’YS#O
1(0,0,0,0,1,1,0) | (0,0,1,1,0,0,77) #(0,1,1,74,0,0,77) p(1,1,0 74a757'76a0)%750
1(0,0,0,1,0,0,1) | u(0,1,0,0,0,7,1) | p(1,1,0,74,0,76,77) (1, 1,73,74,0,0,97) v, 20
1(0,0,1,0,0,0,0) | p(1,0,0,0,0,1,77) /‘(07050715757050)%750 p(1, 1, 93,74, 75, 0, 0)73750 570
12(0,0,1,0,0,0,1) | #(0,1,0,0,1,7,0)

with Y3, 74,755 Y6, V7 € C.
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