

MINIMAL LINEAR REPRESENTATIONS OF FILIFORM LIE ALGEBRAS AND THEIR APPLICATION FOR CONSTRUCTION OF LEIBNIZ ALGEBRAS

I.A. KARIMJANOV, M. LADRA

ABSTRACT. In this paper we find minimal faithful representations of several classes filiform Lie algebras by means of strictly upper-triangular matrices. We investigate Leibniz algebras whose corresponding Lie algebras are filiform Lie algebras such that the action $I \times L \rightarrow I$ gives rise to a minimal faithful representation of a filiform Lie algebra. The classification up to isomorphism of such Leibniz algebras is given for low-dimensional cases.

1. INTRODUCTION

According Ado's Theorem, given any finite-dimensional complex Lie algebra \mathfrak{g} , there exists a matrix algebra isomorphic to \mathfrak{g} . In this way, every finite-dimensional complex Lie algebra can be represented as a Lie subalgebra of the complex general linear algebra $\mathfrak{gl}(n, \mathbb{C})$, formed by all the complex $n \times n$ matrices, for some $n \in \mathbb{N}$. We consider the following integer valued invariant of \mathfrak{g} :

$$\mu(\mathfrak{g}) = \min\{\dim(M) \mid M \text{ is a faithful } \mathfrak{g}\text{-module}\}$$

It follows from the proof of Ado's Theorem that $\mu(\mathfrak{g})$ can be bounded by a function depending on only n . This value is also equal to the minimal value n such that $\mathfrak{gl}(\mathbb{C}, n)$ contains a subalgebra isomorphic to \mathfrak{g} .

Given a Lie algebra \mathfrak{g} , a representation of \mathfrak{g} in \mathbb{C}^n is a homomorphism of Lie algebras $f: \mathfrak{g} \rightarrow \mathfrak{gl}(\mathbb{C}^n) = \mathfrak{gl}(n, \mathbb{C})$. The natural integer n is called the dimension of this representation. We consider faithful representations because such representations allow us to identify a given Lie algebra with its image under the representation, which is a Lie subalgebra of $\mathfrak{gl}(n, \mathbb{C})$. Representations can be also defined by using arbitrary n -dimensional vector spaces V (see [8]). In such a case, a representation would be a homomorphism of Lie algebras from \mathfrak{g} to the Lie algebra of the endomorphisms of the vector space V , $\mathfrak{gl}(V)$, which is called a \mathfrak{g} -module. However, it is sufficient to consider representations on \mathbb{C}^n because there always exists a unique $n \in \mathbb{N}$ such that V is isomorphic to \mathbb{C}^n .

Many works are devoted to find the value $\mu(\mathfrak{g})$ of several finite-dimensional Lie algebras. In [5], the value of $\mu(\mathfrak{g})$ for abelian Lie algebras and Heisenberg algebras is found, and moreover the estimated value of $\mu(\mathfrak{g})$ for filiform Lie algebras is given. In the works [3, 7, 9] the authors find the matrix representation of some low-dimensional Lie algebras.

In paper [7] the minimal faithful representation of the filiform Lie algebra \mathcal{L}_n is shown and the authors denote

$$\overline{\mu}(\mathfrak{g}) = \min\{n \in \mathbb{N} \mid \text{subalgebra of } g_n \text{ isomorphic to } \mathfrak{g}\},$$

where g_n is an upper triangular square matrix of dimension n . Moreover, they prove the next proposition

Proposition 1 ([7]). *Let \mathfrak{g} be an n -dimensional filiform Lie algebra. Then $\overline{\mu}(\mathfrak{g}) \geq n$.*

The paper is devoted to find minimal linear representations of some classes of filiform Lie algebras of dimension n . Exactly we find a minimal faithful representation of the filiform Lie algebras \mathcal{Q}_{2n} , \mathcal{R}_n and \mathcal{W}_n . Moreover we construct Leibniz algebras using these representations of filiform Lie algebras.

Leibniz algebras, which are a non-antisymmetric generalization of Lie algebras, were introduced in 1965 by Bloh in [4], who called them D -algebras and in 1993 Loday [10] made them popular and studied their (co)homology.

2010 *Mathematics Subject Classification.* 17A32, 17B30, 17B10.

Key words and phrases. Lie algebra, Leibniz algebra, filiform algebra, minimal faithful representation.

The work was partially supported was supported by Ministerio de Economía y Competitividad (Spain), grant MTM2013-43687-P (European FEDER support included) and by Xunta de Galicia, grant GRC2013-045 (European FEDER support included).

Definition 1. An algebra $(L, [-, -])$ over a field \mathbb{F} is called a Leibniz algebra if for any $x, y, z \in L$, the so-called Leibniz identity

$$[[x, y], z] = [[x, z], y] + [x, [y, z]]$$

holds.

One of the method of classification Leibniz algebras is the study of Leibniz algebras with given corresponding Lie algebras. In the papers [2, 6, 11, 12], Leibniz algebras whose corresponding Lie algebras are naturally graded filiform Lie algebras L_n , Heisenberg algebras, simple Lie \mathfrak{sl}_2 and Diamond Lie algebras are studied. Let L be a Leibniz algebra. The ideal I generated by the squares of elements of the algebra L , that is by the set $\{[x, x] : x \in L\}$, plays an important role in the theory since it determines the (possible) non-Lie character of L . From the Leibniz identity, this ideal satisfies

$$[L, I] = 0.$$

Clearly, the quotient algebra L/I is a Lie algebra, called the *corresponding Lie algebra* of L . The map $I \times L/I \rightarrow I$, $(i, \bar{x}) \mapsto [i, x]$ endows I with a structure of L/I -module (see [1]).

Denote by $Q(L) = L/I \oplus I$. Then the operation $(-, -)$ defines a Leibniz algebra structure on $Q(L)$, where

$$(\bar{x}, \bar{y}) = \overline{[x, y]}, \quad (\bar{x}, i) = [x, i], \quad (i, \bar{x}) = 0, \quad (i, j) = 0, \quad x, y \in L, i, j \in I.$$

Therefore, given a Lie algebra G and a G -module M , we can construct a Leibniz algebra (G, M) by the above construction. The main problem which occurs in this connections is a description of a Leibniz algebra L , such that the corresponding Leibniz algebra $Q(L)$ is isomorphic to a priory given algebra (G, M) .

Now we give definitions of nilpotent and filiform Lie algebras.

For a Lie algebra L consider the following lower central series:

$$L^1 = L, \quad L^{k+1} = [L^1, L^k] \quad k \geq 1.$$

Definition 2. A Lie algebra L is called nilpotent if there exists $s \in \mathbb{N}$ such that $L^s = 0$.

Definition 3. A Lie algebra L is said to be filiform if $\dim L^i = n - i$, where $n = \dim L$ and $2 \leq i \leq n$.

We list some classes of n -dimension filiform Lie algebras with basis $\{e_1, \dots, e_n\}$.

1. Let \mathcal{L}_n be the Lie algebra defined by

$$[e_1, e_i] = -[e_i, e_1] = e_{i+1}, \quad 2 \leq i \leq n-1.$$

2. Let \mathcal{Q}_{2s} ($n = 2s$) be the nilpotent Lie algebra defined by

$$\begin{aligned} [e_1, e_i] &= -[e_i, e_1] = e_{i+1}, & 2 \leq i \leq 2s-2, \\ [e_{2s+1-i}, e_i] &= -[e_i, e_{2s+1-i}] = (-1)^i e_{2s}, & 2 \leq i \leq s. \end{aligned}$$

3. Let \mathcal{R}_n be defined by

$$\begin{aligned} [e_1, e_i] &= -[e_i, e_1] = e_{i+1}, & 2 \leq i \leq n-1, \\ [e_2, e_i] &= -[e_i, e_2] = e_{i+2}, & 3 \leq i \leq n-2. \end{aligned}$$

4. Let \mathcal{W}_n be the Lie algebra whose brackets in the basis are:

$$[e_i, e_j] = -[e_j, e_i] = (j-i)e_{i+j}, \quad i+j \leq n.$$

The algebras \mathcal{L}_n and \mathcal{Q}_{2n} are naturally graded filiform Lie algebras. The algebra \mathcal{W}_n is the finite-dimensional Witt algebra.

2. MINIMUM LINEAR REPRESENTATION OF FILIFORM LIE ALGEBRAS

Proposition 2. Let \mathcal{Q}_{2n} be a $2n$ -dimensional filiform Lie algebra with basis $\{e_i\}_{i=1}^{2n}$. Then its minimal faithful representation is given by

$$a_1 e_1 + a_2 e_2 + \dots + a_{2n} e_{2n} \mapsto \begin{pmatrix} 0 & a_2 & -a_3 & \dots & a_{2n-2} & -a_{2n-1} & -2a_{2n} \\ 0 & 0 & a_1 & \dots & 0 & 0 & a_{2n-1} \\ 0 & 0 & 0 & \dots & 0 & 0 & a_{2n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & a_1 & a_3 \\ 0 & 0 & 0 & \dots & 0 & 0 & a_2 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \end{pmatrix}.$$

Proof. Consider a bilinear map $\varphi: Q_{2n} \rightarrow \mathfrak{gl}_{2n}$ given by

$$\varphi(e_1) = \sum_{k=2}^{2n-2} E_{k,k+1}, \quad \varphi(e_i) = (-1)^i E_{1,i} + E_{2n-i+1,2n} \quad 2 \leq i \leq 2n-1, \quad \varphi(e_{2n}) = -2E_{1,2n},$$

where $E_{i,j}$ is the matrix with (i,j) -th entry equal to 1 and others zero.

Checking $[\varphi(e_i), \varphi(e_j)] = \varphi(e_i)\varphi(e_j) - \varphi(e_j)\varphi(e_i)$ for all $1 \leq i, j \leq 2n$, we verify that φ is an isomorphism of algebras. Then by Proposition 1 we obtain that it is minimal. \square

Let us denote by $V = \mathbb{C}^{2n}$ the natural $\varphi(Q_{2n})$ -module and endow it with a Q_{2n} -module structure by

$$(x, e) = x\varphi(e).$$

Then we obtain

$$\begin{cases} (x_i, e_1) = x_{i+1}, & 2 \leq i \leq 2n-2, \\ (x_1, e_i) = (-1)^i x_i, & 2 \leq i \leq 2n-1, \\ (x_{2n+1-i}, e_i) = x_{2n}, & 2 \leq i \leq 2n-1, \\ (x_1, e_{2n}) = -2x_{2n}, \end{cases} \quad (1)$$

and the remaining products are zero.

Proposition 3. *Let \mathcal{R}_n be a n -dimensional filiform Lie algebra with basis $\{e_i\}_{i=1}^n$. Then its minimal faithful representation is given by*

$$a_1 e_1 + a_2 e_2 + \cdots + a_n e_n \mapsto \begin{pmatrix} 0 & a_1 & a_2 & 0 & \dots & 0 & 0 & 0 & a_n \\ 0 & 0 & a_1 & a_2 & \dots & 0 & 0 & 0 & a_{n-1} \\ 0 & 0 & 0 & a_1 & \dots & 0 & 0 & 0 & a_{n-2} \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & a_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & a_1 & a_2 & a_4 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & a_1 & a_3 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & a_2 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Proof. We take bilinear map $\psi: \mathcal{R}_n \rightarrow \mathfrak{gl}(n, \mathbb{C})$ given by

$$\psi(e_1) = \sum_{i=1}^{n-2} E_{i,i+1}, \quad \psi(e_2) = \sum_{i=1}^{n-3} E_{i,i+2} + E_{n-1,n}, \quad \psi(e_i) = E_{n+1-i,n}, \quad 3 \leq i \leq n.$$

Checking $[\psi(e_i), \psi(e_j)] = \psi(e_i)\psi(e_j) - \psi(e_j)\psi(e_i)$ for all $1 \leq i, j \leq n$, we verify that ψ is an isomorphism of algebras. Then by Proposition 1 we obtain that it is minimal. \square

Now, we construct a module $V \times \mathcal{R}_n \rightarrow V$, such that

$$(x, e) = x\varphi(e).$$

Then we obtain

$$\begin{cases} (x_i, e_1) = x_{i+1}, & 1 \leq i \leq n-2, \\ (x_i, e_2) = x_{i+2}, & 1 \leq i \leq n-3, \\ (x_{n+1-j}, e_j) = x_n, & 2 \leq j \leq n. \end{cases}$$

the remaining products in the action being zero.

Denote by $C_m^n = \binom{m}{n}$ the binomial coefficient.

Proposition 4. *Let \mathcal{W}_n be an n -dimensional filiform Lie algebra with basis $\{e_i\}_{i=1}^n$. Then \mathcal{W}_n is isomorphic to a subalgebra of $\mathfrak{gl}(n, \mathbb{C})$ by φ :*

$$\begin{aligned} \varphi(e_1) &= \sum_{k=1}^{n-2} E_{k,k+1}, \quad \varphi(e_2) = \sum_{k=1}^{n-3} \frac{1}{n-k} E_{k,k+2} + E_{n-1,n}, \\ \varphi(e_i) &= \frac{1}{(i-2)!} \left(\sum_{k=1}^{n-i-1} \left(\sum_{s=0}^{i-2} \frac{(-1)^{i+s} C_{i-2}^s}{n-k-s} \right) E_{k,k+i} + E_{n+1-i,n} \right), \quad 3 \leq i \leq n, \end{aligned}$$

and this faithful representation is minimal.

Proof. We take the isomorphism $\varphi: \mathcal{W}_n \rightarrow \mathfrak{gl}(n, \mathbb{C})$ such that

$$\varphi(e_1) = \sum_{k=1}^{n-2} E_{k,k+1}, \quad \varphi(e_2) = \sum_{s=1}^{n-3} \alpha_s E_{s,s+2} + E_{n-1,n}.$$

Now we consider

$$\begin{aligned} \varphi(e_3) &= [\varphi(e_1), \varphi(e_2)] = \varphi(e_1)\varphi(e_2) - \varphi(e_2)\varphi(e_1) = \left(\sum_{k=1}^{n-2} E_{k,k+1} \right) \left(\sum_{s=1}^{n-3} \alpha_s E_{s,s+2} + E_{n-1,n} \right) - \\ &\quad \left(\sum_{s=1}^{n-3} \alpha_s E_{s,s+2} + E_{n-1,n} \right) \left(\sum_{k=1}^{n-2} E_{k,k+1} \right) = \sum_{k=1}^{n-4} (\alpha_{k+1} - \alpha_k) E_{k,k+3} + E_{n-2,n}, \\ \varphi(e_4) &= \frac{1}{2} [\varphi(e_1), \varphi(e_3)] = \frac{1}{2} (\varphi(e_1)\varphi(e_3) - \varphi(e_3)\varphi(e_1)) = \frac{1}{2} \left(\left(\sum_{s=1}^{n-2} E_{s,s+1} \right) \left(\sum_{k=1}^{n-4} (\alpha_{k+1} - \alpha_k) E_{k,k+3} + E_{n-2,n} \right) \right. \\ &\quad \left. - \left(\sum_{k=1}^{n-4} (\alpha_{k+1} - \alpha_k) E_{k,k+3} + E_{n-2,n} \right) \left(\sum_{s=1}^{n-2} E_{s,s+1} \right) \right) = \frac{1}{2} \left(\sum_{k=1}^{n-5} (\alpha_k - 2\alpha_{k+1} + \alpha_{k+2}) E_{k,k+4} + E_{n-3,n} \right), \end{aligned}$$

Let us suppose that

$$\varphi(e_i) = \frac{1}{(i-2)!} \left(\sum_{p=1}^{n-i-1} \left(\sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{p+s} \right) E_{p,p+i} + E_{n+1-i,n} \right), \quad 3 \leq i \leq n.$$

Let us suppose the previous equality true for $i = k$ and we will consider for $i = k + 1$.

$$\begin{aligned} \varphi(e_{k+1}) &= \frac{1}{k-1} [\varphi(e_1), \varphi(e_k)] = \frac{1}{k-1} (\varphi(e_1)\varphi(e_k) - \varphi(e_k)\varphi(e_1)) \\ &= \frac{1}{k-1} \left(\frac{1}{(k-2)!} \left(\sum_{t=1}^{n-2} E_{t,t+1} \right) \left(\sum_{p=1}^{n-k-1} \left(\sum_{s=0}^{k-2} (-1)^{k+s} C_{k-2}^s \alpha_{p+s} \right) E_{p,p+k} + E_{n+1-k,n} \right) \right. \\ &\quad \left. - \frac{1}{(k-2)!} \left(\sum_{p=1}^{n-k-1} \left(\sum_{s=0}^{k-2} (-1)^{k+s} C_{k-2}^s \alpha_{p+s} \right) E_{p,p+k} + E_{n+1-k,n} \right) \left(\sum_{t=1}^{n-2} E_{t,t+1} \right) \right) \\ &= \frac{1}{(k-1)!} \left(\sum_{p=1}^{n-k-2} \left(\sum_{s=0}^{k-2} (-1)^{k+s} C_{k-2}^s (\alpha_{p+s+1} - \alpha_{p+s}) \right) E_{p,p+k+1} + E_{n-k,n} \right) \\ &= \frac{1}{(k-1)!} \left(\sum_{p=1}^{n-k-2} \left(\sum_{s=0}^{k-1} (-1)^{k+s+1} C_{k-1}^s \alpha_{p+s} \right) E_{p,p+k+1} + E_{n-k,n} \right). \end{aligned}$$

From the multiplications, where $i + j \leq n$

$$\begin{aligned}
[\varphi(e_i), \varphi(e_j)] &= \varphi(e_i)\varphi(e_j) - \varphi(e_j)\varphi(e_i) \\
&= \frac{1}{(i-2)!(j-2)!} \left(\left(\sum_{p=1}^{n-i-1} \left(\sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{p+s} \right) E_{p,p+i} + E_{n+1-i,n} \right) \right. \\
&\quad \left(\sum_{q=1}^{n-j-1} \left(\sum_{r=0}^{j-2} (-1)^{j+r} C_{j-2}^r \alpha_{q+r} \right) E_{q,q+j} + E_{n+1-j,n} \right) \\
&\quad - \left(\sum_{q=1}^{n-j-1} \left(\sum_{r=0}^{j-2} (-1)^{j+r} C_{j-2}^r \alpha_{q+r} \right) E_{q,q+j} + E_{n+1-j,n} \right) \\
&\quad \left. \left(\sum_{p=1}^{n-i-1} \left(\sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{p+s} \right) E_{p,p+i} + E_{n+1-i,n} \right) \right) \\
&= \frac{1}{(i-2)!(j-2)!} \left(\sum_{p=1}^{n-i-j-1} \left(\left(\sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{p+s} \right) \left(\sum_{r=0}^{j-2} (-1)^{j+r} C_{j-2}^r \alpha_{p+i+r} \right) \right. \right. \\
&\quad - \left(\sum_{r=0}^{j-2} (-1)^{j+r} C_{j-2}^r \alpha_{p+r} \right) \left(\sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{p+j+s} \right) E_{p,p+i+j} \\
&\quad \left. \left. + \left(\sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{n+s+1-i-j} - \sum_{r=0}^{j-2} (-1)^{j+r} C_{j-2}^r \alpha_{n+r+1-i-j} \right) E_{n+1-i-j,n} \right) \right).
\end{aligned}$$

On the other hand

$$[\varphi(e_i), \varphi(e_j)] = (j-i)\varphi(e_{i+j}) = \frac{(j-i)}{(i+j-2)!} \left(\sum_{p=1}^{n-i-j-1} \left(\sum_{s=0}^{i+j-2} (-1)^{i+j+s} C_{i+j-2}^s \alpha_{p+s} \right) E_{p,p+i+j} + E_{n+1-i-j,n} \right).$$

Next, we have the following system of equations

$$\begin{aligned}
&\left(\sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{p+s} \right) \left(\sum_{r=0}^{j-2} (-1)^{j+r} C_{j-2}^r \alpha_{p+i+r} \right) - \left(\sum_{r=0}^{j-2} (-1)^{j+r} C_{j-2}^r \alpha_{p+r} \right) \\
&\left(\sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{p+j+s} \right) + \frac{(i-j)(i-2)!(j-2)!}{(i+j-2)!} \sum_{s=0}^{i+j-2} (-1)^{i+j+s} C_{i+j-2}^s \alpha_{p+s} = 0, \tag{2}
\end{aligned}$$

where $1 \leq p \leq n - i - j - 1$, $i + j \leq n - 2$.

$$\sum_{r=0}^{j-2} (-1)^{j+r} C_{j-2}^r \alpha_{n+r+1-i-j} - \sum_{s=0}^{i-2} (-1)^{i+s} C_{i-2}^s \alpha_{n+s+1-i-j} = \frac{(i-j)(i-2)!(j-2)!}{(i+j-2)!}, \quad i + j \leq n. \tag{3}$$

One of the solutions of the system of equations (2) and (3) is

$$\alpha_i = \frac{1}{n-i}, \quad 1 \leq i \leq n-3.$$

Now we will check it. We using the next property of binomial coefficients

$$\sum_{k=0}^m \frac{(-1)^k C_m^k}{x+k} = \frac{m!}{x(x+1)\cdots(x+m)}, \quad x \notin \{0, -1, \dots, -m\}. \tag{4}$$

By putting all the values of α_i in the system (2)–(3), and by using the property (4), we get

$$\begin{aligned} & \frac{(i-2)!}{(n-i-p+2)(n-i-p+3)\cdots(n-p)} \cdot \frac{(j-2)!}{(n-i-j-p+2)(n-i-j-p+3)\cdots(n-i-p)} \\ & - \frac{(j-2)!}{(n-j-p+2)(n-j-p+3)\cdots(n-p)} \cdot \frac{(i-2)!}{(n-i-j-p+2)(n-i-j-p+3)\cdots(n-j-p)} \\ & + \frac{(i-j)(i-2)!(j-2)!}{(n-i-j-p+2)(n-i-j-p+3)\cdots(n-p)} = 0, \quad 1 \leq p \leq n-i-j-1, \quad i+j \leq n-2, \end{aligned}$$

and

$$\frac{(j-2)!}{(i+1)(i+2)\cdots(i+j-1)} - \frac{(i-2)!}{(j+1)(j+2)\cdots(i+j-1)} = \frac{(i-j)(i-2)!(j-2)!}{(i+j-2)!}, \quad i+j \leq n.$$

So, the values of α_i satisfy the system of equations (2)–(3).

From Proposition 1 we get that this representation is minimal. \square

Now, we construct a module $V \times \mathcal{W}_n \rightarrow V$, such that

$$(x, e) = x\varphi(e).$$

Then we obtain

$$\begin{cases} (x_i, e_1) = x_{i+1}, & 1 \leq i \leq n-2, \\ (x_i, e_2) = \frac{1}{n-i}x_{i+2}, & 1 \leq i \leq n-3, \\ (x_i, e_j) = \frac{1}{(j-2)!} \sum_{s=0}^{j-2} \frac{(-1)^{j+s} C_{j-2}^s}{n-i-s} x_{i+j}, & 3 \leq j \leq n-2, \quad 1 \leq i \leq n-j-1, \\ (x_{n+1-j}, e_j) = \frac{1}{(j-2)!} x_n, & 2 \leq j \leq n, \end{cases}$$

and the remaining products in the action are zero.

3. LEIBNIZ ALGEBRAS CONSTRUCTED BY MINIMAL FAITHFUL REPRESENTATIONS OF LIE ALGEBRA

Now we investigate Leibniz algebras L such that $L/I \cong \mathcal{Q}_{2n}$ and $I = V$ as a \mathcal{Q}_{2n} -module.

Further we define the multiplications $[e_i, e_j]$ for $1 \leq i, j \leq 2n$. We put

$$[e_i, e_j] = \begin{cases} e_{i+1} + \sum_{k=1}^{2n} \alpha_{i,1}^k x_k, & i = 1, 2 \leq j \leq 2n-2, \\ -e_{j+1} + \sum_{k=1}^{2n} \alpha_{1,j}^k x_k, & j = 1, 2 \leq i \leq 2n-2, \\ (-1)^i e_{2n} + \sum_{k=1}^{2n} \alpha_{i,j}^k x_k, & i = 2n-j+1, 2 \leq j \leq n, \\ (-1)^{i+1} e_{2n} + \sum_{k=1}^{2n} \alpha_{i,j}^k x_k, & j = 2n-i+1, 2 \leq i \leq n, \\ \sum_{k=1}^{2n} \alpha_{i,j}^k x_k, & \text{otherwise.} \end{cases} \quad (5)$$

In the multiplication (5), by taking the basis transformation

$$\begin{aligned} e'_1 &= e_1 - \sum_{k=2}^{2n-2} \alpha_{1,1}^{k+1} x_k - (\alpha_{1,2}^{2n} + \alpha_{2,1}^{2n}) x_{2n-1}, & e'_2 &= e_2 - \sum_{k=2}^{2n-2} (\alpha_{1,2}^{k+1} + \alpha_{2,1}^{k+1}) x_k, \\ e'_i &= [e'_1, e'_{i-1}], \quad 3 \leq i \leq 2n-1, & e'_{2n} &= [e'_{2n-1}, e'_2], \end{aligned}$$

we obtain

$$\begin{aligned} [e_1, e_1] &= \alpha_{1,1}^1 x_1 + \alpha_{1,1}^2 x_2 + \alpha_{1,1}^{2n} x_{2n}, & [e_2, e_1] &= -e_3 + \alpha_{2,1}^1 x_1 + \alpha_{2,1}^2 x_2, \\ [e_1, e_i] &= e_{i+1}, \quad 2 \leq i \leq 2n-2, & [e_{2n-1}, e_2] &= e_{2n}. \end{aligned} \quad (6)$$

There are difficult to classify the general case, therefore we classify low-dimensional Leibniz algebras of such type. It is well known that $\mathcal{L}_4 \cong \mathcal{Q}_4$, therefore we start classifying Leibniz algebras such that $L/I \cong \mathcal{Q}_6$.

Using the multiplications (1)–(6), and by checking Leibniz identity, we get the following family of algebras denoted by $\lambda(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_9)$:

$$\left\{ \begin{array}{lll} [e_1, e_1] = \alpha_1 x_6, & [e_1, e_3] = e_4, & [x_1, e_6] = -2x_6, \\ [e_3, e_1] = -e_4, & [e_5, e_3] = \frac{1}{4}\alpha_3 x_6, & [e_2, e_1] = -e_3 + \alpha_2 x_1 + \alpha_3 x_2, \\ [e_4, e_1] = -e_5, & [x_1, e_3] = -x_3, & [e_2, e_2] = \alpha_5 x_3 + \alpha_7 x_4 + \alpha_8 x_5, \\ [e_5, e_1] = -\alpha_4 x_6, & [x_4, e_3] = x_6, & [e_3, e_2] = 4\alpha_2 x_2 - \alpha_6 x_3 - 2\alpha_7 x_5 - \alpha_9 x_6, \\ [e_6, e_1] = -\frac{1}{4}\alpha_3 x_6, & [e_1, e_4] = e_5, & [e_4, e_2] = -2\alpha_2 x_3 + \frac{1}{2}\alpha_6 x_4, \\ [x_2, e_1] = x_3, & [e_3, e_4] = e_6, & [e_2, e_3] = -3\alpha_2 x_2 + \alpha_6 x_3 - \alpha_5 x_4 + \alpha_7 x_5 + \alpha_9 x_6, \\ [x_3, e_1] = x_4, & [x_1, e_4] = x_4, & [e_3, e_3] = -2\alpha_2 x_3 + \frac{1}{2}\alpha_6 x_4, \\ [x_4, e_1] = x_5, & [x_3, e_4] = x_6, & [e_4, e_3] = -e_6 + 2\alpha_2 x_4 - \frac{1}{2}\alpha_6 x_5, \\ [e_1, e_2] = e_3, & [e_1, e_5] = \alpha_4 x_6, & [e_2, e_4] = 4\alpha_2 x_3 - \frac{3}{2}\alpha_6 x_4 + \alpha_5 x_5, \\ [e_5, e_2] = e_6, & [x_1, e_5] = -x_5, & [e_4, e_4] = -2\alpha_2 x_5 - \frac{1}{2}\alpha_3 x_6, \\ [e_6, e_2] = -\alpha_6 x_6, & [x_2, e_5] = x_6, & [e_2, e_5] = -e_6 - 3\alpha_2 x_4 + \frac{3}{2}\alpha_6 x_5, \\ [x_1, e_2] = x_2, & [e_2, e_6] = \frac{5}{2}\alpha_6 x_6, & [e_3, e_5] = 2\alpha_2 x_5 + \frac{3}{4}\alpha_3 x_6, \\ [x_5, e_2] = x_6, & [e_3, e_6] = -2\alpha_2 x_6, & [e_1, e_6] = -2\alpha_2 x_5 - \frac{3}{4}\alpha_3 x_6. \end{array} \right.$$

Theorem 1. *Let L be a 12-dimensional Leibniz algebra such that $L/I \cong \mathcal{Q}_6$ and I is a natural L/I -module with a minimal faithful representation. Then L is isomorphic to the one of the pairwise non isomorphic algebras given in Appendix A.*

Proof. Let $L(\alpha) := L$ be the 12-dimensional Leibniz algebra given by $\lambda(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_9)$. Let $\varphi: L(\alpha) \rightarrow L(\alpha')$ be the isomorphism of Leibniz algebras:

$$\varphi(e_1) = \sum_{k=1}^6 A_k e_k + \sum_{k=1}^6 B_k x_k, \quad \varphi(e_2) = \sum_{k=1}^6 P_k e_k + \sum_{k=1}^6 Q_k x_k, \quad \varphi(x_1) = \sum_{k=1}^6 M_k e_k + \sum_{k=1}^6 R_k x_k,$$

and the other elements of the new basis are obtained as products of the above elements.

Then, we obtain the following restrictions:

$$\begin{aligned} A_1 P_2 R_4 &\neq 0, \quad A_2 = B_1 = P_1 = M_i = 0, \quad 1 \leq i \leq 6, \\ A_6 &= \frac{-A_4^2 + 2A_3 A_5}{2A_1}, \quad P_4 = \frac{P_3^2}{2P_2}, \quad R_2 = \frac{A_3 R_1}{A_1}, \quad R_3 = -\frac{A_4 R_1}{A_1}, \quad R_4 = \frac{A_5 R_1}{A_1}, \\ B_2 &= \frac{2A_3^2 \alpha_2}{A_1}, \quad B_3 = \frac{-4\alpha_2 A_3 A_4 - \alpha_6 A_3^2}{2A_1}, \quad B_4 = \frac{2\alpha_2 A_4^2 + \alpha_6 A_3 A_4}{2A_1}, \\ B_5 &= \frac{4\alpha_2 P_2^2 (A_1^2 R_6 - A_4 A_5 R_1 - A_1 A_3 R_5) - \alpha_6 A_4^2 P_2^2 R_1 - 4A_3^2 \alpha_7 P_2^2 R_1}{4A_1 P_2^2 R_1} + \\ &\quad \underline{\alpha_3 (4A_1 A_5 P_2 P_3 R_1 - 2A_1 A_4 P_3^2 R_1 + 4A_1 A_3 P_2 P_5 R_1 - 4A_1^2 P_2 P_6 R_1 + 4A_1^2 P_2^2 R_5)} \\ &\quad \underline{4A_1 P_2^2 R_1}, \\ Q_1 &= -\alpha_2 P_3, \quad Q_2 = \frac{3\alpha_2 (A_3 P_3 - A_4 P_2) - \alpha_3 A_1 P_3}{A_1}, \\ Q_3 &= \frac{2\alpha_2 (4A_5 P_2^2 - A_4 P_2 P_3 - A_3 P_3^2) + \alpha_3 A_1 P_3^2 + 2\alpha_5 A_3 P_2^2 + 2\alpha_6 (A_4 P_2^2 - 2A_3 P_2 P_3)}{2A_1 P_2} \\ Q_4 &= \frac{\alpha_2 (2A_4 P_3^2 R_1 + A_1 P_2^2 R_5 - 3A_5 P_2 P_3 R_1 + 2A_1 P_2 P_6 R_1 - 2A_3 P_2 P_5 R_1)}{A_1 P_2 R_1} + \\ &\quad \underline{-4\alpha_3 A_1 P_2 P_5 - 4\alpha_5 A_4 P_2^2 + \alpha_6 (A_3 P_3^2 - 6A_5 P_2^2 + 2A_4 P_2 P_3) + 4\alpha_7 A_3 P_2^2} \\ &\quad \underline{4A_1 P_2}, \\ Q_5 &= \frac{\alpha_2 (A_5 P_2^2 P_3^2 R_1 - A_4 P_2 P_3^3 R_1 + 2A_3 P_2^2 P_3 P_5 R_1 - 2A_1 P_2^2 P_3 P_6 R_1 - A_1 P_2^3 P_3 R_5)}{A_1 P_2^3 R_1} + \\ &\quad \underline{8\alpha_5 A_5 P_2^4 R_1 + \alpha_6 (12A_3 P_2^3 P_5 R_1 - 8A_4 P_2^2 P_3^2 R_1 - 12A_1 P_2^3 P_6 R_1 + 12A_5 P_2^3 P_3 R_1)} \\ &\quad \underline{8A_1 P_2^3 R_1} \end{aligned}$$

$$\frac{\alpha_3 A_1 (P_2^2 P_3 P_5 - P_3^4) + \alpha_7 (A_4 P_2^4 - 2 A_3 P_2^3 P_3) + \alpha_8 A_3 P_2^4}{A_1 P_2^3},$$

And

$$\begin{aligned} \alpha'_1 &= \frac{\alpha_1}{A_1 P_2^2 R_1}, & \alpha'_2 &= \frac{\alpha_2 A_1 P_2}{R_1}, & \alpha'_3 &= \frac{\alpha_3 A_1}{R_1}, & \alpha'_4 &= \frac{\alpha_4 A_1}{P_2 R_1}, & \alpha'_5 &= \frac{\alpha_5 P_2}{A_1 R_1}, & \alpha'_6 &= \frac{\alpha_6 P_2}{R_1}, \\ \alpha'_7 &= \frac{2\alpha_7 P_2^3 + \alpha_2 (P_3^3 - 6P_2^2 P_5)}{2A_1^2 P_2^2 R_1}, & \alpha'_8 &= \frac{4\alpha_8 P_2^3 - \alpha_6 (P_3^3 - 6P_2^2 P_5)}{4A_1^3 P_2^2 R_1}, \\ \alpha'_9 &= \frac{\alpha_9}{A_1^2 R_1} + \frac{2\alpha_2 (2A_5 P_2^2 P_3 R_1 - A_4 P_2 P_3^2 R_1 - 2A_1 P_2^2 P_6 R_1 + 2A_1 P_2^3 R_5 + 2A_3 P_2^2 P_5 R_1)}{A_1^3 P_2^3 R_1^2} + \frac{\alpha_3 (P_3^3 - 6P_2^2 P_5)}{8A_1^2 P_2^3 R_1} \end{aligned}$$

Considering all the possible cases, we obtain the families of algebras listed in the theorem. \square

Now we give the classification of Leibniz algebras L such that $L/I \cong \mathcal{W}_5$ and $L/I \cong \mathcal{R}_7$. We denote the next families of algebras by $\mu(\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6, \gamma_7)$ and $\eta(\beta_1, \beta_2, \beta_3, \beta_4)$:

$$\left\{ \begin{array}{lll} [e_1, e_1] = \gamma_1 x_5, & [e_2, e_1] = -e_3, & [e_3, e_1] = -2e_4, \\ [e_4, e_1] = -3e_5, & [e_5, e_1] = -\gamma_2 x_5, & [e_2, e_4] = \frac{1}{2}(\gamma_3 x_4 + \gamma_2 x_5), \\ [x_2, e_1] = x_3, & [x_3, e_1] = x_4, & [e_1, e_2] = e_3, \\ [x_2, e_2] = \frac{1}{3}x_4, & [x_3, e_3] = x_5, & [e_4, e_2] = -\frac{1}{2}\gamma_2 x_5, \\ [e_5, e_2] = -\gamma_5 x_5, & [x_1, e_2] = \frac{1}{4}x_3, & [e_2, e_2] = \gamma_3 x_2 + \gamma_4 x_3 + \gamma_6 x_4, \\ [x_4, e_2] = x_5, & [e_1, e_3] = 2e_4, & [e_2, e_3] = e_5 - \gamma_3 x_3 + \gamma_4 x_4 + \gamma_7 x_5, \\ [e_4, e_3] = 3\gamma_5 x_5, & [x_1, e_3] = \frac{1}{12}x_4, & [e_3, e_2] = -e_5 - 2\gamma_4 x_4 - \gamma_7 x_5, \\ [e_1, e_4] = 3e_5, & [x_1, e_1] = x_2, & [e_3, e_4] = -3\gamma_5 x_5, \\ [x_2, e_4] = \frac{1}{2}x_5, & [e_1, e_5] = \gamma_2 x_5, & [e_2, e_5] = \gamma_5 x_5, \\ [x_1, e_5] = \frac{1}{6}x_5. \end{array} \right.$$

and

$$\left\{ \begin{array}{llll} [e_1, e_1] = \beta_1 x_7, & [e_1, e_2] = e_3, & [e_1, e_3] = e_4, & [e_1, e_4] = e_5, \\ [e_1, e_5] = e_6, & [e_1, e_6] = e_7, & [e_1, e_7] = \beta_2 x_7, & [e_2, e_1] = -e_3, \\ [e_2, e_2] = \beta_3 x_4 + \beta_4 x_6, & [e_2, e_3] = e_5 - \beta_3 x_5, & [e_2, e_4] = e_6 + \beta_3 x_6, & [e_2, e_5] = e_7, \\ [e_2, e_6] = \beta_2 x_7, & [e_3, e_1] = -e_4, & [e_3, e_2] = -e_5, & [e_4, e_1] = -e_5, \\ [e_4, e_2] = -e_6, & [e_5, e_1] = -e_6, & [e_5, e_2] = -e_7, & [e_6, e_1] = -e_7, \\ [e_6, e_2] = -\beta_2 x_7, & [e_7, e_1] = -\beta_2 x_7, & [x_1, e_1] = x_2, & [x_1, e_2] = x_3, \\ [x_1, e_7] = x_7, & [x_2, e_1] = x_3, & [x_2, e_2] = x_4, & [x_2, e_6] = x_7, \\ [x_3, e_1] = x_4, & [x_3, e_2] = x_5, & [x_3, e_5] = x_7, & [x_4, e_1] = x_5, \\ [x_4, e_2] = x_6, & [x_4, e_4] = x_7, & [x_5, e_1] = x_6, & [x_5, e_3] = x_7, \\ [x_6, e_2] = x_7. \end{array} \right.$$

Theorem 2. Let L be a 10-dimensional Leibniz algebra such that $L/I \cong \mathcal{W}_5$ and I is a natural L/I -module with a minimal faithful representation. Then L is isomorphic to the one of the pairwise non isomorphic algebras given in Appendix B.

Theorem 3. Let L be a 14-dimensional Leibniz algebra such that $L/I \cong \mathcal{R}_7$ and I is a natural L/I -module with a minimal faithful representation. Then L is isomorphic to the one of the following pairwise non isomorphic algebras:

$$\begin{aligned} \eta(0, 0, 0, 0, 0), & \quad \eta(0, 0, 0, 1), & \eta(0, 0, 1, 0), & \eta(0, 1, 0, 1), & \eta(0, 1, \beta_3, 0)_{\beta_3 \neq 0}, \\ \eta(1, 0, 0, 0, 0), & \quad \eta(1, 0, 0, 1), & \eta(1, 0, 1, 0), & \eta(1, 1, 0, \beta_4), & \eta(1, 1, \beta_3, 0)_{\beta_3 \neq 0}, \end{aligned}$$

with $\beta_3, \beta_4 \in \mathbb{C}$.

The proofs of Theorem 2 and Theorem 3 are carried out by applying arguments used in Theorem 1.

APPENDIX A. FIRST APPENDIX

$\lambda(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$	$\lambda(0, 0, 0, 0, 0, 0, 0, 0, 1, 0)$	$\lambda(0, 0, 0, 0, 0, 0, 0, 1, 0, 0)$	$\lambda(0, 0, 0, 1, 1, 1, \alpha_7, 0, \alpha_9)$
$\lambda(0, 0, 0, 0, 0, 0, 1, 0, 0, 0)$	$\lambda(0, 0, 0, 0, 0, 0, 1, 0, 1)$	$\lambda(0, 0, 0, 0, 0, 0, 1, 1, 0)$	$\lambda(1, 0, 0, 0, 1, 0, 1, \alpha_8, \alpha_9)$
$\lambda(0, 0, 0, 0, 0, 1, 0, 0, 0, 0)$	$\lambda(0, 0, 0, 0, 0, 1, 0, 0, 1)$	$\lambda(0, 0, 0, 0, 0, 1, 1, 0, 0)$	$\lambda(1, 0, 1, 0, 1, 0, \alpha_7, \alpha_8, 0)$
$\lambda(0, 0, 0, 0, 1, 0, 0, 0, 0, 0)$	$\lambda(0, 0, 0, 0, 1, 0, 0, 0, 1)$	$\lambda(0, 0, 0, 0, 1, 0, 0, 1, 0)$	$\lambda(0, 0, 1, 1, 0, 0, 1, \alpha_8, 0)$
$\lambda(0, 0, 0, 0, 0, 0, 0, 1, 1)$	$\lambda(0, 0, 0, 1, 0, 0, 0, 1, 1)$	$\lambda(0, 0, 0, 0, 1, 1, \alpha_7, 0, 0)$	$\lambda(0, 0, 0, 0, 1, 1, \alpha_7, 0, 1)$
$\lambda(0, 0, 0, 1, 0, 0, 0, 0, 0, 0)$	$\lambda(0, 0, 0, 1, 0, 0, 0, 0, 1)$	$\lambda(0, 0, 0, 1, 0, 0, 0, 1, 0)$	$\lambda(0, 0, 0, 0, 1, 0, 1, \alpha_8, 1)$
$\lambda(0, 0, 0, 1, 0, 0, 1, 0, 0, 0)$	$\lambda(0, 0, 0, 1, 0, 0, 1, 0, 1)$	$\lambda(0, 0, 0, 1, 0, 0, 1, 1, \alpha_9)$	$\lambda(1, 0, 0, 1, 1, 0, \alpha_7, \alpha_8, \alpha_9)$
$\lambda(0, 0, 0, 1, 0, 1, 0, 0, 0, 1)$	$\lambda(0, 0, 0, 1, 0, 1, 0, 0, 0)$	$\lambda(0, 0, 0, 1, 1, 0, 0, 0, 0)$	$\lambda(0, 0, 0, 1, 1, 0, 1, \alpha_8, \alpha_9)$
$\lambda(0, 0, 0, 0, 0, 0, 1, 1, 1)$	$\lambda(0, 0, 0, 1, 1, 0, 0, 0, 1)$	$\lambda(0, 0, 0, 0, 1, 0, 1, \alpha_8, 0)$	$\lambda(0, 0, 1, 0, 0, 1, 1, \alpha_8, 0)$
$\lambda(0, 0, 1, 0, 0, 0, 0, 1, 0)$	$\lambda(0, 0, 1, 0, 0, 0, 1, 0, 0)$	$\lambda(0, 0, 1, 0, 0, 0, 1, 1, 0)$	$\lambda(0, 0, 1, 0, 1, 1, \alpha_7, \alpha_8, 0)$
$\lambda(0, 0, 1, 0, 0, 1, 0, 1, 0)$	$\lambda(0, 0, 1, 0, 0, 0, 0, 0, 0)$	$\lambda(0, 0, 1, 0, 1, 0, 0, 0, 0)$	$\lambda(0, 0, 1, 1, 0, 1, 0, \alpha_7, 0, 0)$
$\lambda(0, 0, 0, 0, 0, 1, 0, 1, 0, 1)$	$\lambda(0, 0, 1, 0, 0, 1, 0, 0, 0)$	$\lambda(0, 0, 1, 1, 0, 0, 0, 0, 0)$	$\lambda(1, 0, 1, 1, \alpha_5, 0, \alpha_7, \alpha_8, 0)$
$\lambda(0, 0, 0, 0, 1, 0, 0, 1, 1)$	$\lambda(0, 0, 1, 0, 1, 0, 0, 0, 1)$	$\lambda(1, 0, 0, 0, 0, 0, 1, 1, \alpha_9)$	$\lambda(0, 0, 1, 1, 1, 0, \alpha_7, \alpha_8, 0)$
$\lambda(0, 1, 0, 0, 0, 0, 0, 0, 0, 0)$	$\lambda(0, 1, 0, 0, 0, 0, 0, 0, 1, 0)$	$\lambda(0, 1, 0, 0, 0, 1, 0, \alpha_8, 0)$	$\lambda(0, 1, 0, 0, 1, \alpha_6, 0, \alpha_8, 0)$
$\lambda(0, 1, 0, 0, 1, 0, 0, 0, 0, 0)$	$\lambda(0, 1, 0, 1, 0, 0, 0, 1, 0)$	$\lambda(0, 1, 0, 1, 0, 1, 0, \alpha_8, 0)$	$\lambda(0, 1, 0, 1, 1, \alpha_6, 0, \alpha_8, 0)$
$\lambda(0, 1, 1, 0, 0, 0, 0, 0, 0, 0)$	$\lambda(0, 1, 1, 0, 0, 0, 0, 1, 0)$	$\lambda(0, 1, 1, 0, 0, 1, 0, \alpha_8, 0)$	$\lambda(0, 1, 1, 0, 1, \alpha_6, 0, \alpha_8, 0)$
$\lambda(0, 0, 0, 1, 0, 0, 0, 0, 1, 1)$	$\lambda(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)$	$\lambda(1, 0, 0, 0, 1, 0, 0, 1, \alpha_9)$	$\lambda(1, 0, 1, 1, \alpha_5, \alpha_6, \alpha_7, 0, 0)$
$\lambda(1, 0, 0, 0, 0, 0, 0, 1, 1)$	$\lambda(1, 0, 0, 0, 0, 0, 1, 0, 0)$	$\lambda(1, 0, 1, 0, 0, 1, \alpha_7, 0, 0)$	$\lambda(0, 0, 1, 1, 1, \alpha_6, \alpha_7, 0, 0)_{\alpha_6 \neq 0}$
$\lambda(1, 0, 0, 0, 1, 0, 0, 0, 0)$	$\lambda(1, 0, 0, 0, 0, 1, 0, 0, 1)$	$\lambda(1, 0, 0, 0, 0, 1, 1, 0, \alpha_9)$	$\lambda(1, 1, 0, 1, \alpha_5, \alpha_6, 0, \alpha_8, 0)$
$\lambda(1, 0, 0, 0, 1, 0, 0, 0, 1)$	$\lambda(0, 0, 1, 1, 0, 0, 0, 1, 0)$	$\lambda(0, 0, 0, 1, 1, 0, 0, 1, \alpha_9)$	$\lambda(1, 0, 0, 0, 1, 1, \alpha_7, 0, \alpha_9)$
$\lambda(1, 0, 0, 1, 0, 0, 0, 0, 0)$	$\lambda(1, 0, 0, 1, 0, 0, 0, 0, 1)$	$\lambda(1, 0, 0, 1, 0, 0, 0, 1, \alpha_9)$	$\lambda(1, 0, 0, 1, 0, 0, 1, \alpha_8, \alpha_9)$
$\lambda(1, 0, 1, 0, 0, 0, 0, 0, 0)$	$\lambda(1, 0, 1, 0, 0, 0, 0, 0, 1)$	$\lambda(0, 0, 0, 1, 0, 1, 1, 0, \alpha_9)$	$\lambda(1, 0, 0, 1, 1, \alpha_6, \alpha_7, 0, \alpha_9)_{\alpha_6 \neq 0}$
$\lambda(1, 0, 0, 0, 1, 0, 0, 0, 0)$	$\lambda(1, 0, 0, 0, 0, 0, 1, 0, 1)$	$\lambda(0, 0, 1, 0, 1, 0, 1, \alpha_8, 0)$	$\lambda(1, 0, 1, 0, 1, \alpha_6, \alpha_7, 0, \alpha_9)_{\alpha_6 \neq 0}$
$\lambda(1, 0, 0, 0, 0, 0, 1, 0, 1)$	$\lambda(1, 0, 0, 0, 0, 0, 0, 0, 1)$	$\lambda(1, 1, 0, 0, 0, 1, 0, \alpha_8, 0)$	$\lambda(1, 1, 0, 0, 1, \alpha_6, \alpha_8, 0)$
$\lambda(1, 1, 0, 0, 0, 0, 0, 0, 0)$	$\lambda(1, 1, 0, 0, 0, 0, 0, 0, 1)$	$\lambda(1, 0, 1, 0, 0, 0, 1, \alpha_8, 0)$	$\lambda(1, 1, 1, \alpha_4, \alpha_5, \alpha_6, 0, \alpha_8, 0)$

with $\alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_9 \in \mathbb{C}$.

APPENDIX B. SECOND APPENDIX

$\mu(0, 0, 0, 0, 0, 0, 0)$	$\mu(0, 0, 1, 0, 1, 0, 0)$	$\mu(0, 1, 0, 0, 0, \gamma_6, 0)$	$\mu(0, 0, 1, 1, \gamma_5, 0, 0)_{\gamma_5 \neq 0}$
$\mu(0, 0, 0, 0, 0, 0, 1)$	$\mu(1, 0, 0, 0, 0, 0, 0)$	$\mu(1, 0, 0, 0, 1, \gamma_6, 0)$	$\mu(0, 1, 0, 1, \gamma_5, \gamma_6, 0)_{\gamma_5 \neq 0}$
$\mu(0, 0, 0, 0, 0, 1, 0)$	$\mu(1, 0, 0, 0, 0, 0, 1)$	$\mu(0, 1, 0, 1, 0, \gamma_6, \gamma_7)$	$\mu(0, 1, 1, \gamma_4, \gamma_5, 0, 0)_{\gamma_5 \neq 0}$
$\mu(0, 0, 0, 0, 0, 1, 1)$	$\mu(0, 0, 0, 1, 0, 1, \gamma_7)$	$\mu(1, 0, 0, 1, 0, \gamma_6, \gamma_7)$	$\mu(1, 0, 0, 1, \gamma_5, \gamma_6, 0)_{\gamma_5 \neq 0}$
$\mu(0, 0, 0, 0, 1, 0, 0)$	$\mu(0, 0, 0, 1, \gamma_5, 1, 0)$	$\mu(1, 0, 1, \gamma_4, 0, 0, \gamma_7)$	$\mu(1, 0, 1, \gamma_4, \gamma_5, 0, 0)_{\gamma_5 \neq 0}$
$\mu(0, 0, 0, 0, 1, 0, 1)$	$\mu(0, 0, 1, 1, 0, 0, \gamma_7)$	$\mu(0, 1, 1, \gamma_4, 0, 0, \gamma_7)$	$\mu(1, 1, 0, \gamma_4, \gamma_5, \gamma_6, 0)_{\gamma_5 \neq 0}$
$\mu(0, 0, 0, 1, 0, 0, 1)$	$\mu(0, 1, 0, 0, 0, \gamma_6, 1)$	$\mu(1, 1, 0, \gamma_4, 0, \gamma_6, \gamma_7)$	$\mu(1, 1, \gamma_3, \gamma_4, 0, 0, \gamma_7)_{\gamma_3 \neq 0}$
$\mu(0, 0, 1, 0, 0, 0, 0)$	$\mu(1, 0, 0, 0, 0, 1, \gamma_7)$	$\mu(0, 0, 0, 1, \gamma_5, 0, 0)_{\gamma_5 \neq 0}$	$\mu(1, 1, \gamma_3, \gamma_4, \gamma_5, 0, 0)_{\gamma_3 \neq 0, \gamma_5 \neq 0}$
$\mu(0, 0, 1, 0, 0, 0, 1)$	$\mu(0, 1, 0, 0, 1, \gamma_6, 0)$		

with $\gamma_3, \gamma_4, \gamma_5, \gamma_6, \gamma_7 \in \mathbb{C}$.

REFERENCES

- [1] S. Albeverio, S. A. Ayupov, B. A. Omirov, On nilpotent and simple Leibniz algebras, *Comm. Algebra* 33 (1) (2005) 159–172.
- [2] S. A. Ayupov, L. M. Camacho, A. K. Khudoyberdiyev, B. A. Omirov, Leibniz algebras associated with representations of filiform Lie algebras, *J. Geom. Phys.* 98 (2015) 181–195.
- [3] J. C. Benjumea, J. Núñez, A. F. Tenorio, Minimal linear representations of the low-dimensional nilpotent Lie algebras, *Math. Scand.* 102 (1) (2008) 17–26.
- [4] A. Bloh, A generalization of the concept of a Lie algebra, *Sov. Math., Dokl.* 6 (1965) 1450–1452.
- [5] D. Burde, On a refinement of Ado’s theorem, *Arch. Math. (Basel)* 70 (2) (1998) 118–127.
- [6] A. J. Calderón, L. M. Camacho, B. A. Omirov, Leibniz algebras of Heisenberg type, *J. Algebra* 452 (2016) 427–447.
- [7] M. Ceballos, J. Núñez, A. F. Tenorio, Representing filiform Lie algebras minimally and faithfully by strictly upper-triangular matrices, *J. Algebra Appl.* 12 (4) (2013) 1250196, 15.
- [8] W. Fulton, J. Harris, *Representation theory*, vol. 129 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1991, a first course, *Readings in Mathematics*.
- [9] R. Ghanam, G. Thompson, Minimal matrix representations of five-dimensional Lie algebras, *Extracta Math.* 30 (1) (2015) 95–133.
- [10] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, *Enseign. Math. (2)* 39 (3-4) (1993) 269–293.
- [11] B. A. Omirov, I. S. Rakhimov, R. M. Turdibaev, On description of Leibniz algebras corresponding to sl_2 , *Algebr. Represent. Theory* 16 (5) (2013) 1507–1519.
- [12] S. Uguz, I. A. Karimjanov, B. A. Omirov, Leibniz algebras associated with representations of the Diamond Lie algebra, arXiv:1507.01349 (2015).

[I.A. KARIMJANOV–M. LADRA] DEPARTMENT OF ALGEBRA, UNIVERSITY OF SANTIAGO DE COMPOSTELA, 15782, SANTIAGO DE COMPOSTELA, SPAIN

E-mail address: iqbolli@gmail.com – manuel.ladra@usc.es