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Abstract

The main result of this paper is to prove that if a (right) Leibniz
algebra L is right nilpotent of degree n, then L is strongly nilpotent of
degree less or equal to 4n? — 2n + 1.

Résumé

Nous prouvons que toute algébre de Leibniz (droite) L nilpotente
G droite d’indice n est fortement nilpotente d’un indice inférieur ou
égal & 4n% — 2n + 1.
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1 Introduction

In [I] it is proved that a Malcev algebra is strongly nilpotent if and only if
it is right nilpotent. So for Malcev algebras right nilpotency, left nilpotency
and strong nilpotency are equivalent to nilpotency. Since Malcev algebra is
anti-commutative, right nilpotency and left nilpotency are equivalent. This
result fails for Leibniz algebras, see for example [4, Exemple 3.3|, which is
left nilpotent and not right nilpotent.
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Using the notion of Esj-right nil (or Esi-left nil) we prove that if an ideal
B of a (right) Leibniz algebra L is right nilpotent of degree n, then B is
strongly nilpotent of degree less or equal to 4n? — 2n + 1.

In section 2] we give some definitions that we will used along the paper,
then in the section [3, we prove some results on right products of length n.
The section M is devoted to right products of weight n in the ideal B and in
the section [B, we give the main results.

2 Preliminairies

Throughout this paper, F' will be a field of characteristic not 2. All vector
spaces and algebras will be finite dimensional over F'. Let n be a nonnegative
integer, and let us denote the set {1,2,--- n} by I(n).

Definition 2.1 (Leibniz algebra) [5, 4]
A Leibniz algebra is a vector space L equipped with a bilinear map [—, —] :
L x L — L, satisfying the Leibniz identity:

[z, [y, 2]] = [lz, 4], 2] = [l 2], y] for any 2.y, z € L. (1)

If the condition [z,z] = 0 is fulfilled, the Leibniz identity is equivalent
to the so-called Jacobi identity. Therefore Lie algebras are particular cases
of Leibniz algebras. Algebras which satisfy (1) are also call right Leibniz
algebras and left Leibniz algebras are defined as followed:

Definition 2.2 (left Leibniz algebra) [{)]
A left Leibniz algebra is a vector space L equipped with a bilinear map
[—,—]: L x L — L, satisfying the left Leibniz identity:

[, [y, 2] = [[z, 9], 2] + [y, [v, 2] for any z,y, 2 € L. (2)

It follows from the Leibniz identity (Il) that in any Leibniz algebra one
has
[y, [z,z]] =0, [z, [x,y]] + [z, [y, x]] = 0, for all x,y,z € L.

Definition 2.3 A subspace H of a Leibniz algebra L is called left (respec-
tiely right) ideal if for a € H and x € L one has [x,a] € H (respectively
la,z] € H). If H is both left and right ideal, then H is called (two-sided)
ideal.



Let us denote the product [a, b] by ab for all a,b in L. Ess(L) will be the
ideal generated by all the squares of the elements of L.

For an ideal B of a Leibniz algebra L, we introduce the notations and
following terminologies:

Let P be a product of m factors s,,, Sm—1," - ,S1, that have been associ-
ated in an arbritary way. We suppose that n or more factors belong to B.
We say that the product P is of length m and of weight n with respect to
the ideal B or more simply that P is of length m and of weight n in B. The
length m of P will be noted # (P) and its weight n will be noted #p (P).

When P = ((-++ ((SmSm—1) Sm—2- ) S3) S2) s1 where the association is
made always right, we say that P is a right product and we write P =
SmSm—1Sm—2 - - - s1. Similarly, if P = 51 (s2 (s3 (- - Sm—2 (Sm-15m)) - - - )) where
the association is made always left, we say that P is a left product.

Let Sy, Sa, -+, S, be right products. One can write the right product (with
S; as factors) N = S,5,-1---S;. We call N a standard product.

Definitions 2.4 o A subspace B of the underlying vector space L is right
nilpotent if B™ = {0} for some n > 1, where B! = B and B"™! =
B" - B. By convention, we set B = L. Notice that B"™ is generated by
right products of length n and weight n in B.

o A subspace B of the underlying vector space L is left nilpotent if "B = 0
for some n > 1, where '\B = B and *™"B = B - ("B). By convention,
we set °B = L. Notice that "B is generated by left products of length n
and weight n in B.

Definitions 2.5 o Let B be the subspace of the underlying vector space
L generated by all the products of length n in B, associated in arbritary
way. We say that the ideal B is nilpotent if there exists an integer n
such that BI"} = {0}.

o Let B™ be the subspace generated by all products of elements in L
with at least n elements in B. A subspace B is strongly nilpotent if
B™ = {0} for somen > 1.

Naturally, B is an ideal of L and one has
BOBWDOB® D...0BM™ D... and BYBY C B for all nonnegative
integers 7,7 > 1.

Definitions 2.6 o Let D be a subspace of the underlying vector space L.
Let k be a nonnegative integer. Dy, 1 is the vector subspace generated
by all right products: "day, - - - agasay " where d belongs to D and a;
belongs to L for any integer i € I(k).
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e Let D be a subspace of the underlying vector space L. Let k be a a
nonnegative integer. (1D is the vector subspace generated by all left
products: "aj(ag(as(- - (agd)))--+)" where d belongs to D and a; be-
longs to L for any integer i € 1(k).

Definitions 2.7 e Let B # {0} be an ideal of the Leibniz algebra L. If
there is an integer k > 1, such that the ideal Es(B) = B N Ess(L)
satisfies Es(B)r = Es(B)AAA---A = {0}, we will say that B is

’ S———

k times

Esg-right nal.

o Let B # {0} be an ideal of the Leibniz algebra L. If there is an integer
k > 1, such that the ideal Es(B) = B N Ess(L) satisfies (1Es(B) =
A---AAAEs(B) = {0}, we will say that B is Esi-left nil.

—_—

k times

Definition 2.8 Let L be a Leibniz algebra and B an ideal in L. Let a,b ly
in L. If a —b € B, we will say that a = b (modulo B).

3 Right products in the Leibniz algebra L

Lemma 3.1 Let L be a Leibniz algebra and B an ideal of L. For all a € L
and for allb € B, ab+ ba € Es(B) = BN Ess(L).

Proof: Obvious. O
Lemma 3.2 For any integer n > 1, B" C "B + Es(B).

Proof: For n =1 or 2, the result is obvious. Let n = 3 and a, b, ¢ be ele-
ments of B, we have a(bc) + (be)a € Es(B) and so (bc)a equals a(be) modulo
Es(B). So, we can write B®> C °B + FEs(B). Let us set by hypothesis that
BP C PB+ Es(B) for all integer p < n and prove that B"™! C "B + Fs(B).
We have

B! = (B"'-B)-BCB-(B""'-B)+ Es(B)

B-[B-B" '+ Es(B)| + Es(B) C B-(B-B"") + Es(B)
B-(B-[""""B+ Es(B)]) + Es(B)

B-(B-"""B) + Es(B) C *"B + Es(B).

N 1N 1N



Lemma 3.3 Let L be a Leibniz algebra and B an ideal of L. Let us define
By =L, By = B and By, = B* + Es(B) for all integer k > 2 ; By, is an ideal
of L, which satisfies By O By1.

Proof: It is known that Es(B), By, By are ideals. Let us assume that for
an integer k > 2, By, is an ideal. Then one has By, - A C B + Es(B) and
A - By C B* + Es(B). Let us show that By, is also an ideal. Indeed;

By - A= (B*"' + Es(B)) - AC B*"" - A+ Es(B)
C (B¥ - B)- A+ Es(B) C A- (B"- B) + Es(B) (see Lemma [3.1)
C (A-B*) B+ (A-B)-B"+ Es(B)
C (B"+ Es(B)) - B+ B - B* + Es(B)
C B*"' + B-B* + Es(B) C B**' + B ('B+ Es(B)) + Es(B)
C B *B + B**' + Es(B) C'**B + B*'! 4 Es(B)
C B**!' 4+ Es(B) = By (see Lemma [3.2)).

Thanks to Lemma Bl we have A - B,y C Bgy1 - A+ Es(B). So we obtain
A Bjy1 C B 4 Es(B) = By O

Proposition 3.1 For a given right product Py = QG102 - - - azasa;, and
Qo an arbritary product of length m’, let us set recursively, for any integer

m—1

i€llm—1), P,=anam_1-- a1 = H Am—j+1 ond Q; = —Q;_1a;. Then:

j=1

m—1

T = Qb = Z Qi—1Pia; + Qm_1ap,.
i—1

Proof: First of all let us define the following products: For i € I(m — 1),

we set Q;_; = @Q; and a;,, ;.| = Gy_ito. It follows that
m—i m—i mA41—(i+1)
/ /
P = H App—jy1 = H Am—j+2 = H Am1—j+1 = Piy1.

Now if m = 2, then
Ty = Qo (a201) = Qoasa; — Qoazay = QoPray + Qray, and if m = 3;
T3 = Qo (azazar)

= Qo (asaz) a1 — (Qoar) (azaz) = QoPra; + Q1 (asas)

= QoPra1 + Qrazay — Qrazaz

= QoPra1 + Q1 Pras + Qzas.



Assume that )
Ty = Z Qi—1Pia; + Qum—1am,. (3)
i=1

Then for P = a,,110,0,,—1 - - - azasay, we have:
m+1

m
Ty = Qo H m—k42 = Qo [H amk+2a1]
k=1
m
= Qo H Am—k4201 — Qo H G — k42

= Qo H k1201 + Q1 Ham k+2
It follows that )
Trny1 = Qo (P a1) = QoFyar + Q1 Py
= QoPia; + QyF}

Since the length of P is m we can write:
m—1

QP =Y _Q, Pl +Q,, ,d,

i=1

m—1
= Z QiPi1a41 + Q1.

i=1
Thanks to Equation (3]), we obtain:
Trn1 = QoPray + Q5
m—1

= QoPia; + Z QiPij10i41 + Qmamir

i=1

= Z Qi—1Pa; + Q-
i=1

n

Remarque 3.1 With the hypothesz’s of Proposition[31], note p,p',p” the re-

spective weight of P,Q;_1, P; (1 < i < m) with regard to the ideal B. Let us
consider the following table:

P, 1 =a,, - || Py = Py
qu = _me2am71 Qifl = _Qi72ai71

Let A = {(a;)1<i<m, (b;)1<j<m} be the set of all factors of P. It is easy
to check that A also produces (Qr—_1Px) ag, Qum-_1am for k € I(m —1). Then,



Py =P || Py = Pray Py = Piay

Qi—i—j = —Qz‘+j—1az‘+j Q1= —Qoar || Qo = Qo

one has for an integer k in I(m — 1):

#(P) = #(Qr1)+#(P)+1 (4)
#5(P) = #B(Qr-1)+ #5(P:) +#5 (ar) (5)
#(P) = #(Qun1)+1 (6)
#p(P) = #p(Qm-1) +#5(am). (7)

Lemma 3.4 Any product T with length m in a Leibniz algebra L is a linear
combination of right products of length m.

Proof: By induction on the length m, we have: If m equals 1 or 2, there
is nothing to do. If m = 3, one can notice that T' = abc or a(bc) = abc — acbh
for all a,b,c in L. The lemma is also obvious.

Let us suppose that the lemma is true for a product which length is strictly
less than m > 4.

Now for a given product (with length m) T' = Qo Py where P, is a right

product of length n such that m > n > 1. Thanks to Proposition 3.1]

n—1
T=QoP = Z Qi—1Pa; + Qn_1ay.
i=1

The length of following products Q;_1P; for i € I(n — 1) and Q,_1 is m — 1,
so they are linear combinations of right products of length m — 1. Then T is
a linear combination of right products of length m. O

4 Right products of weight n in the ideal B

Lemma 4.1 Any product T with length m and weight n with regard to the
ideal B of Leibniz algebra L is a linear combination of right products of length
m and weight n.

Proof: By induction on the length m, we have:
The lemma is obvious if m < 2. If m = 3, then there are aq,as,as ele-
ments in L such that P is one of the following linear combinations of right
products: azasa; and ag (asa;) = aszasa; — agajas. So for m = 3, P is a linear
combination of right products.



Let us suppose that the lemma is true for a product which length is
strictly less than m > 4.

Now for a given product (with length m and weight n < m) T = QP
where Py is a right product of length m’ such that m > m’' > 1. Thanks to
Proposition [3.1],

m’'—1

T=QoP = Z Qi—1Pia; + Quy—1any.
i=1

The length of following products @;_1 P; for i € I(m’—1) and @Q,,,—1 is m—1,
so they are linear combinations of right products of length m — 1. Then T is
a linear combination of right products of length m.

Thanks to the equations; Equation () to Equation (), it is clear that
for i € I(p — 1), the weight of the standart product ¢;_; P,a; and the weight
of @p—1a, are equal to n. O

Lemma 4.2 Let L be a Leibniz algebra and B # {0} an ideal in L. Let
Py = apnam_1a,_o- - -agasay be a right product with length m and weight
n >11in B. Then Py belongs to B,.

Proof: Let o be an injective map of I(n) to dans I(m) such that i < j
implies that o (i) < o(j) and for all j € I(n), ay;) € B. Let us also define for
all integer k € I(n — 1), the following products:

Q) =Umlm—1 - Go(n)+1,

Qr =Q 100 (n—k+1);

Qr =Qklo(n—k+1)—1 " * * Go(n—k)+1
Qn =Q),_1G0(1) - - 1.

Clearly, Q; belongs to B C B! + Es(B) = B; and also Q) belongs to B.
Since B is an ideal Q2 = Qa,(n—j4+1) belongs to B - B C B? + Es(B) = B,.
By induction, let us suppose that for integer j € I(n — 1), we have Q;
belongs to B; = B + Es(B). Then let us show that Q;;1 is an element of
Bji1 = Bt + Es(B). Indeed, we have,

Q; = Qjlg(n—j+2)-1" * * Go(n—j+1)+1 1S an element of the ideal B; and so on,
Qj+1 = Q)ao(n—js1) belongs to B; - B C B/t + Es(B) = Bj1.
Then we have proved that Py = @), is an element of B,,. O

Lemma 4.3 Let k, ¢ be integers such that 1 < k < ¢ and let L be a Leibniz
algebra and B an ideal of L which is Esg-right nil. A right product P =
Ay Q102 + * + A3a20a1, of length m and weight (in B) n greater or equal to

20, belongs to Bvak).



Proof: The right product Q = a,,a_1Gm—2 - - - ar11 is of weight greater
or equal to ¢, indeed let n’ be the weight of @ and n” be the weight of
ay - --azasa;. We have 0 < n” < k and the equality P = Qay - - - azasay
implies that n’ < n < k+n’. Son’" >n—k > 20 —k > (. The
Lemma tells that Q € By,. And so on, P = Qay, - - - azasa; € (Bg)(Lk) =

(B*+ Es(B)) = BéL,k) since B est un ideal Esg-right nil. O

(L,k)
Lemma 4.4 Let k be an integer such that the ideal B is Esy-right nil. Let
P be product of weight t > 4k* — 2k + 1 with regard to the ideal B. then P is
a linear combination of right products QQ; (P = Z w1;Q;) such that, for any
7 fini

J, we have Q; belongs to (Bk) or has at least one factor in (Bk)

(LK) (Lk)"

Proof: Let k& > 1 and t > 4k* — 2k + 1. Thanks to Lemma 1], any
product P of weight greater or equal to ¢ is a linear combination of right
products of weight greater or equal to t. Let P = Z,uij where @); is a

j
right product of weight greater or equal to t.

For any j we have Q); = s, ,5;,—1---S;1 where s;, € L (p is the length of

Q)

- if, there is one element s;;, such that it’s weight is greater or equal to 2k,
then s;,, belongs to (Bk)(L " by application of Lemma 4.3 And so on

(); has a factor in (B’“)(L K’

- else, every factor s;; has a weight strictly less than 2k. Let ¢ be the
number of factors s;; with a weight greater or equals to 1. Then one
has ¢ (2k — 1) >t = 4k? — 2k + 1 and then ¢ > 2k.

When the weight of s;; is greater or equal to 1, we have s;,; belongs
to B. So Q; is of weight greater or equal to ¢. Since ¢ > 2k, we have
Qj € (Bk)(L,k) thanks to Lemma [4.3

For language simplification, we will say that (); has at least one factor in

(B") (10 -

5 Main Theorem

Theoreme 5.1 Let k' be a nonnegative integer, let L be a Leibniz algebra and
let B be an ideal of L which is Esy-right nil. Then the following assertions
are equivalents:



(1) B is right nilpotent ;
(ii) B is nilpotent ;
(iii) B is strongly nilpotent. ;

Proof: Indeed, for any integer k > 1, the vectors spaces’s inclusions
B* C B} C B%) tell us that (i44) = (1) = ().
Furthermore, suppose that there is an integer ¢ > 1 such that B* = {0}. Let
us define k = max {k’, ¢'}, then for an integer ell such that ¢ > 4k* — 2k + 1,
the Lemma [4.4] tells us that any product P with weight greater or equal to
¢ > 4k®> — 2k + 1, in B is a linear combination of right products which have
at least one factor in (Bk)(LJc) C (Bk/)(L’k) = {0}. And so on P = 0. Then

BY% = 0. The implication (i) = (444) is done. O

Corollary 5.1 Let L be a Leibniz algebra. The following assertions are
equivalents:

(1) L is right nilpotent ;
(i) L is nilpotent ;
(iii) L is strongly nilpotent.

Proof: Clearly we have (iii) = (i) = (7).

Notice that the ideal Ess(A) is a subset of A%2. Assume that we have (i) and

then let us show that (¢ii) is verified.

We know that there is an integer # > 1 which satisfies that A* = {0}. So

we have

Ess(A)AAA ... A C (A2)AAA...AC AY ={0}. So Ais Esp-right nil. With
—— ——

¢’ —2 times ' —2 times

part of the proof of the theorem [5.1], we can conclude that (i) = (i4i). O
Remarque 5.1

e For (right) Leibniz algebra L, the ideal Ess(L) is always FEs;-left nil.
But if Fss(L) is not Es,-right nil for some integer &, L is not nilpotent.

e For (left) Leibniz algebra L, the ideal Ess(L) is always Fs;-right nil.
But if Ess(L) is not Es-left nil for some integer k, L is not nilpotent

(ct. [3]).

e By duality, we have also proved that if a (left) Leibniz algebra L is left
nilpotent of degree n, then L is strongly nilpotent of degree less or equal
to 4n? — 2n + 1.
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