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Abstract

The main result of this paper is to prove that if a (right) Leibniz
algebra L is right nilpotent of degree n, then L is strongly nilpotent of
degree less or equal to 4n2 − 2n + 1.

Résumé

Nous prouvons que toute algèbre de Leibniz (droite) L nilpotente

à droite d’indice n est fortement nilpotente d’un indice inférieur ou
égal à 4n2 − 2n+ 1.

Keywords. Leibniz algebra, right nilpotency, left nilpotency, nilpotency,
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1 Introduction

In [1] it is proved that a Malcev algebra is strongly nilpotent if and only if
it is right nilpotent. So for Malcev algebras right nilpotency, left nilpotency
and strong nilpotency are equivalent to nilpotency. Since Malcev algebra is
anti-commutative, right nilpotency and left nilpotency are equivalent. This
result fails for Leibniz algebras, see for example [4, Exemple 3.3], which is
left nilpotent and not right nilpotent.
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Using the notion of Esk-right nil (or Esk-left nil) we prove that if an ideal
B of a (right) Leibniz algebra L is right nilpotent of degree n, then B is
strongly nilpotent of degree less or equal to 4n2 − 2n+ 1.

In section 2, we give some definitions that we will used along the paper,
then in the section 3, we prove some results on right products of length n.
The section 4 is devoted to right products of weight n in the ideal B and in
the section 5, we give the main results.

2 Preliminairies

Throughout this paper, F will be a field of characteristic not 2. All vector
spaces and algebras will be finite dimensional over F . Let n be a nonnegative
integer, and let us denote the set {1, 2, · · · , n} by I(n).

Definition 2.1 (Leibniz algebra) [5, 4]
A Leibniz algebra is a vector space L equipped with a bilinear map [−,−] :

L× L −→ L, satisfying the Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y] for any x, y, z ∈ L. (1)

If the condition [x, x] = 0 is fulfilled, the Leibniz identity is equivalent
to the so-called Jacobi identity. Therefore Lie algebras are particular cases
of Leibniz algebras. Algebras which satisfy (1) are also call right Leibniz
algebras and left Leibniz algebras are defined as followed:

Definition 2.2 (left Leibniz algebra) [4]
A left Leibniz algebra is a vector space L equipped with a bilinear map

[−,−] : L× L −→ L, satisfying the left Leibniz identity:

[x, [y, z]] = [[x, y], z] + [y, [x, z]] for any x, y, z ∈ L. (2)

It follows from the Leibniz identity (1) that in any Leibniz algebra one
has

[y, [x, x]] = 0, [z, [x, y]] + [z, [y, x]] = 0, for all x, y, z ∈ L.

Definition 2.3 A subspace H of a Leibniz algebra L is called left (respec-
tively right) ideal if for a ∈ H and x ∈ L one has [x, a] ∈ H (respectively
[a, x] ∈ H). If H is both left and right ideal, then H is called (two-sided)
ideal.
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Let us denote the product [a, b] by ab for all a, b in L. Ess(L) will be the
ideal generated by all the squares of the elements of L.

For an ideal B of a Leibniz algebra L, we introduce the notations and
following terminologies:

Let P be a product of m factors sm, sm−1, · · · , s1, that have been associ-
ated in an arbritary way. We suppose that n or more factors belong to B.
We say that the product P is of length m and of weight n with respect to
the ideal B or more simply that P is of length m and of weight n in B. The
length m of P will be noted #(P ) and its weight n will be noted #B (P ).

When P = ((· · · ((smsm−1) sm−2 · · · ) s3) s2) s1 where the association is
made always right, we say that P is a right product and we write P =
smsm−1sm−2 · · · s1. Similarly, if P = s1 (s2 (s3 (· · · sm−2 (sm−1sm)) · · · )) where
the association is made always left, we say that P is a left product.
Let S1, S2, · · · , Sp be right products. One can write the right product (with
Sj as factors) N = SpSp−1 · · ·S1. We call N a standard product.

Definitions 2.4 • A subspace B of the underlying vector space L is right
nilpotent if Bn = {0} for some n ≥ 1, where B1 = B and Bn+1 =
Bn ·B. By convention, we set B0 = L. Notice that Bn is generated by
right products of length n and weight n in B.

• A subspace B of the underlying vector space L is left nilpotent if nB = 0
for some n ≥ 1, where 1B = B and 1+nB = B · (nB). By convention,
we set 0B = L. Notice that nB is generated by left products of length n

and weight n in B.

Definitions 2.5 • Let B{n} be the subspace of the underlying vector space
L generated by all the products of length n in B, associated in arbritary
way. We say that the ideal B is nilpotent if there exists an integer n

such that B{n} = {0}.

• Let B〈n〉 be the subspace generated by all products of elements in L

with at least n elements in B. A subspace B is strongly nilpotent if
B〈n〉 = {0} for some n ≥ 1.

Naturally, B〈n〉 is an ideal of L and one has
B ⊇ B〈1〉 ⊇ B〈2〉 ⊇ · · · ⊇ B〈n〉 ⊇ · · · and B〈i〉B〈j〉 ⊆ B〈i+j〉 for all nonnegative
integers i, j ≥ 1.

Definitions 2.6 • Let D be a subspace of the underlying vector space L.
Let k be a nonnegative integer. D(L,k) is the vector subspace generated
by all right products: "dak · · · a3a2a1" where d belongs to D and ai
belongs to L for any integer i ∈ I(k).
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• Let D be a subspace of the underlying vector space L. Let k be a a
nonnegative integer. (L,k)D is the vector subspace generated by all left
products: "a1(a2(a3(· · · (akd))) · · · )" where d belongs to D and ai be-
longs to L for any integer i ∈ I(k).

Definitions 2.7 • Let B 6= {0} be an ideal of the Leibniz algebra L. If
there is an integer k ≥ 1, such that the ideal Es(B) = B ∩ Ess(L)
satisfies Es(B)(L,k) = Es(B)AAA · · ·A

︸ ︷︷ ︸

k times

= {0}, we will say that B is

Esk-right nil.

• Let B 6= {0} be an ideal of the Leibniz algebra L. If there is an integer
k ≥ 1, such that the ideal Es(B) = B ∩ Ess(L) satisfies (L,k)Es(B) =
A · · ·AAA
︸ ︷︷ ︸

k times

Es(B) = {0}, we will say that B is Esk-left nil.

Definition 2.8 Let L be a Leibniz algebra and B an ideal in L. Let a, b ly
in L. If a− b ∈ B, we will say that a ≡ b (modulo B).

3 Right products in the Leibniz algebra L

Lemma 3.1 Let L be a Leibniz algebra and B an ideal of L. For all a ∈ L

and for all b ∈ B, ab+ ba ∈ Es(B) = B ∩ Ess(L).

Proof: Obvious. �

Lemma 3.2 For any integer n ≥ 1, Bn ⊆ nB + Es(B).

Proof: For n = 1 or 2, the result is obvious. Let n = 3 and a, b, c be ele-
ments of B, we have a(bc) + (bc)a ∈ Es(B) and so (bc)a equals a(bc) modulo
Es(B). So, we can write B3 ⊆ 3B + Es(B). Let us set by hypothesis that
Bp ⊆ pB+Es(B) for all integer p ≤ n and prove that Bn+1 ⊆ 1+nB+Es(B).
We have

Bn+1 =
(
Bn−1 · B

)
· B ⊆ B ·

(
Bn−1 · B

)
+ Es(B)

⊆ B ·
[
B · Bn−1 + Es(B)

]
+ Es(B) ⊆ B · (B ·Bn−1) + Es(B)

⊆ B · (B ·
[
−1+nB + Es(B)

]
) + Es(B)

⊆ B · (B ·−1+nB) + Es(B) ⊆ 1+nB + Es(B).

�
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Lemma 3.3 Let L be a Leibniz algebra and B an ideal of L. Let us define
B0 = L, B1 = B and Bk = Bk + Es(B) for all integer k ≥ 2 ; Bk is an ideal
of L, which satisfies Bk ⊇ Bk+1.

Proof: It is known that Es(B), B0, B1 are ideals. Let us assume that for
an integer k ≥ 2, Bk is an ideal. Then one has Bk · A ⊆ Bk + Es(B) and
A ·Bk ⊆ Bk + Es(B). Let us show that Bk+1 is also an ideal. Indeed;

Bk+1 · A =
(
Bk+1 + Es(B)

)
· A ⊆ Bk+1 · A+ Es(B)

⊆
(
Bk · B

)
· A+ Es(B) ⊆ A ·

(
Bk · B

)
+ Es(B) (see Lemma 3.1)

⊆
(
A · Bk

)
· B + (A · B) · Bk + Es(B)

⊆
(
Bk + Es(B)

)
· B +B · Bk + Es(B)

⊆ Bk+1 +B · Bk + Es(B) ⊆ Bk+1 +B ·
(
kB + Es(B)

)
+ Es(B)

⊆ B ·kB +Bk+1 + Es(B) ⊆1+kB +Bk+1 + Es(B)

⊆ Bk+1 + Es(B) = Bk+1 (see Lemma 3.2).

Thanks to Lemma 3.1, we have A · Bk+1 ⊆ Bk+1 · A + Es(B). So we obtain
A ·Bk+1 ⊆ Bk+1 + Es(B) = Bk+1. �

Proposition 3.1 For a given right product P0 = amam−1am−2 · · · a3a2a1 and
Q0 an arbritary product of length m′, let us set recursively, for any integer

i ∈ I(m− 1), Pi = amam−1 · · · ai+1 =

m−i∏

j=1

am−j+1 and Qi = −Qi−1ai. Then:

Tm = Q0P0 =
m−1∑

i=1

Qi−1Piai +Qm−1am.

Proof: First of all let us define the following products: For i ∈ I(m− 1),
we set Q′

i−1 = Qi and a′m−i+1 = am−i+2. It follows that

P ′
i =

m−i∏

j=1

a′m−j+1 =

m−i∏

j=1

am−j+2 =

m+1−(i+1)
∏

j=1

am+1−j+1 = Pi+1.

Now if m = 2, then
T2 = Q0 (a2a1) = Q0a2a1 −Q0a2a1 = Q0P1a1 +Q1a1, and if m = 3;

T3 = Q0 (a3a2a1)

= Q0 (a3a2) a1 − (Q0a1) (a3a2) = Q0P1a1 +Q1 (a3a2)

= Q0P1a1 +Q1a3a2 −Q1a2a3

= Q0P1a1 +Q1P2a2 +Q2a3.
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Assume that

Tm =
m−1∑

i=1

Qi−1Piai +Qm−1am. (3)

Then for P = am+1amam−1 · · · a3a2a1, we have:

Tm+1 = Q0

m+1∏

k=1

am−k+2 = Q0

[
m∏

k=1

am−k+2a1

]

= Q0

m∏

k=1

am−k+2a1 −Q0a1

m∏

k=1

am−k+2

= Q0

m∏

k=1

am−k+2a1 +Q1

m∏

k=1

am−k+2

It follows that
Tm+1 = Q0 (P

′
0a1) = Q0P

′
0a1 +Q1P

′
0

= Q0P1a1 +Q′
0P

′
0

Since the length of P ′
0 is m we can write:

Q′
0P

′
0 =

m−1∑

i=1

Q′
i−1P

′
ia

′
i +Q′

m−1a
′
m

=
m−1∑

i=1

QiPi+1ai+1 +Qmam+1.

Thanks to Equation (3), we obtain:
Tm+1 = Q0P1a1 +Q′

0P
′
0

= Q0P1a1 +

m−1∑

i=1

QiPi+1ai+1 +Qmam+1

=
m∑

i=1

Qi−1Piai +Qmam+1.

�

Remarque 3.1 With the hypothesis of Proposition 3.1, note p, p′, p′′ the re-
spective weight of P,Qi−1, Pi (1 ≤ i ≤ m) with regard to the ideal B. Let us
consider the following table:

Pm−1 = am · · · Pi−1 = Piai · · ·
Qm−1 = −Qm−2am−1 · · · Qi−1 = −Qi−2ai−1 · · ·

Let Λ = {(ai)1≤i≤m, (bj)1≤j≤m′} be the set of all factors of P . It is easy
to check that Λ also produces (Qk−1Pk) ak, Qm−1am for k ∈ I(m− 1). Then,
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· · · Pi+j = Pi+j+1ai+j+1 · · · P1 = P2a2 P0 = P1a1
· · · Qi+j = −Qi+j−1ai+j · · · Q1 = −Q0a1 Q0 = Q0

one has for an integer k in I(m− 1):

#(P ) = # (Qk−1) + # (Pk) + 1 (4)

#B (P ) = #B (Qk−1) + #B (Pk) + #B (ak) (5)

#(P ) = # (Qm−1) + 1 (6)

#B (P ) = #B (Qm−1) + #B (am) . (7)

Lemma 3.4 Any product T with length m in a Leibniz algebra L is a linear
combination of right products of length m.

Proof: By induction on the length m, we have: If m equals 1 or 2, there
is nothing to do. If m = 3, one can notice that T = abc or a(bc) = abc− acb

for all a, b, c in L. The lemma is also obvious.
Let us suppose that the lemma is true for a product which length is strictly
less than m ≥ 4.

Now for a given product (with length m) T = Q0P0 where P0 is a right
product of length n such that m > n ≥ 1. Thanks to Proposition 3.1,

T = Q0P0 =
n−1∑

i=1

Qi−1Piai +Qn−1an.

The length of following products Qi−1Pi for i ∈ I(n− 1) and Qn−1 is m− 1,
so they are linear combinations of right products of length m− 1. Then T is
a linear combination of right products of length m. �

4 Right products of weight n in the ideal B

Lemma 4.1 Any product T with length m and weight n with regard to the
ideal B of Leibniz algebra L is a linear combination of right products of length
m and weight n.

Proof: By induction on the length m, we have:
The lemma is obvious if m ≤ 2. If m = 3, then there are a1, a2, a3 ele-
ments in L such that P is one of the following linear combinations of right
products: a3a2a1 and a3 (a2a1) = a3a2a1−a3a1a2. So for m = 3, P is a linear
combination of right products.
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Let us suppose that the lemma is true for a product which length is
strictly less than m ≥ 4.

Now for a given product (with length m and weight n ≤ m) T = Q0P0

where P0 is a right product of length m′ such that m > m′ ≥ 1. Thanks to
Proposition 3.1,

T = Q0P0 =
m′−1∑

i=1

Qi−1Piai +Qm′−1am′ .

The length of following products Qi−1Pi for i ∈ I(m′−1) and Qm′−1 is m−1,
so they are linear combinations of right products of length m− 1. Then T is
a linear combination of right products of length m.

Thanks to the equations; Equation (4) to Equation (7), it is clear that
for i ∈ I(p− 1), the weight of the standart product Qi−1Piai and the weight
of Qp−1ap are equal to n. �

Lemma 4.2 Let L be a Leibniz algebra and B 6= {0} an ideal in L. Let
P0 = amam−1am−2 · · · a3a2a1 be a right product with length m and weight
n ≥ 1 in B. Then P0 belongs to Bn.

Proof: Let σ be an injective map of I(n) to dans I(m) such that i < j

implies that σ(i) < σ(j) and for all j ∈ I(n), aσ(j) ∈ B. Let us also define for
all integer k ∈ I(n− 1), the following products:

Q′
0 =amam−1 · · · aσ(n)+1,

Qk =Q′
k−1aσ(n−k+1),

Q′
k =Qkaσ(n−k+1)−1 · · · aσ(n−k)+1,

Qn =Q′
n−1aσ(1) · · · a1.

Clearly, Q1 belongs to B ⊆ B1 + Es(B) = B1 and also Q′
1 belongs to B.

Since B is an ideal Q2 = Q′
1aσ(n−j+1) belongs to B · B ⊆ B2 + Es(B) = B2.

By induction, let us suppose that for integer j ∈ I(n − 1), we have Qj

belongs to Bj = Bj + Es(B). Then let us show that Qj+1 is an element of
Bj+1 = Bj+1 + Es(B). Indeed, we have,
Q′

j = Qjaσ(n−j+2)−1 · · · aσ(n−j+1)+1 is an element of the ideal Bj and so on,
Qj+1 = Q′

jaσ(n−j+1) belongs to Bj · B ⊆ Bj+1 + Es(B) = Bj+1.
Then we have proved that P0 = Qn is an element of Bn. �

Lemma 4.3 Let k, ℓ be integers such that 1 ≤ k ≤ ℓ and let L be a Leibniz
algebra and B an ideal of L which is Esk-right nil. A right product P =
amam−1am−2 · · ·a3a2a1, of length m and weight (in B) n greater or equal to
2ℓ, belongs to Bℓ

(L,k).
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Proof: The right product Q = amam−1am−2 · · ·ak+1 is of weight greater
or equal to ℓ, indeed let n′ be the weight of Q and n′′ be the weight of
ak · · · a3a2a1. We have 0 ≤ n′′ ≤ k and the equality P = Qak · · · a3a2a1
implies that n′ ≤ n ≤ k + n′. So n′ ≥ n − k ≥ 2ℓ − k ≥ ℓ. The
Lemma 4.2 tells that Q ∈ Bℓ. And so on, P = Qak · · · a3a2a1 ∈ (Bℓ)(L,k) =(
Bℓ + Es(B)

)

(L,k)
= Bl

(L,k) since B est un ideal Esk-right nil. �

Lemma 4.4 Let k be an integer such that the ideal B is Esk-right nil. Let
P be product of weight t ≥ 4k2− 2k+1 with regard to the ideal B. then P is

a linear combination of right products Qj (P =
∑

j fini

µjQj) such that, for any

j, we have Qj belongs to
(
Bk

)

(L,k)
or has at least one factor in

(
Bk

)

(L,k)
.

Proof: Let k > 1 and t ≥ 4k2 − 2k + 1. Thanks to Lemma 4.1, any
product P of weight greater or equal to t is a linear combination of right
products of weight greater or equal to t. Let P =

∑

j

µjQj where Qj is a

right product of weight greater or equal to t.
For any j we have Qj = sj,psj,p−1 · · · sj,1 where sj,i ∈ L (p is the length of

Qj).

- if, there is one element sj,i0 such that it’s weight is greater or equal to 2k,
then sj,i0 belongs to

(
Bk

)

(L,k)
by application of Lemma 4.3. And so on

Qj has a factor in
(
Bk

)

(L,k)
.

- else, every factor sj,i has a weight strictly less than 2k. Let q be the
number of factors sj,i with a weight greater or equals to 1. Then one
has q (2k − 1) ≥ t = 4k2 − 2k + 1 and then q > 2k.
When the weight of sj,i is greater or equal to 1, we have sj;i belongs
to B. So Qj is of weight greater or equal to q. Since q ≥ 2k, we have
Qj ∈

(
Bk

)

(L,k)
thanks to Lemma 4.3.

For language simplification, we will say that Qj has at least one factor in
(
Bk

)

(L,k)
. �

5 Main Theorem

Theoreme 5.1 Let k′ be a nonnegative integer, let L be a Leibniz algebra and
let B be an ideal of L which is Esk′-right nil. Then the following assertions
are equivalents:
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(i) B is right nilpotent ;

(ii) B is nilpotent ;

(iii) B is strongly nilpotent. ;

Proof: Indeed, for any integer k ≥ 1, the vectors spaces’s inclusions
Bk ⊆ B{k} ⊆ B〈k〉 tell us that (iii) ⇒ (ii) ⇒ (i).
Furthermore, suppose that there is an integer ℓ′ ≥ 1 such that Bℓ′ = {0}. Let
us define k = max {k′, ℓ′}, then for an integer ell such that ℓ ≥ 4k2 − 2k+1,
the Lemma 4.4 tells us that any product P with weight greater or equal to
ℓ ≥ 4k2 − 2k + 1, in B is a linear combination of right products which have
at least one factor in

(
Bk

)

(L,k)
⊆

(
Bk′

)

(L,k)
= {0}. And so on P = 0. Then

B〈ℓ〉 = 0. The implication (i) ⇒ (iii) is done. �

Corollary 5.1 Let L be a Leibniz algebra. The following assertions are
equivalents:

(i) L is right nilpotent ;

(ii) L is nilpotent ;

(iii) L is strongly nilpotent.

Proof: Clearly we have (iii) ⇒ (ii) ⇒ (i).
Notice that the ideal Ess(A) is a subset of A2. Assume that we have (i) and
then let us show that (iii) is verified.
We know that there is an integer ℓ′ > 1 which satisfies that Aℓ′ = {0}. So
we have
Ess(A)AAA . . . A

︸ ︷︷ ︸

ℓ′−2 times

⊆ (A2)AAA . . . A
︸ ︷︷ ︸

ℓ′−2 times

⊆ Aℓ′ = {0}. So A is Esℓ′-right nil. With

part of the proof of the theorem 5.1, we can conclude that (i) ⇒ (iii). �

Remarque 5.1

• For (right) Leibniz algebra L, the ideal Ess(L) is always Es1-left nil.
But if Ess(L) is not Esk-right nil for some integer k, L is not nilpotent.

• For (left) Leibniz algebra L, the ideal Ess(L) is always Es1-right nil.
But if Ess(L) is not Esk-left nil for some integer k, L is not nilpotent
(cf. [3]).

• By duality, we have also proved that if a (left) Leibniz algebra L is left
nilpotent of degree n, then L is strongly nilpotent of degree less or equal
to 4n2 − 2n+ 1.
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