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16 CHAPTER 2. FOUNDATIONS

Exercise 2.1.1 (Chain Rule). Let X C R*, Y C RY, Z C R™ be arbitrary
subsets. If f: X — Y and g : Y — Z are smooth maps then so is the
composition go f : X — Z. The identity map id : X — X is smooth.

Exercise 2.1.2. Let E C RF be an m-dimensional linear subspace and
let vi.....v, be a basis of £. Then the map f : R”™ — E defined by
flx) := 3" @y is a diffeomorphism.

Definition 2.1.3. Let k,m € Ny. A subset M C R¥ is called a smooth
m-dimensional submanifold of R* iff every point p € M has an open
neighborhood U C R¥ such that U N M is diffeomorphic to an open sub-
set Q C R™. A diffeomorphism

o:UNM— Q
is called a coordinate chart of M and its inverse
vi=0:Q=2UNM

is called a (smooth) parametrization of U N AL

4

/
|
|

UnM M7 ) Q
o B |

Figure 2.1: A coordinate chart ¢ : U N M — Q.

In Definition 2.1.3 we have used the fact that the domain of a smooth
map can be an arbitrary subset of Euclidean space and need not be open
(see page 15). The term m-manifold in R* is short for m-dimensional sub-
manifold of R*. In keeping with the Master Plan §1.5 we will sometimes say
manifold rather than submanifold of R* to indicate that the context holds
in both the intrinsic and extrinsic settings.

Lemma 2.1.4. If M C R* is a nonempty smooth m-manifold then m < k.

Proof. Fix an clement po € M. choose a coordinate chart ¢ : U N M — Q
with pg € U and values in an open subset 2 C R™, and denote its in-
verse by =0 ':Q = UNM. Shrinking U. if necessary, we may as-
sume that ¢ extends to a smooth map @ : U — R". This extension satis-
fies O(Y(z)) = o(Y(x)) = z and hence dO(Y(z))dy(x) =id : R™ — R™ for
all z € Q, by the chain rule. Hence the derivative di(x) : R — RF is in-
jective for all x € ©, and hence m < k because  is nonempty. This proves
Lemma 2.1.4. O



S

b s n et hap Upf—s 2 < R ¥
whikweams 3 U qe @ RS+ e U R
il o swesth map 1= U 5 R™  aah
FA U (Unim) = ¢ \U'f\(Uﬂ’V\) /\ Q CQ—CH
Thew ¢ efends bo a0 smeetl Wap U(\U N/

\':)_Qg«?ﬂﬁ\ ﬁb(‘[/(»t = fn % e E\S(b Ui) Q/
D = (UNJ ) =22
\M\L dd (Vo) Y = & RY ™ v e 0/

RE>R™ Q\ - lP\‘?‘ P
8(&) o -

n

T} b o “\M AiK\P\MwMgw oﬁféf §~— o K Myis
;L ‘\')\m . \ \\\6@\'\\’"‘




_—

Y R—M

Y=o R-R"

(%)
N

o oo

e R V o F“—'\———T
we an<e %ﬂww i7-23 ot Ao

24 CHAPTER 2. FOUNDATIONS

Figure 2.3: The tangent space 1,M and the translated tangent space p+1,M.

2.2 Tangent Spaces and Derivatives

The main reason for first discussing the extrinsic notion of embedded mani-
folds in Euclidean space as explained in the Master Plan §1.5 is that the
concept of a tangent vector is much easier to digest in the embedded case:
it is simply the derivative of a curve in M, understood as a vector in the
ambient Euclidean space in which M is embedded.

2.2.1 Tangent Space

Definition 2.2.1. Let M C RF be a smooth m-dimensional manifold and
fix a point p € M. A vector v € R¥ is called a tangent vector of M at p
if there exists a smooth curve v : R — M such that

70)=p,  A0)=v.

The set
TpyM = {¥(0) |y : R = M is smooth, v(0) = p}

of tangent vectors of M at p is called the tangent space of M at p.

Theorem 2.2.3 below shows that T;,M is a linear subspace of R*. As does
any linear subspace it contains the origin; it need not actually intersect M.
Its translate p + T, M touches M at p: this is what you should visualize
for T, M (see Figure 2.3).
Remark 2.2.2. Let p € M be as in Definition 2.2.1 and let v € R*¥. Then

Je >0 3v:(—¢&,&) = M such that
~ is smooth, v(0) = p, 4(0) = v.

velyM =

To see this suppose that v : (—2,2) — M is a smooth curve with v(0) = p

and 4(0) = v. Define y: R — M by

Then 7 is smooth and satisfies 5(0) = p and '7(0) = v. Hence v € T, M.
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Theorem 2.2.3 (Tangent spaces). Let M C RF be a smooth m-dimen-
sional manifold and fix a point p € M. Then the following holds.

(i) Let Uy € M be an M-open set with p € Uy and let oo : Uy — o
be a diffeomorphism onto an open subset Qo C R™. Let xo := ¢o(p) and
let Vg = oal 1 Qo — Uy be the inverse map. Then

T,M = im <dvo(;v0) . R™ - R’f) .
(ii) Let U, Q C R* be open sets and ¢ : U — Q be a diffeomorphism such
that p € U and o(U N M) = QN (R™ x {0}). Then

T,M = do(p)~" (R™ x {0}).

(111) Let U c R be an open neighborhood of p and f : U — RE™ pe g
smooth map such that 0 is a regular value of f and UNM = f=1(0). Then

TpM = ker df (p).

(iv) T, M is an m-dimensional linear subspace of R*.

Proof. Let 1o : Qo — Up and o € Q0 be as in (i) and\let ¢ : U — bg/a:s\ = d% (P) 2 «LWV@"W“

!rin (ii)‘!\\"o prove that Dvaan Weorst
2 V-
im do(zo) € TyM C do(p)~" (R™ x {0}). (2.2.1) R K

To prove the first inclusion in (2.2.1), choose a constant r > 0 such that F"""‘I’ . Qo
)
By (zg) :=={z € R™| |z — x| < 7} C Q. CF
=
Now let ¢ € R™ and choose € > 0 so small that <‘3 o CF (P) =P
elgl <. P ST
$eq = 'Y

Then xg + t€ € Qo for all t € R with [t| < . Define v : (—,6) - M by
| A
~(t) := Yo(xo + t&) for —e <t<e. 4 ( \\ 4¢ 2=} K

Then ~ is a smooth curve in M satisfying T
K\o) vy

A0) = dulao) =p. 0= G| voao +16) = dun(eo)s
-

Hence it follows from Remark 2.2.2 that dyo(z0)€ € T, M, as claimed.
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To prove the second inclusion in (2.2.1) we fix a vector v € T, M. Then,
by definition of the tangent space, there exists a smooth curve v : R — M
such that 4(0) = p and 4(0) = v. Let U C R¥ be as in (ii) and choose € > 0
so small that v(¢) € U for |[t| < . Then
o(y(t)) € (UN M) Cc R™ x {0}

for |t| < ¢ and hence

‘ . d
do(p)v = do(7(0))7(0) = =|  o(v(t)) € R™ x {0}.
t=0
This shows that v € do(p)~! (R™ x {0}) and thus we have proved (2.2.1).
\3“2"@ > Now the sets im dig(zo) and do(p)~! (R™ x {0}) are both m-dimensional
Ealvanits L\Lu linear subspaces of R*. Hence it follows from (2.2.1) that these subspaces

agree and that they both agree with 7),M. Thus we have proved asser-
tions (i), (ii), and (iv).

We prove (iii). If v € T,M then there is a smooth curve v : R — M
such that y(0) = p and 4(0) = v. For ¢ sufficiently small we have v(t) € U,
where U C R” is the open set in (iii), and f(y(t)) = 0. Hence

Mo *® df(p)v = df (4(0))3(0) = —|  f(x(t)) =0
\ t=0

and this implies T,M C ker df(p). Since Tp,M and the kernel of df(p) are
both m-dimensional linear subspaces of R* we deduce that T,M = ker df (p).
This proves part (iii) and Theorem 2.2.3. O

Example 2.2.4. Let A = AT € R¥* be a nonzero matrix as in Exam-
ple 2.1.12 and let ¢ # 0. Then, by Theorem 2.2.3 (iii), the tangent space of
the manifold

M= {17 eRF | 2T Az = c}
at a point x € M is the & — 1-dimensional linear subspace
.M = {5 eRF|2TAg =0}

Example 2.2.5. As a special case of Example 2.2.4 with A =1 and ¢ =1
we find that the tangent space of the unit sphere S™ C R™*! at a point
x € 5™ is the orthogonal complement of w:

TIS”I =gt = {é- € Rm+l |<.L.€> = ()}.

Here (z.€&) = Y7, x;& denotes the standard inner product on R”* -

Go)
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Exercise 2.2.6. What is the tangent space of the 5-manifold
M= {(z,y) eR}*xR¥| |z —y| = r}
at a point (x,y) € M? (See Exercise 2.1.14.)

Example 2.2.7. Let H(z,y) := 3 ly|* + V() be as in Exercise 2.1.17 and
let ¢ be a regular value of H. If (z,y) € M := H'(c) Then

TagpyM = {(&n) € R xR | (y,m) +(VV(2),§) = 0}.

Here VV := (0V/0xy, .. ., OV/Oxy) : R — R" denotes the gradient of V.

Exercise 2.2.8. The tangent space of SL(n, R) at the identity matrix is the
space
sl(n,R) := T4SL(n,R) = {¢ € R™" | trace(¢) = 0}

of traceless matrices. (Prove this. using Exercise 2.1.18.)

Example 2.2.9. The tangent space of O(n) at g is
T,0(n) = {v eR|gTv+vTg= 0} .

In particular, the tangent space of O(n) at the identity matrix is the space
of skew-symmetric matrices

o(n) := TyO(n) = {g eRV|¢T 4 ¢ = o}

To see this, choose a smooth curve R — O(n) : t — g(t). Then g(t)Tg(t) = 1
for all t € R and. differentiating this identity with respect to ¢, we ob-
tain g(t)TQ(t> + g(£)Tg(t) = 0 for every t. Hence every matrix v € T,0(n)
satisfies the equation gTv 4+ vTg = 0. With this understood. the claim fol-
lows from the fact that g'v +v'g = 0 if and only if the matrix £ := g~ v
is skew-symmetric and that the space of skew-symmetric matrices in R"*"
has dimension n(n —1)/2.

Exercise 2.2.10. Let Q € R™ be an open set and h : Q — RF™ be a
smooth map. Prove that the tangent space of the graph of h at a point
(, h(x)) is the graph of the differential dh(x) : R™ — RF=™:

M=A{(zhz) |z},  TunayM={({dh(x)§)|§ cR™}.



