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Exercise 2.2.11 (Monge coordinates). Let M be a smooth m-manifold
in R and suppose that p € M is such that the projection TyM — R™ x {0}
is invertible. Prove that there exists an open set 0 C R™ and a smooth
map h: Q — R¥™ such that the graph of h is an M-open neighborhood
of p (see Example 2.1.6). Of course, the projection T, M — R™ x {0} need
not be invertible. but it must be invertible for at least one of the (7’;1) choices
of the m dimensional coordinate plane. Hence every point of M has an
M-open neighborhood which may be expressed as a graph of a function of
some of the coordinates in terms of the others as in e.g. Example 2.1.5.

2.2.2 Derivative SEE THE DIAGCRAM oN e MNEXT PA GE

A key purpose behind the concept of a smooth manifold is to carry over
the notion of a smooth map and its derivatives from the realm of first year
analysis to the present geometric setting. Here is the basic definition. It ap-
peals to the notion of a smooth map between arbitrary subsets of Euclidean
spaces as introduced on page 15.

Definition 2.2.12. Let M € R¥ be an m-dimensional smooth manifold and
f:M— R¢
be a smooth map. The derivative of f at a point p € M is the map
df (p) : TyM — R
defined as follows. Given a tangent vector v € T, M choose a smooth curve
y:R—= M

satisfying
¥(0)=p,  A(0)=v.

Now define the vector

df (p)v € R
by
Fow= 2| o) =lim LLIZIB) g5
t=0

That the limit on the right in equation (2.2.2) exists follows from our
assumptions. We must prove, however, that the derivative is well defined,
i.e. that the right hand side of (2.2.2) depends only on the tangent vector v
and not on the choice of the curve v used in the definition. This is the
content of the first assertion in the next theorem.
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Theorem 2.2.13 (Derivatives). Let M C RF be an m-dimensional smooth
manifold and f : M — R be a smooth map. Fiz a point p € M. Then the

ollowing holds. _____—— o, tee

(1) The right hand side of (2.2.2) is independent of ~. nefeo on the-
(if) The map df (p) : T,M — R" is linear. nwexr page

(iii) If N C R! is a smooth n-manifold and f(M) C N then
df (p)TpM C Ty N.

(iv) (Chain Rule) Let N be as in (iii). suppose that f(M) C N, and
let g: N — R be a smooth map. Then

d(g o f)(p) = dg(f(p)) o df (p) : TyM — R?,

(v) If f=id: M — M then df(p) =id : T,M — T,M.

Proof. We prove (i). Let v € T,M and v : R — M be as in Definition 2.2.12.
By definition there is an open neighborhood U ¢ R of p and a smooth
map F : U — R such that

F(p)=f(»)) forall p) € UNM.

Let dF(p) € R** denote the Jacobian matrix (i.e. the matrix of all first
partial derivatives) of ' at p. Then, since v(t) € U N M for t sufficiently
small, we have

dF (p)v = dF(7(0))7(0)

F(x(1))
t=0

fF(r(®)).

t=0

Todt
d
dt

The right hand side of this identity is independent of the choice of F' while
the left hand side is independent of the choice of 4. Hence the right hand
side is also independent of the choice of v and this proves (i). Assertion (ii)
follows immediately from the identity

just established.
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Assertion (iii) follows directly from the definitions. Namely, if v is as in
Definition 2.2.12 then
Bi=foy:R—> N

is a smooth curve in N satisfying

8(0) = f(v(0)) = f(p) = q 3(0) =df(p)v =: w.

Hence w € T;N. Assertion (iv) also follows directly from the definitions.
If g: N — R%is a smooth map and /3, ¢, w are as above then

d

T odt
d

d(go f)(p)v g(f(v(t)))

t=0

a - 9(5@))

= dg(q)w
= dg(f(p))df (p)v.

and this proves (iv). Assertion (v) follows directly from the definitions and
this proves Theorem 2.2.13. O

Corollary 2.2.14 (Diffeomorphisms). Let M C R be a smooth m-mani-
fold and N C R* be a smooth n-manifold and let f : M — N be a diffeomor-
phism. Then m =n and the differential df (p) : TyM — Ty N is a vector
space isomorphism with inverse

df(p)~" = df 1 (f () : Ty N = TM
for all p € M.
Proof. Define g := f~! : N = M so that
gof =idun, fog=idn.

Then it follows from Theorem 2.2.13 that, for p € M and ¢ := f(p) € N, we
have

dg(q) odf(p) =id : T,M — T,M, df(p)odg(q) =id : T,N - T,N.
Hence df(p) : T,M — T, N is a vector space isomorphism with inverse
dg(q) = df(p)™t : T,N — T, M.

Hence m = n and this proves Corollary 2.2.14. O



