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2.4 Vector Fields and Flows

2.4.1 Vector Fields

Definition 2.4.1 (Vector Field). Let M C RF be a smooth m-manifold.
A (smooth) vector field on M is a smooth map X : M — R¥ such that

)((p) S I},]\[
for every p € M. The set of smooth vector fields on M will be denoted by
Vect(M) = {X : M — R¥| X is smooth, X (p) € T,M for all p € Z\[} .

Exercise 2.4.2. Prove that the set of smooth vector fields on M is a real
vector space.

Example 2.4.3. Denote the standard cross product on R? by

Y3 — I3Y2
XY=\ &3y —&1ys
L1y2 — L2

For x,y € R3. Fix a vector £ € S and define the maps X,Y : $? — R? by

X(p):=E&xp,  Y(p):=({xp)xp.

These are vector fields with zeros ££. Their integral curves (see Defini-
tion 2.4.6 below) are illustrated in Figure 2.8.

Figure 2.8: Two vector fields on the 2-sphere.
Example 2.4.4. Let M := R?. A vector field on M is then any smooth
map X : R? = R?. As an example consider the vector field

X(z,y) = (&, —y).

This vector field has a single zero at the origin and its integral curves are
illustrated in Figure 2.9.
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Figure 2.9: A hyperbolic fixed point.

Example 2.4.5. Every smooth function f: R™ — R determines a gradient
vector field

of
N
af
X=Vf:=| 902 [.rm 4Rgm

of

OTm

Definition 2.4.6 (Integral curves). Let M C R* be a smooth m-manifold,
let X € Vect(M) be a smooth vector field on M, and let I C R be an open
interval. A smooth map v : I — M is called an integral curve of X if it
satisfies the equation

Y(t) = X(v(¢))
for every t € I.
Theorem 2.4.7. Let M C R¥ be a smooth m-manifold and X &€ Vect(M)

be a smooth vector field on M. Fiz a point pg € M. Then the following
holds.

(i) There is an open interval I C R containing 0 and a smooth curve
v I — M satisfying the equation
() = X(v(1)), 7¥(0) = po (24.1)

for every t € I.

(i) Ifyi : I » M and 2 : Iy — M are two solutions of (2.4.1) on open
intervals Iy and Iy containing 0, then v, (t) = v2(t) for every t € I N I.
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Proof. We prove (i). Let ¢g : Ug — R™ be a coordinate chart on M. defined
on an M-open neighborhood Uy C M of pg. The image of ¢g is an open set

Q= ¢o(Up) C R™

and we denote the inverse map by gy = 00_1 : 2 — M. Then, by Theo-
rem 2.2.3, the differential dio(z) : R™ — R” is injective and its image is the
tangent space Ty ()M for every x € 2. Define f : Q@ — R™ by

fx) = dvo(x) ' X (Wo(z)), z€

This map is smooth and hence. by the basic existence and uniquencss the-
orem for ordinary differential equations in R™ (see [17]), the equation

o(t) = f(z(t)),  x(0) =20 = ¢go(po). (2.4.2)

has a solution = : I — € on some open interval I C R containing 0. Hence
the function

yi=yYgox: I —-UyC M

is a smooth solution of (2.4.1). This proves (i).
The local uniqueness theorem asserts that two solutions ~; : I; — M
of (2.4.1) for i = 1,2 agree on the interval (—¢,e) € I} NI for ¢ > 0
sufficiently small. This follows immediately from the standard uniqueness
theorem for the solutions of (2.4.2) in [17] and the fact that z: I — Q is a
solution of (2.4.2) if and only if v :=¢goz : I — Up is a solution of (2.4.1).
To prove (ii) we observe that the set

=Nk

is an open interval containing zero and hence is connected. Now consider
the set

A:={tel|n(t) =@)}.

This set is nonempty, because 0 € A. It is closed, relative to I, because the
maps v1 : I — M and v : [ — M are continuous. Namely, if ¢; € [ is a
sequence converging to t € [ then v, (¢;) = y2(¢;) for every i and, taking the
limit ¢ — oo, we obtain v;(¢) = 92(¢) and hence t € A. The set A is also
open by the local uniqueness theorem. Since [ is connected it follows that

A = 1. This proves (ii) and Theorem 2.4.7. O



