FORUM-—Math 199B Winter 2017

Questions are in reverse chronological order

e Question March 14

I have some questions while reading Schaferbook. On page 13, from the
last second paragraph, the author states the following as a fact: ”any
simple algebra A (of arbitrary dimension), regarded as an algebra over its
multiplication centralizer CO (so that CO = F) is central simple.” Do we
need to know how to prove this or just accept it as a definition? If we do
need to prove it, how could we do so?

e Answer March 14

You can just assume this. However, I would like to go over this with you
after the class on Friday, since as last week, I need to review the definitions.
We can try to figure out the proof together.

e Second Question March 9

Now, I am working on exercise #22. For the second part of the proof,
how could I see that those two matrix multiplications are in A(tilde)0? I
include a picture of my question in the attachment. Thank you so much
for you time!

e Answer to Second Question March 9

We can work this out together tomorrow after the class if you are free. 1
have to review the definitions and we can do this together very easily. It
is hard to remember the definitons of the module actions etc. and I don’t
want to spend the time now just to repeat it tomorrow. However, I am
happy to go over it with you tomorrow.

e First Question March 9 About exercise 11 of Math 199A problems

I know that if —x— i1, then x is convergent. But I do not know how to
prove that y is convergent in Exercise 11. Does it mean that I need to
prove —y— i 17 Could you please give me some steps or hints to solve
this problem?

e Answer to First Question March 9

y is the proposed sum of the infinite series  x+x"2+x"3+...

Note that if x is a real number, then this is just a geometric
series, which will converge if 0 < x < 1, or if absolute value
of x is < 1. In our case, X is a vector with length [x[<1.

In this case, the partial sum

x+x72+...+x"n  has length less than [x|+[x|"2+...+|x|"n

(Cauchy Schwarz inequality) The latter is a geometric

series of real numbers, which converges since |x|<1, so



the series x+x"2+x"3+... converges absolutely. (This
material is taught in Advanced calculus, Math 140C)
Moreover since x commutes with x7k, it will commute
with x+x72+...+x"n and in the limit it will commute with y.

It doesn’t make sense to say that x is convergent.
x is a fixed vector.

Question February 1

I could not solve

the #5 question. Could you please give

me some clue to do it. Because I just check the book and 7.14 is not
related to 7.13. I tried to connected it with 7.15 but I really do not know
where the constant 8 comes from.

Answer to Question February 1

There are two misprints on page 70 of the meyberg notes. See the next
page for the corrections, and the subsequent two pages for my answer.
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Furthermore we observe that the left hand side of (7.11) is

skew symmetric in the pairs (x,y), (u,v), hence
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Replacing u » y, y>u, x>V, U>u, w>v in (7.13)

{hy {uvug vg =2 [ {vuy} uv} - {v{uyu} v
Substituting this in (7.15) implies |
8P (P(uw)v)y = 2 {uvluy {uvu}}} -
8P (u)P(V)P(u)y.
Since the homotopy formula (7.9) has agco 'ﬂ~~--’”‘J
&uv{uy{uvu}&} = {uv{uﬁyuv}uﬁ} { {yu yuv}k- u}
ﬁhe foregoing reduces to (7.14).
We have seen that the deduction from the axioms (J.1),

(J.2 ) of all the important formulas in Jordan theory (in
particular (7.9), (7.12) and (7.14)) depends heavily on the fact
that we were able to cancel by 2. On the other hand, a theory of

linear Jordan algebras over fields of characteristic 2 does not
lead to results, which are "compatible" with results in the case
of char # 2. So one has to think of something else, which would
permit a "nice" theory for arbitrary rings. The best approach

so far is via "quadratic Jordan algebras", which where "invented”
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e Question January 27
Please help me to understand the paper by Denes and Denes for my project

e Answer to Question January 27

Attached are my notes after reviewing the paper we talked about. I also
attach copies of some of the references, which I downloaded. I don’t have
enough background in cryptography so I cannot understand the paper.
That is why I look at the references to see if it helps. The article by Paige
is of special interest to me since he was the chair at UCLA when I was
a student there (1956-1964). It is purely mathematical without regard to
cryptography.

The book by Simmons can be bought for 14 cents +3.99 shipping. 1
also requested two of the references directly from the authors through
RESEARCHGATE. One other reference was requested via inter library
loan. I will let you know when I receive any of these. They were not
available online.

Files Attached:

DenesNotes2pp.pdf ( 1.6 MB)
[15]Wanless.pdf ( 282 KB)
[11]Drapal.pdf ( 106 KB)
[5]DenesEtAl.pdf ( 301 KB)
[7]DenesEtAl.pdf ( 121 KB)
PaigeDuke1949.pdf ( 2.3 MB)
QuisquaterEtAl[13+].pdf ( 233 KB)
[1]Cawagas.pdf ( 188 KB)
[2]ChaumEvertse.pdf ( 722 KB)

See the next 2 pages for my notes on the paper in question
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e Question January 24

Would it be possible that

you give me some instructions for exercise 3 and 4 like what you did for
last quarter’s problem set?

e Answer to Question January 24

See the next 3 pages for discussion of Exercise 3
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e Question January 15

I am trying to prove Exercise 1 on Meyberg Chapter 7,
but I’m not sure about my proof.

e Answer to Question January 15
You have a Jordan algebra F.
You consider the algebra F with identity adjoined (even if F has
identity---you can ignore it). You are to prove that this new algebra
which equals the cartesian product RX F or CXF (R=reals,
C=complexes)
still satisfies the Jordan axioms.
namely if Xy=yXx and x"2(xy)=x(x"2y) hold in F, then
(a,x) (b,y)=(b,y) (a,x) and
(a,x)72 ((a,x) (b,y))=(a,x) ((a,x)"2(b,y)) also hold
See page 7 in chapter 1 to recall the product in R X F:

(a,x) (b,y)=(ab, ay+bx+xy)

a and b are numbers, x and y are vectors in F.
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