FORUM

- First Question April 19

In question 4 of HW 1, I did this problem by expanding both sides into a long and nasty sum of products of $\mathrm{A}, \mathrm{B}, \mathrm{X}$, and Y , and show that the results are the same on both sides. I wonder if there is a more 'elegant' way for this question.

- Answer to First Question April 19

There is a more elegant approach, and it is contained in Exercise 7. By exercise $6, M_{n}(C)$ is a Jordan algebra under circle multiplication. Therefore Exercise 4 is a special case of Exercise 7.

- Second Question April 19

In question 7 of HW1, in part i), I did the replacement and expanded both sides.
For the LHS, I get: $2 u((u w) v)+u\left(w^{2} v\right)+w\left(u^{2} v\right)+2 w((u w) v)$
For the RHS, I get: $2(u w)(u v)+w^{2}(u v)+u^{2}(w v)+2(u w)(w v)$
I do not know how to get rid of the two extra terms on both sides.

- Answer to Second Question April 19

In the equation $L H S=$ RHS, replace w by cw, where c is a nonzero number. Divide by c in the resulting equation. Then take the limit as c approaches 0 .

- Question April 21

What is an example of an algebra which does not have a unit element. (A unit element, or identity element, in an algebra A is an element e such that $e x=x e=x$ for every $x \in A$.

- Answer to Question April 21

See the scan on the next page
(scan) $199.0423211 . \mathrm{pdf}$

Example 1 Any Lie algebra, $A \neq\{0\}$ (If e was an identity element, then $e^{2}=0=e \cdot e=e$, so $A=\{0\}$) Example 2 The set of all sequences of real numbers which converge to 0 , isth addition $\left(x_{i}\right)+\left(y_{i}\right)=\left(x_{c}+y_{i}\right)$, multiplication $\left(x_{c}\right)\left(y_{c}\right)=\left(x_{c} y_{c}\right)$.
Example 3 The set M of all infinite matrices which have only fentely many nonzero eutuies:

If $a, b \in M$ say $a \in M_{n} \quad b \in M_{m}$ then a, b both belong to $M_{\max (n, n)} \subset M$ so can be multiplied and $a b \in M_{\max (m, n)} \subset M$
So M is an algebra

Example 4 The set of all polynomials which vanish at 0 . (If $I(x)=\sum_{k=1}^{n} a_{k} x^{k}$ were an identity dement then If $=f$ for $f(x)=\sum_{k=1}^{m} b_{k} x^{k}$ implies that $b_{1}=b_{2}=\cdots=b_{m}=0$)
Example $5 \frac{\text { Proposition }}{A n}$ evolution algeria has an identity element of and only if \exists natural basis $e_{L}^{2}=k_{i} x_{i} k_{l} \neq 0$

- Question May 3

When I was working on problem 2 of homework 2, I managed to do parts $1-3$ of part (b), but I got stuck on part 4. I tried to prove this by contradiction, but I do not know how to use the properties of power associative. Could you give me some hints?

- Answer to Question May 3

Let $M_{B}(A)=\left[w_{i j}\right], B=\left\{e_{1} \ldots, e_{n}\right\}$
(1) From April 21 pdffile, for any $i=1, \ldots n$,

$$
e_{i}^{2}\left(e_{i} e_{i}\right)=\sum_{k=1}^{n} w_{k i} e_{k}^{2}, \quad\left(e_{i}^{2} e_{i}\right)=w_{i i} e_{i}^{2}
$$

(2) From (a) and (b) of Exercise 2(b),

$$
e_{1}^{2}, \ldots, e_{n}^{2} \text { is a basis. }
$$

