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ANALYSE FONCTIONNELLE. — Algeébres dopérateurs sans ordre : solution du
probleme du projecteur contractif. Note (*) de Yaakov Friedman et Bernard Russo présentée
par Alain Connes.

Une J*-algebre est le modéle algébrique naturel pour les systémes d’opérateurs sans ordre. On démontre que
la classe de J*-algébres est stable par les projecteurs de norme 1.

FUNCTIONAL ANALYSIS. — Operator Algebras without Order: Solution to the Contractive Projection
Problem.

A Y*-algebra is-the natural algebraic model for operator systems without order. We prove that the class of
J*-algebras is stable under the action of norm one projections.

En 1977, E. Effros [1] a proposé trois catégories pour faciliter I’étude de I'injectivité et
de la nucléarité : A4, espaces normés réels, contractions; #, systemes des fonctions,
applications positives unitales; @, systémes d’opérateurs, applications complétement
positives unitales.

Il est connu que les modeles algébriques naturels pour les catégories ¢ et @ sont
respectivement : « algebre de Banach-Jordan » et « C*-algébre ». On peut se demander §’il
y a un modele algébrique correspondant dans la catégorie 4.

Parce que ¢ et O sont inclus dans A4, on peut commencer par la considération des
propriétes géometriques dans les modéles algébriques de £ et @ qui ne dépendent pas de
la structure d’ordre. On trouve alors qu’il s’agit d’une structure de produit triple, 4 savoir
{xyz}=1/2(xy*z+zy*x). 1l en résulte donc que « J*-algébre » serait une réalisation
concrete d’un modéle algébrique dans 4.

Une J*-algébre est un sous-espace complexe linéaire de .# (H, K), fermé pour la norme
de Z(H, K), et stabie par Popération a aa* a. C’est un cas particulier d’un systéme triple
de Jordan [2].

Pour affirmer la conclusion annoncée ci-dessus on passe aux morphismes dans chaque
catégorie. D’un c6té, on sait qu’une isométrie d’une J*-algébre sur une autre est un J*-
isomorphisme [3]. De plus, il est classique qu’une isométrie positive unitale d’une JC-
algcbre conserve la structure de Jordan (Kadison) et méme qu’une isométrie complétement
positive unitale d’une C*-algébre conserve la structure de C*-algébre (Choi, voir [1]).
Donc, dans chaque modele algébrique, les isométries surjectives coincident avec les
isomorphismes algébrigues.

D’un autre cOt¢ on peut examiner les applications idempotentes dans chaque catégorie
algebrique, qui diminuent la norme. Il est connu que I'image d’un projecteur complétement
positif unital sur une C*-algébre est une C*-algébre [4], et que I'image d’un projecteur
positif unital sur une JC-algébre est une JC-algebre [5].

Le premier travail consacré a I'étude des projecteurs contractifs et non-positifs a été [6]
dans lequel le probléme était compiétement résolu pour I'espace d’opérateurs compacts
dans un espace hilbertien. Ensuite, une solution pour les C*-algébres commutatives était
obtenue dans [7].

Inspir€s par ces résultats, les auteurs ont suggéré [8] que I'image d’un projecteur
contractif quelconque sur une C*-algébre aurait une structure de systéme triple de Jordan.
Récemment, les auteurs ont donné une réponse affirmative i cette question [9], en
démontrant que la classe des J*-algébres est stable par les projecteurs de norme umn.
Comme 'image d’un projecteur contractif, méme définie sur une C*-algebre, a, en général,
seulement une structure de J*-algébre, cela confirme que « J*-algébre » soit le modéle
algébrique concret naturel pour la catégorie A"
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Nous donnons maintenant un expose assez detaillé sur la structure algébrigue de ’'image
d’un projecteur contractif sur une J*-algébre.

On rappelle quelques notations et résultats de [10]. Soit M une J*-algébre. Pour chaque
feM’, v=o() signific unique isométrie partielle dans M” donnée par la décomposition
polaire de f. Alors [(fY=vv* et r(f)=0v* v sont des projecteurs hermitiens dans I’algébre
de von Neumann A”, ou A est une C*-algebre quelconque dans laquelle M est contenue
comme sous-J*-algebre. Pour une isométrie partielle v quelconque de M”, les « projecteurs
de Peirce » sont définis sur M” par :

E(v) x=lIxr, Foy)x=(1-Dx(1—r#),
G(o)yx=Ix(1—r)+{0-Dxr,

ou l=vv* et r=0v*v. Aussi E(v), F(v), G(v) opérent sur le dual M’ de la maniére
suivante : E(v)g=go E(v), etc., pour ge M’. Si v=0(f), on écrit E{ f) pour E(v([)), etc.

Soit  un projecteur contractif sur le dual M’ d’une J*-algebre M. Tout point extrémal

de la boule unite Q(M'); de I'image de Q s’appelle « atome de Q ». Les projecteurs
Lo=sup {I(f): fatome de Q}, Ro=sup {r{f): fatome de Q} dans A” définissent des
projecteurs contractifs £ et Fo surA” par les formules &oz=L¢zRo,
Foz=({1—Lo)z(1—-Ro), pour zeA”. L’espace &, Q (M") = A” s’appelle la partie
atomique de Q.

Chaque atome f de Q a la propriété suivante : QE(f)g={g, v) f, pour geM’, ou
v=v(f); donc f est un point exposé¢ de Q{M’);. Par conséquent, v est une tripotente
minimale de Q' au sens que :

(1) E()Q' x={f, x>v pour xeM”.

En général, v n’appartient pas a I'image de ' bien qu’un prolongement normique de v
y appartienne. De 'autre cOté, on a la proposition suivante :

ProrosITION 1. — Soit Q un projecteur de norme 1 sur le dual M’ d’une J*-algebre M et
soit f un atome de Q. Alors & v=v, ou v=v(f), Cest-d-dire v appartient 4 la partie
atomique de Q.

La proposition 1 et (1) disent que la partie atomique de Q’ est stable par le projecteur
de Peirce E(f), fatome de . La proposition suivante démontre que G(f) a la méme
propriété, donc que chaque projecteur de Peirce d’un atome de Q laisse &, Q' (M)

invariant. Dans la démonstration il arrivera que G( f)Q'(M") soit une J*-algébre de
rang <2.

ProprosiTION 2. — Soit Q un projecteur de norme 1 sur le dual M’ d’une J*-algébre M et
soit f un atome de Q. Alors &9 Q a=a pour tout acG( f) Q' (M"). |

Le fait que Q(M’) soit stable par les projectures de Peirce d’un élément ¢ quelconque
de Q(MY) est une conséquence de [10].

Un autre outil important, outre les projecteurs de Peirce, est une décomposition :

CIE. 0=Y e fir

d’un élément e Q(M’), ou { f;} sont des atomes de Q, deux-d-deux orthogonaux, ¥ est
orthogonal 4 chaque f;, et E(\) Q'(M”) est une JBW-algébre purement non-atomique.
Cette décomposition locale est une conséquence du fait que, d’aprés [5], B=E(¢) Q' (M")
est une JBW-algebre. Le théoréme suivant dit que cette décomposition est en fait globale.
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‘THEOREME 1. — Soit Q un projecteur de norme 1 sur le dual M’ d’une J*-algébre M.
Alors, Q(M')=uf ®,, N, ou s/ est le sous-espace linéaire fermé engendré par les atomes
de Q, et la boule unité de N na pas de point extrémal. De plus :

A=6QM) et N=FQM)

L’outil principal pour Ia démonstration du théoréme 1 est la proposition suivante, dont
la preuve utilise elle-méme une généralisation de la céleébre « propriété de boule de

Hilbert » de [11].

ProrosiTION 3 (Propriété de rayon extrémal). — Soit Q un projecteur de norme 1 sur le
dual M’ d’une J*-algébre M, soit fun atome de Q et soit e Q(M’), Ou bien E(¢) f=0 ou
|E(9) /1| "*E(@) fest un atome de Q.

Maintenant, nous considérons un projecteur P de norme 1 sur une J*-algébre M. La
décomposition P'=4&¢ P + ¢#¢ P, donnée par le théoréme 1 implique une décomposition
orthogonale correspondante de P”. D’aprés Krein-Milman, I’application & est isométrique
sur P(M). On démontre que &¢P(M) est une J*-algebre, ce qui donnera le théoréme

suivant :

THEOREME 2. — Soit P un projecteur de norme 1 sur une J*-algebre. Alors P(M), muni
du produit triple { a, b, ¢)=P(1/2(ab* ¢+ cb* a)}, est un systéme triple de Jordan qui a une
representation fidele comme J*-algebre.

Pour prouver le théoreme 2, on démontre d’abord que I'espace linéaire W engendré par
les tripotentes minimales de P’ est faiblement dense dans &y P"(M”). Ensuite on démontre
que chaque ¢lément de N est une combinaison linéaire des tripotentes minimales de P~
deux-a-deux orthogonales. Pour effectuer ce processus d’orthogonalisation, il faut prouver
que la correspondance v(f)~— f définit une injection linéaire de N dans /. Alors
&o P’ (M”) est une J*-algebre.

Posons y=&o x avec xe P(M). Alors x=y+z avec z= £,z et donc xx* x=yy* y+zz* z
Parce que yy*yedo P’ (M") et zz*z= Fo(2z%2), on a & P{xx*x)=yy*y, d’ou le
théoréme 2.

Le théoréme suivant donne des propriétés géométriques de la boule unité de I'image
d’un projecteur de norme 1 sur le dual d’une J*-algébre. Ces propriétés, obtenues en
démontrant le théoréme 2, sont analogues aux propriétés développées dans [11] pour
espace des ¢tats d’une algebre de Jordan (qui correspond ici au cas : M =algébre de
Jordan, Q=des états).

THEOREME 3. — Soit Q un projecteur de norme 1 sur le dual M’ d’une J*-algébre M et

soit K la boule unité de Q(M’). Alors :
1° Penveloppe G-convexe des points extrémaux de K a une face complémentaire dans K ;

2° tout point extrémal de K est exposé;
3° pour chaque ¢ € Q(M’), opérateur E () préserve les rayons extrémaux de K ;

4° pour chaque paire f, g de points extrémaux de K, on a f(v(g))=g@w(f)).

(*) Remise le 21 février 1983.
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