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Structure of the predual of a JBW*-triple

By Yaakov Friedman at Los Angeles and Bernard Russo at Irvine

Alfsen and Shultz, in [1], have given several characterizations of the state space
of a JB-algebra. Their main result was the following: a compact convex set K is (affinely
isomorphic) to the state space of a JB-algebra iff

(i) K has the Hilbert ball property;
(i) K splits into atomic and non-atomic parts;
(iii) every norm exposed face of K is projective;

(iv) every continuous real affine function on K is the difference of two orthogonal
positive continuous affine functions on K.

It was also shown in [1] that (i) and (ii) can be replaced by the following “pure
state properties”, which are less geometric but more physical:

(v) every extreme point of K is norm exposed;
(vi) every P-projection preserves extreme rays of K;

(vii) for every pair f, g of extreme points of K with support projective units v, u
respectively, f(v) =g(v).

In our study of operator algebras without order [7], [8], we proved analogs of
each of these properties (except (iv) which has no meaning in our setting) if K is the
unit ball of the image of a contractive projection on the dual of a J*-algebra. These
results were used to solve the contractive projection problem for J*-algebras and to
characterize the J*-automorphisms of order 2, [9], [10].

This work on J*-algebras suggests very strongly that a characterization of the unit
ball of the dual of a JB*-triple exists in terms of these properties. JB*-triples were in-
troduced by Kaup [13] [14] and can be considered as a Hilbert space-free analog of
J*-algebras.

In order to obtain this characterization it is desirable first to obtain a universal
enveloping JBW*-triple (second dual) of a given JB*-triple, as well as a representation
theory of Gelfand Naimark type. At present, these two goals represent outstanding
Problems in the analytic theory of infinite dimensional Jordan triple systems.
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As the next step in the development of the theory of operator algebras without
order, in this paper we study normal functionals on JBW*-triples, i.e., JB*-triples which
are Banach dual spaces. Our principal result is a decomposition of the pre-dual of a
JBW*-triple into atomic and non-atomic parts. This implies that U itself decomposes
into the direct sum of atomic and non-atomic JBW*-subtriples.

A major technical tool for establishing our results is the existence and uniqueness
of a polar decomposition of an arbitrary normal functional on a JBW*-triple. Since
JBW*-triples are not concretely represented as operators, we use algebraic and analytic
techniques (Peirce decompositions of Jordan triple systems and Siegel domain realizations
of bounded symmetric domains) in order to obtain the polar decomposition.

In addition to the atomic decompositions mentioned above we prove the analogs
of the other properties mentioned above for the predual of a JBW*-triple. Noteworthy
among these is the extreme ray property.

The authors wish to thank W. Kaup and H. Upmeier for their interest in our
work. In particular we are indebted to H. Upmeier for providing a proof for part of
Lemma 1. 5 (b).

§ 1. Peirce projections. Polar decomposition of a normal functional

A JB*-triple is a complex Banach space U equipped with a continuous sesquilinear
form :

UxU— ZLU), (x,y)— D(x,y)
such that

(1. 1) the triple product {xyz}=D(x, y)z is symmetric in x and z;
(1.2 {xy{uvz}} — {uv{xyz}} = {{xyu} vz} — {u{vxy} z};
1.3) D(z, z) is hermitian (cf. [3]) with spectrum in [0, c0);
(1.4 1Dz, 2)ll = lz|?

forall x,y,z,u,vin U.
A JB*-triple also satisfies (cf. [14])

(1.5 I{zzz} ]| =lz|I°.

Let e be a non-zero tripotent (i.c., {eee}=+e) in a JB*-triple U. By (1.5),
llell =1 and by (1. 3), e is a positive tripotent: e = {eee}.
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The conditions (1. 1) and (1. 2) are the defining equations of a Jordan triple system.
Odd powers of elements of U are defined inductively by x!=x, x™={xx™ 2x} for m
odd, m=3. One has {x™ x™2x™}=xm™*m*ms (cf [15], § 3. 3). For the convenience of
the reader we shall now use some identities valid for all Jordan triple systems to define
and establish known properties of the Peirce projections relative to a tripotent. Then
we shall use (1. 5) to show that in a JB*-triple, the Peirce projections are contractive.
This provides an important step in the proof of the polar decomposition (see the proof
of Lemma 1. 6).

Denote by Q the quadratic operator on U: Q(x) y={xyx}, for x, y € U. Then define
0(x, 2) =% (Q(x+2)—Q(x)—Q(2)) so that Q(x, z)y={xyz}, for x,y,ze UY).

We define the Peirce projections Py (e), k=0, 1, 2 relative to a tripotent e by

P,(e)=0(e)’, P,(e)=2(D(e, e)—Q(e)?),
Py(e)=1—2D(e, e)+ Q(e)>.

2
1
Note that 3 Pi(e)=I and Dfe, e)=P2(e)+7 P (e). It follows from [15],
j=0
JP3,JP23, JP25, that each Pj(e) is idempotent and that P,(e) Pi(e)=0 if k+j. Let
U.(e)=P,(e) U be the range of P,(e), k=0,1,2. By [15], JP1, U,(e) is contained in

1
the ) k eigenspace of D (e, e). From this we get the Peirce decomposition

(. 6) U=U,(e) @ U, (e) ®Uy(e)

1
and the fact that U, (e) is the ) k eigenspace of D(e, e), k=0, 1, 2.

Now note that by (1.2), the operator L=D(e, e) is a derivation of U in the
sense that L({uvz})={L(u)vz} — {uL(v) z} + {uvL(z)}. Therefore we have the fundamen-
tal property:

1.7 {Ui(e) Uj(e) Ur(@)} = U;_ i (e).

The following two facts lie a bit deeper (cf. Loos [15], Satake [16]):
(1.8) {U,(e) Up(e) U} = {Uy(e) U (e) U} =0;

1.9) U,(e) is a complex Jordan *-algebra, with product
xo y={xey}, unit e, and involution z* = {eze}.

') Loos, in [15], defines Q(x)y to be % {xyx}, and Q(x,z) to be Q(x+2z)—Q(x)—Q(z). He also
denotes Q(x) by Q,. Hence some care must be exercised when using the list of identities in [15].

41 Journal fiir Mathematik. Band 356
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It follows from (1.2) that {{yex}ez}+ {xe{yez}} —{ye{xez}} = {x{eye}z}, and
therefore

(1. 10) {xoy*oz}={xyz} for x,y,ze U,le),

where the left side of (1. 10) denotes the Jordan triple product in U, (e), i.e.,
{acboct=(@cb)oc—(acc)eb+ac(bec).

Thus, if U is a JB*-triple, then U,(e) is a JB*-algebra (=Jordan C*-algebra) and
hence {x € U,(E): x=x*} is a JB-algebra (cf. [18]).

In order to show that in a JB*-triple the Peirce projections are each of norm
one, we shall use the following lemma, in which a one parameter group of isometries
is defined for each tripotent.

Lemma 1. 1. Let e be an arbitrary tripotent in a JB*-triple U and let 1€ C, |A|=1.
Define a linear map S, =S,(e): U— U by

(1.11) S,=S,(e)=A*P,(e) + AP (e) + Py(e).
Then
(@) S, preserves the triple product, i.e.,
S, ({xyz})={S;x, S, », S;z) for x,y,zeU,

(b) S, is an isometry of U onto U.
Proof. (a) It suffices, since 2{xyz}=Q(x+2) y—Q(x) y— Q(z) y and

Q(X)J’—— Z (=) (x+yp)?
2 )
to prove S;(x*)=(S;x)}. Write x='20xj with x;=P,x. Then S;x=3 ¥x;,
o

{Six, S;x, S;x}= 2 )‘i_j+k{xixjxk}a {xxx}= 3 {x;x;%.}.

i,k i,jk
By (1. 7), {x;x;x,} € U;_;,,. Therefore S,({xxx})= X A"7**{x;x;x.}.
i,j.k
(b) ||S;(x)||3-—ll{S;(x) S;(%), S, = 1S, {xxx}| SIS, II [RE223T BN TBAS
Thus || S;|| =1 and since S, S;=1, S, is isometric. O

An alternate proof of (b) of Lemma 1. 1 is to observe that D (e, e) being hermitian,
exp (2itD(e, e)) is an isometry of U for all t € R. But exp (2itD(e, e)) = S,,, i) Since

45

—d_; exp (it)[t=0 =21P2(e) + lPl (e) =2lD(e1 e)-

On the other hand the elementary proof given above shows that D(e, e) is hermitign.
It follows by an approximation argument that the assumption that D(x, x) is hermitian
in (1. 3) is redundant.
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Corollary 1. 2.  For each tripotent e:
(a) The Peirce projections P, (e) are contractive, 0 <k <2;
(b) P,(e)+ Py(e) is a contractive projection.

Proof. Let P, denote P,(e), 0 <k Z2.

1 1
Since P, + Po=? (S;+S_)), [IP,+ Py|| 1. Also since P, =—2—(

1 1
Finally P,=— (I=S) (Py+Po) and Po=—-(I+S) (P,+Po) imply [P, <1 and
IPolls1. O

Recall that a J*-algebra is a norm closed linear subspace M of ¥ (H, K) (H, K
complex Hilbert spaces) which is closed under the triple product a — aa*a. It is easy

S1 _S—l)s ”P1|| él-

. . . 1 . .
to verify that M is a JB*-triple with {abc}=7(ab*c+cb*a). The tripotents in M

are the partial isometries v and the corresponding Peirce projections are given by

P,vyx=Ixr, P (v)x=Ix(1-r)+( —‘1) xr,
Pyv)x=(1-0)x(1—-r),

where /=vv* and r=v*v.
The following remark will be used in § 2 (see Corollary 2. 5)

Remark 1. 1. Let u, v be rank one, norm one elements of ¥ (H, K). Then there is
a rank 1, norm 1 element w in £ (H, K) and a scalar 4, |A| =1 such that S_, (w) u=Av.
If H=K and u and v are symmetric with respect to a conjugation on H, then w can
be chosen symmetric as well.

To see this let u=@ @y, v=a® B and solve for w=¢®@n in the equation
S_,(w) u=v, where for unit vectors ¢, ¥, ¢ ® Y denotes the rank 1, norm 1 operator
?— (7, ¥) @. One has I=ww*=(® ¢, r=w*w=n® n so we are to solve

4lur —2(lu+ur)+u=v.
This reduces to

which can be solved for ¢ and 7 if (¢, ®) and (, ) are real; namely
LI o
lo+al’ ly+ Bl

The second statement follows since ¢ ® ¥ is symmetric means that ¢ =y where
1s the conjugation on H.

¢

Since no confusion arises, we shall denote the action of P,(e) on linear functionals
by the same letter: P,(e) g=g o P,(e), for ge U'. The following lemma shows that the
ranges of P,(e) and P,(e) are M-summands in U,(e)+ Uy(e)<= U and L-summands in
Py(e@) U+ Py(e) U'c U.
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Lemma 1.3. Let e be a tripotent in a JB*-triple U. With P,=P,(e), 0<k <2,
we have

(@) [IP,x+ Pox|| =max (| Pxll, | Poxl), xe U;

() |P,g+ Pogll=1IPgll + | Pogll, g€ U’;

© i |Pgll=lgl, then P,g=0;

@) if Pogll=lgl, then P,g=0.

Proof. By Corollary 1. 2 (a), | P,x+ Pyx| Zmax (|| P, x|, | Pox]|). With

y=Pyx,z=Pyx and max(|yl,[zl)=1,

we have by (1. 5)and (1. 8) forn=21, |y +z|| = (»+2)*"1? "=y + 2P "< (2)* "—>1.
This proves (a), and (b) follows from (a).

By Corollary 1.2(b), [P, gll+[Pogll =P8+ Pogl <ligll. Therefore (c) and
(d) hold. O

Proposition 1 below generalizes [5], Lemma 3. 1, which has been an important
tool for dealing with dual spaces of C*-algebras. It shows that functionals on the
subspaces U,(e) and U,(e) have unique Hahn-Banach extensions to functionals
on U.

To prove Proposition 1 we shall need the following lemma, which provides a
relation between elements from U, (e) or U,(e) and elements from U, (e).

Lemma 1. 4. Let e be a tripotent in a JB*-triple U, let x € U,(e) u Uy(e), ye U, (e),
and teC. Then

(1.12) (x4t =x"+12"D(x*""", x> )---D(x3, x*) D(x, x) y+ O(|t[*).

Proof. By (1.7), {xyx} =0, and therefore
(x+)=x*+t{xyx}+2t{xxy} +O0(|t|*)=x>+2tD(x, x) y+ O(|t]?).
The result now follows by induction: with
x,=x>"and y,=2"D(x,_y, X,_,)--D(x, x) y,
we have

e+ 1) = (x, + ty, + O(1t]))? = (x, + t3,)* + O(|1]*) = x3 + 2t D(x,, x,) y,+ O(|1]*)
=x,,+1+ty,,+1+0(|t|2). O
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Note that by the continuity of (x, y) — D(x, y), the constant in the O(|¢|*) depends
only on nif | x[| =1 and ||y £1.

Proposition 1. Let U be a JB*-triple. Let fe U’ and let e be a tripotent in U.

@ P, fl=IfI, then P,(e)f=f.
(d) I 1P fll=ISIl, then Py(e)f=f.

Therefore every bounded functional on U,(e) or U,(e) has a unique Hahn-Banach
extension to U.

Proof. (a) By Lemma 1.3 Py(e) f=0. It remains to prove that P,(e)f=0. To
this end let y € U, (e). We are to prove that f(y) =0. We may assume || || =1, f(») =0
and |||l =1. For >0 choose x € U, (e) with || x| =1 and f (x) =1 —¢. Then for teR,

[x+eyll 2f (x+y)=f () +tf () 21 —e+1tf ().
Therefore, by Lemma 1. 4

(—e+tf )" Slx+1p)> = (x+ )"
SIx¥+ 2"y +0(1t)?)
and so

A= +3"tf () =&+ O0(1P) 1+ 22"yl + O(I1]?).

Letting ¢ — 0, and dividing by |¢| results in
2 n
S +0(1) é(g) Iyl +0qz).

Letting ¢ — 0, then n — oo yields f (y) =0. The proof of (b) is similar. O

Since U,(e) is a complex Jordan *-algebra, one obtains a positive hermitian form
F, on U,(e) with values in U,(e), by defining F,(x, y)=xc y* for x, y e U,(e). This
form is positive definite if U is a JB*-triple. Note that xo y* ={xe{eye}} = {xye}
by (1. 2).

We show next that the formula (x,y) — {xye} also defines a positive definite
hermitian U, (e)-valued form on U, (e). (cf. [15], 10. 4, for the finite dimensional case).
Lemma 1. 5. Let e be a tripotent in a JB*-triple U and define
F: U(e)xU,(e) > Uy(e) by F (x,y)={xye}.
Then
(@) F is hermitian: F,(x,y)*=F,(y, x) for x,ye U,(e);

(b) F is positive definite: F,(x,x)e U,(e)* and F,(x,x)=0 implies x=0, for
xeU,(e).

42 Journal fiir Mathematik. Band 356
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Proof. (a) By (1.2)
F(x,y)* ={e{xye}e} = {{yxe}ee} + {ee{ yxe}} — {yx{eee}} = {yxe} = F, (3, x).

(b) Let xe U,(e).

We may assume |x||<1. By (1.3) and (1.4) Sp(D(x,x))<[0,1] so that
Sp(D(x, x)—1d)=[—1, 0]. Since D(x, x)—Id is hermitian, | D(x, x)—Id|| <1 (cf. [3]).
Thus | {xxe} —e| =1 so that the series

LIP3 (LY [ S T (LS G (.0 +1)y"+
AR AU TN R B4 n! 2 2 "

with y ={xxe} —e, converges to an element z in the JB*-algebra U, (e) with z2= {xxe}.
By (a) {xxe} is self-adjoint and therefore so is z. Therefore F,(x, x) € U,(e)*. The last
statement is proved in [17]. O

The following lemma is a technical result which enables us to introduce a natural
order in the set of tripotents. It will be used in the uniqueness part of Proposition 2.

Lemma 1.6. Let e be a tripotent in a JB*-triple U, let xe U, |x| =1, and
P,(e) x=e. Then P,(e) x=0.

Proof. Let x=x,+x,+x, be the Peirce decomposition of x with respect to e.
By assumption x, =e and we wish to prove that x, =0.

Lety= _S,-(e) x=e—ix1"xo- Then ”y” =1 by Lt A8 poial
1 1
257(x+y)=€+1x1 with '1=—2—(1_i)

and ||z|| £1. By (1. 5) ||{zzz}|| = |/z||* £1. By (1. 7) and Corollary 1. 2,
le+ 2|41 {x, x, e}|| = || P, {zz2} || || {zz2} || 1.
It follows from Lemma 1. 5 (b) that x, =0. O
Lemma 1. 6 can be used to give a description of the natural partial order on the

" set of tripotents of a JB*-triple. Recall ([15], § 5) that e'<e for tripotents e’ and e in
a Jordan triple system means that e — e’ is a tripotent orthogonal to ¢’,i.e.,

D(e—e', e')=0.

Corollary 1.7. For tripotents e and e in a JB*-triple, ¢'<e if and only if
P,(e')e=e¢'.

Now suppose U is a JBW*-triple, i.e., U is a JB*-triple which is the dual of a
Banach space U,. We shall assume

(1.13) Q(e) is w*-continuous for each tripotent e in U; this implies that
U,(e)=P,(e) U is a JBW*-algebra, i.e., a JB*-algebra which is a dual space.
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In § 2 we shall need to assume, more generally, that
1.14) D(a, b) and Q(c) are w*-continuous for each a, b, ¢ in U.

Proposition 2. Let U be a JBW*-triple satisfying (1.13). Let fe U,. Then there

exists a unique tripotent e in U such that f=P,(e)f and f|U,(e) is a faithful normal
positive functional on U, (e).

Proof. (a) existence: We may assume || f|| =1. Then S={xe U: f(x)=|fl=Ix|}
is non-empty, convex and w*-compact. Let e be an extreme point of unit ball of U. By
[6] or [13], e is a tripotent of U. Since | f|| =1 (e)=(P,(e) f) () = P,(e) fI SISl we
have f= P, () f by Proposition 1. Set ¢ =£|U,(e). Since |f12 [0l 2 o) = (©)=I/I,
@ is positive. By (1.13) U,(e) is a JBW*-algebra and ¢ is normal. Let e, € U,(e) be
the support projection of ¢. Then e, is a tripotent in U, f=P,(e,)f, and f|U,(e,)
is a faithful positive normal functional. Indeed, e, is a projection in U, (e), so by (1. 10),
{e,e;e;} =2(e;oe)o e, —(e;ce)o e, =e, where o is the Jordan product in U, (e).
Thus e, is a tripotent. Now f= P, (e,) f follows from Proposition 1, and the faithfulness
of f|U,(e,) is obvious since e, is the support of ¢.

(b) uniqueness: Suppose e, and e, both satisfy the conditions of the Proposition.
Let ;=f|U,(e;), i=1, 2. Then P,(e,) e, € U,(e,) and

P (PZ(el) ez)=f(Pz(el) ez)=f(ez)= £l =lloyll.

By [8], Lemma 2. 4 (which is valid for JB*-algebras), P,(e,) e, =¢€,, so that e,=e, by
Corollary 1. 7. By symmetry e, = e, and thus e, =e,. O

For fe U,, we shall denote by e(f) the unique tripotent in U given by Pro-
position 2. Proposition 2 and Lemma 1. 5 can now be combined to construct an inner
product space corresponding to each fe U,.

Corollary 1. 8. For each fe U,, where U is a JBW*-triple, U, (e), with e=e(f) is
an inner product space with respect to the inner product

(X, y)f =f({xye}), X, Y€ Ul (e)

In Section 2 we shall also need a polar decomposition as well as a spectral de-
composition and functional calculus for an arbitrary element of a JBW*-triple. These
results can be obtained easily from [6] or [13] by noting that U}*, the weak*-closure
of the JB*-triple U, generated by x, is isomorphic to a (commutative) von Neumann
algebra.

Remark 1.9 (cf. [11], Th. 3.2). Let x be an arbitrary element of a JBW*-
triple U.

(a) There is a Borel subset S<(0, o0) and a J*-isomorphism g — g(x) from the
bounded Borel functions on S to U given by

g(x)= £ g(4) dv,

Where ¢ — v(0) is a tripotent-valued spectral measure on the Borel subsets of S.
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(b) There is a tripotent v =wv(x) in U such that
x = {vvx} = {vxv}.

The tripotent v is uniquely determined by the condition that x is a “weakly strictly
positive” element of the JBW*-algebra U, (v), i.e., x€ U,(v)* and for every normal
state @ of U,(v), @(x)>0.

An important technique for dealing with an algebraic structure is to employ
commutativity relations for operators thereon. The Peirce projections are fundamental
operators on Jordan triple systems. The following lemma gives a sufficient condition
for commutativity of the families of Peirce projections corresponding to different
tripotents.

Lemma 1.10. Let e and v be tripotents in a JB*-triple U and suppose e € U, (v)
for some p e {0, 1, 2}. Then [P,(e), P;(v)] =0 for all k, je {0, 1, 2}.

Proof. For xe U, let x,=P,(v) x, 0 =<k <2. Then (1. 7) implies that
P,(e) P, (v) x={e{ex,e}e} € U(v) and D(e,e) P,(v) x={eex,} € U(v).

Therefore

(1. 15) P,(e) P, (v)=P,(v) P,(e) P (v), 05k <2;
and

(1. 16) D(e, e) P,(v)=P,(v) D(e, €) P, (v), 0=k 2.

It follows from (1. 16), since D(e, e) — P, (e) =% P, (e), that
(1.17) P, (e) P,(v) = P,(t) Py (e) P,(v), 0k 2.
2
Now P, (v) P,(e) =P, (v) P,(e) ( b3 Pj(v)), so (1. 15) implies
j=0

(1. 18) P (v) P,(e)= Py (v) P,(e) P (v), 0=k =2;
and similarly

(1.19) P (v) Py(e)=P(v) Py(e) P(v), 0=k 2.

By (1. 15) and (1. 18)

(1. 20) [P,(e), P,)] =0, 0k <2;
and by (1. 17) and (1. 19)
(1.21) [P,(e), P(v)] =0, 0k <2.

Since P,(e)=1—P,(e)— P,(e), (1. 20) and (1. 21) imply
(1.22) [Po(e), P, (n)]=0, 0sk=<2. O
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Recall that for fe U, we denote by e(f) the unique tripotent in U arising from
the polar decomposition of f. The Peirce projections corresponding to e(f) will be
denoted by P, (f), k € {0, 1, 2}.

Proposition 3. Let v be a tripotent in a JBW*-triple U and let fe U, satisfy
P,(v)f=f for some pe{0,1,2}. Then e=e(f)e U,(v) and therefore [P,(f), P(v)]=0
for all k,je {0, 1, 2}.

Proof. Define f; =f|U,(v). Since P,(v) is contractive, | f, || =|f|. Let e, =e(f)).
Then e, is a tripotent in the JBW*-triple U,(v), which is a JBW*-subtriple of U.
Thus e, is a tripotent in U. By Proposition 1, f=P,(e,) f and therefore ¢ =f|U,(e,)
is a positive normal functional on the JBW*-algebra U,(e,). We shall show that ¢
is faithful. It will follow, by Proposition 2, that e(f)=e, € U,(v). The proof that ¢
is faithful is divided into 2 cases.

Case 1. p=0or 2. For xe U, by (1. 7) and (1. 8), we have

2
Q(el) X= {el’ .ZO I)J(v) X, el}= {ela P“(U) X, el}
j=
so that
1. 23) P,(e;)=P,(e;) P,(v).

By Proposition 2, f,|P,(ey) P,(v) U is faithful. Since P,(e;) U,(v) < U,(v),
f1P,(ey) U,(v) is faithful, so by (1. 23), ¢ =f|U,(e,) is faithful.

Case 2. u=1. We show directly that ¢ is faithful. Let x € (U,(e,))* and suppose
¢(x)=0. By Lemma 1.10, P,(v) and P,(e;) commute. Therefore P,(v) is a unital
contraction of the JB*-algebra U, (e,) into itself. It follows that P, (v) x € (U,(e,))*. But
[i(PL(v) x)=f (P, (v) x)=f(x) =f (P, (e;) x)=(x) =0, and £, is faithful on

P,(e,) Py(v) U=P,(v) P,(e,) U.
Thus P, (v) x=0.

To show, finally, that x =0, write x = {ye, y}, where y is the positive square root
of x in the JB*-algebra U,(e,), and let y=y,+y,+y, be the Peirce decomposition
of y with respect to v. Since [P, (v), P,(e;)] =0, we have

=P, (v) y= P, (v) P,(e;) y=P,(e,) P, (v) y € U,(ey),

for ke{0,1,2}. Now y=y*={e,ye,;}={e,y,e,} +{e,y,e,} +{e,y5€,}, so that by
(1.6) and (1.7)

n={e;yey =y, yo={e;yoe,} =y, and }’o={el.}’2el}=)’;-
Therefore, by (1.7) and (1. 8),
0=P,(v) x=P,(v) {ye,y}) =2{y,e1 50} + {yie )1} =2y, ° Y3 +yent.

Therefore y, =y, =0 and hence y, =y} =0 so that x=0. O

43 Journal fiir Mathematik. Band 356
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In Proposition 1 it was shown that all functionals on the subspaces U,(e) and
U, (e) of a JB*-triple U have unique Hahn Banach extensions to U. This fact is not true
for the subspace U, (e) as the following example shows.

10 0 a 0 1
Let U=M, ,(C), e—[o 0] so that Ul(e)—{[b 0]. a,beC}. Let f—l:1 0}
and g=[: 1] be elements of U’. Then || f|| =|/gll =2 and f|U, (¢) =g| U, (¢) has norm 2

also.

The next lemma shows that a Hahn Banach extension of a functional on U, (e)
is uniquely determined by its action on one of the subspaces U, (e) or U,(e).

Lemma 1. 11. Let v be a tripotent in a JBW*-triple U and suppose f e U, satisfies
|P,)fll=Ifl. Then P,(v)f and P,(v)f each uniquely determines the other and

1P, (@) f1 = | Py (v) £1-

Proof. Let e, =e(P,(v) f). By Proposition 3, e, € U, (v) and therefore

A1 =1P, @) f| =<Py(v) £, &) =1 (ey).

By Proposition 1, f=P,(e,) f and therefore ¢ =f|U,(e,) is a positive functional on
U, (ey). Since [P,(v), Pj(e;)]1=0, P,(v)f=P,(e,) P,(v) f, and therefore P,(v)f is deter-
mined by its values on U,(e,). The same is true for P,(v) f. To complete the proof it
suffices to show that

(P, (v) £1U,(e,))* = Py (v) f1U, ()

where # denotes the involution on U, (e,).

For z e U, (e,), we have, using (1. 7),

(P(0) f1Uz(e))* (2) =<P,(v) f, 2* > = {f, P, (v) {e, ze;})
={f, {e, Po(0) 2, €.}) =<f, (Po(v) 2)*)
={(f1Ux(e))*, Po(v) 2) =<f|U,(e,), Py (v) 2>
=P flUy(e),2>. O

§ 2. Properties of normal functionals. Main results

In this section we prove, for JBW*-triples, the non-ordered analogs of the
properties (i)—(iii) and (v)—(vii) stated in the introduction for JB-algebras. The
analogs of (i)—(iii) are Proposition 5, Theorem 1, and Proposition 8 respectively. The
analogs of the pure state properties (v)—(vii) are Proposition 4, Proposition 7, and
Lemma 2. 2, respectively. We also prove the analogs of three technical results from [1]
in Proposition 6, Lemma 2. 11, and Theorem 2.
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Note that in our setting (i.e., absence of an order structure), some of these results
appear naturally and are quite easy to prove. Roughly speaking, the more a Jordan
algebra property involves order, the more difficult is its formulation and proof in a
Jordan triple system. This is especially true of our second main result, Theorem 2.
Its proof requires most of the previous results of this paper; but the corresponding
fact for JBW-algebras is elementary once you know that the projections form a
complete lattice.

A tripotent e in a JB*-triple U is a minimal tripotent of U if P,(e) U=Ce. As
an application of Lemma 1. 10 we have

Lemma 2. 1. Let v be a minimal tripotent in a JB*-triple U and let e be a tripotent
with e € U, (v). Then v e U,(e) u U, (e).

Proof. For 05/ <2, Pj(e) v=Pj(e) P,(v) v=P,(v) Pj(e) v=4;v. Thus
0="P,(e) Pi(e) v="4, Py(e) v=1, 4,0,

so either 4, =0 or 4,=0. It remains to prove that 1,=0. Since P,(e)v=~71,0 we
must have 1,=0 or 1,=1. If 4,=1, then {eev} =0 and therefore {vve}=0 (by [15],
3.9), and so e= P,(v) e= P,(v) P,(v) e=0, a contradiction. O

The following Proposition clarifies the relation between minimal tripotents of a
JBW*-triple and the atoms of U, where by an atom f of a JBW*-triple U we mean any
extremal point of the unit ball U,, of U,. As a consequence, each atom of U is a
norm exposed point of U,;.

Proposition 4. Let U be a JBW*-triple with predual U,.

(@) Iffis an atom of U, then e=e (f) is a minimal tripotent of U, P,(f) x={f, x> e
Jor xe U, and P,(f)g=<(g,e)fforge U,.

(b) If e is a minimal tripotent of U, then there exists an atom f of U such that
e=e(f).

(c) The map f— e(f) is a bijection of the set of atoms of U onto the set of mini-
mal tripotents of U.

(d) Each atom of U is a norm exposed point of U, ,

Proof. (a) B=U,(e) is a JBW*-algebra and ¢=f|B is a faithful normal state
on B. Let S be the face in B generated by o, i.e., for 7 € S, there exists ¢ € S such that
@ is a convex combination of 7= ||z| "'z and 6= ||| "' 0. Since f= P, (e) f, f is a convex
combination of 7 P,(e) and & - P,(e). Since f is extremal,

2.1 t(Py(e) x)=|tll f(x)=(T,e> f(x), T€S, xeU.

By the Emch-King-Iochum extension of the Kadison-Effros-Tomita theorem [5],
[12], S is norm dense in B}. Since B linearly spans B,, (2.1) holds for every 7€ B,.

Now let ge U, be arbitrary. Then t=P,(¢)g|BeB, and so for xeU,
(Py(e) g, x) =< P,(e) g, P,(e) x)=(P,(e) g, &> f(x) =<g, &> f(x), i.e., P,(f) g=(g, &> f.
It follows from this that P,(f) x=<f, x) e for all xe U.
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(b) Define f by f(x) e=P,(e) x for xe U. Since P,(e) is w*-continuous, fe U, "
Since f(e)=1,1f=1 and <Py (e)f, x)={f, Py(e) x>=L(f, x>{f,ed=f(x) e,
f=P,(e) f. Since f|U,(e) =f|C is faithful, e=e(f) by Proposition 2. It remains to show
that fis an atom of U.

Since P,(e) is w*-continuous, the minimality of e implies that P,(e) g=<g,e) f

for ge U,. Since | f|| =1, f is an extreme point of (P,(e) U,), =C,. An application of
Proposition 1 then implies that f'is an extreme point of U,

(c) This follows from the proofs of (a) and (b).

(d) For an atom f, let H be the hyperplane determined by e=e(f)e U, i.e.,
H={geU,: Reg(e)=1}. Then {f}=H N U, ;. Indeed it is clear that fe Hn U, ,
and conversely if ge H n U, ,, then by Proposition 1, g=P,(e) g. By (a)

Py(e)g=<g e>f=f O

The following Lemma is the analog of the property called “symmetry of transition
probabilities” in [1].

Lemma 2.2. Let f,, f, be atoms of a JBW*-triple U, and let e;=e(f;), i=1, 2.
Then f,(e;) =f;(ey).

Proof. By [15], JP1, {xy{xzx}}={x{yxz}x} holds for x, y, ze U. We have, by
Proposition 4

{eje;e ) =fi(e;) e, and {eye e} =f,(e))e,.

Thus

{e,e;{e e,e,}} =(f1(ez))2 €
and

{e {e;e e} e} =f(e) filey) €.

Thus either f,(e,)=0 or f,(e,)=f;(e,). If f,(e;)=0 then f,(e,)=0 by reversing the
roles of e; and e, in the above argument. O

We shall prove the extreme ray property below in Proposition 7 using Theorem 1.
To prove Theorem 1 below we need an analogue of the extreme ray property dealing
with minimal tripotents (Proposition 6). To prove Proposition 6 we shall need a few
lemmas and another Proposition.

Lemma 2.3. Let u and v be minimal tripotents in a Jordan triple system U. The
Jordan triple system generated by u and v is of dimension at most 4, being linearly
spanned by the elements u, v, P, (u) v, P, (v) u.

1 .
Proof. Since {uuv}=P,(u) v+ 5 P, (u) v, it suffices to prove that any triple product

{abc} with a,b,ce A=A, U A, (where 4, is the set consisting of u and v and A, consists
of the two elements {uuv} and {vvu}) is a linear combination of u, v, {uuv}, {vvu}.

Given a, b, c € A, let i be the number of (not necessarily distinct) elements among
a, b, c which belong to 4,.
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If i=3 there is nothing to prove. If i=2, it suffices by minimality and symmetry
to consider only the elements x,, x,, x5, X4, X5, which can be expanded using [15],
JP7,9,10, 16, 16 respectively:

x; = {{vuu} uv} = {u{uvu} v} + {v{uuu} v}
=4, {uuv} + 4, v;

x, = {{vuu} vu} = {u {uuu} v} + {u {vvv} u}
= {uuv} + Ayu;

x5 = {u{vuu} v} = {{uvu} uv} + {vo {uuu}}
= A4 {uuv} + {vou};

x4 = {{vou} uu} = {u{vou} u} + {v{uuv} u} — {{uuv} vu}
=Asu+ X3 —X,;

x5 = {{uuv} uu} = {v {uuu} u} + {u {uvu} u} — {{vun} uu};

SO

1 1
X5 =" {vuu} +7 Agl.

If i=1, it suffices to consider only seven non-trivial terms y,,..., y, and for i=0
there are only three non-trivial terms z,, z,, z;. These terms are listed below and can be
expanded by using (1. 2). These calculations are omitted here. The terms are

y1 = {u{uuv} {uuv}}, ¥y, = {uf{uuv} {vou}},
¥ = {u{vvu} {uuv}}, Yo = {uf{vou} {vou}},
ys = {{uuv} u {uuv}}, Yo = {{uuv}u {vou}},

¥, = {{vou} u {vou}},

z, = {{uuv} {uuv} {uuv}},
z, = {{uuv} {uuv} {vou}},

zy = {{uuv} {vvu} {uuv}}. O

Remark 2.4. Let J be the Jordan triple system generated by two minimal
tripotents u and v.

(@) If Jis of rank 1, then J has dimension <£2;

(b) J is simple unless u and v are orthogonal.
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Proof. (a) J of rank 1 implies P,(#) v=0=P,(v) u and therefore
v=P,(u) v+ P () v+ Py(u) v=~Au+ P,(u) v.
Thus P, (4) v (and by symmetry P, (v) u) lies in the linear span of u and v.
(b) If J=J, @J,, then u, v must each lie in a component, by minimality. O

From Lemma 2. 3, Remark 2. 4, and the classification of simple finite dimensional
Jordan triple systems over C [15], we have:

Proposition 5. Let u, v be minimal tripotents in a complex Jordan triple system,
and let J be the Jordan triple system generated by u and v. Then J is isomorphic to one
of the following:

C, M ,(C), C®C, S5,©), M,,(QC).

Because of Proposition 4 (c), we may view Proposition 5 as the non-ordered analog
of the Hilbert ball property of [1]. Indeed, the rank 1 cases C and M, ,(C) are Hilbert
spaces of dimension 1 and 2; and the rank two cases C @C, S, (C), M, ,(C) are complex
spin factors with self-adjoint parts which are isomorphic to Hilbert spaces [2], §7.
Here, S, (C) denotes the symmetric 2 by 2 complex matrices.

Corollary 2.5. Let u and v be minimal tripotents in a complex Jordan triple
system U which are not orthogonal. Then up to scalar multiples, u and v can be “ex-
changed by a symmetry” in U, i.e., there is a tripotent w in U and |A|=1 such that
S_;(w) u=4Av.

Proof. The Jordan triple system J generated by u and v is isomorphic to either
M, ,(C), M, ,(C), or S,(C). The equation S_,(w)u=Av can be solved in J for w
and A by the remark following Lemma 1. 1. O

The next two lemmas give more information about the Jordan triple system J
generated by two minimal tripotents 4 and v in a complex Jordan triple system U.

Lemma2.6. If J is of rank 1, ie., J=C or J=M, ,(C), then au+pv is a
scalar multiple of some minimal tripotent of U, for every o, p € C.

Proof. If J=~C, then v is a multiple of u so au+ v is a multiple of u. If J= M, ,(C),
then by Corollary 2. 5, each b € J with |b| =1, can be exchanged with u by a symmetry
in U. Therefore b is a minimal tripotent of U. Since u and v span J the result follows. []

Lemma2.7. If J is of rank 2, ie., J=C ®C or J=M, ,(C), or J=S5,(C),
then there exist two orthogonal minimal tripotents e,, e, of U such that P,(e;+e,)a=a
forallaeJ.

Proof. If J=C @C, we may choose e, =u and e, =v. Now suppose J=S,(C)
orJ=M, ,(C). Lete;e J, 1 i <3 correspond to é;€ S,(C)= M, ,(C), 1 <i<3 where

1 o] , Joo] ., 1t 1
“Zlo o “T|o 1] 721 1]

By a simple calculation in M, ,(C), S_,(€;) é; = ¢€,. Also, trivially, P, (€, +¢&,) m=m
for all me M, ,(C). Therefore S_,(e;) e, =e, and P,(e; +e,) a=a for all ae J. Since
we may choose e, =u it follows that e, is also a minimal tripotent of U and the lemma
follows. a
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We are now ready to prove the analog of the extreme ray property dealing with
minimal tripotents. Recall that elements, a,be U are orthogonal if D(a, b)=0 and
elements f, g € U’ are orthogonal (f1g) if e(f) and e(g) are orthogonal.

Proposition 6. Let e be a tripotent in a JBW*-triple U and let u be a minimal
tripotent of U. Then P,(e) u is a scalar multiple of some minimal tripotent of U.

Proof. Let S be the symmetry determined by e, S=S_, (e). Since S is a JB*-triple
automorphism, v=Su is also a minimal tripotent of U. By Proposition 5 the Jordan
triple system J generated by u and v is isomorphic to one of

C, M, ,(C),C®C, M, ,(C), S,().

On the other hand by the definition of S_,, we have

2.2) %(u+u)=P2(e)u+Po(e)u.

In the cases J=C or J=M, ,(C) we know by Lemma 2. 6 that u+ v is a multiple
of some minimal tripotent, say w, of U. Since a= P, (e) u and = P,(e) u are orthogonal,
(2. 2) implies that o and f are multiples (possibly zero) of some minimal tripotents of
U. Indeed, Aw=0a+p with A+0 implies w={www}=21"3{aaa}+A1"3{BBP}. This
implies that L" and B are tripotents and since w is minimal one of « or f is zero.

ll I8l
If =0, then a = =0 by orthogonality.

In the cases J=C @C, J=S§,(C), or J=M, ,(C) let e, e, be two orthogonal
minimal tripotents of U with P,(e, +e,)a=a for all aeJ (by Lemma 2.7). For

; 1
notation’s sake, let s=7(u+v), é=e,+e,, a=P,(e)u, f=Py(e) u. Then P,(é) u=u,

P,(8)v=v and s=a+p. We claim that P,(¢)a=a and P,(¢é) B=p. Using the local
polar decompositions discussed above in Remark 1.9, we have tripotents v,, v,, v,€ U
with v,=v,+v, and v, and v, orthogonal. Since se U,(é), we have v, € U,(é) and
therefore U,(v,) = U, (é) by (1. 7). By orthogonality v, € U, (v,) and therefore v, € U, (é)
and U,(v,) <= U,(é). Since a={v,v,a}€ U,(v,) we have proved that P,(é)a=a. A
similar proof shows that P,(é) f=pB. Thus « and f belong to the JBW*-algebra P, (é) U.
Since é=e, +e,, this JBW*-algebra has rank 2, ie., its identity is the sum of two
orthogonal minimal (self-adjoint) idempotents. Thus every element y of norm 1 in P, (&) U
is either a minimal tripotent of P,(¢é) U or has the property that P,(y) is the identity
on P,(é) U. Apply this with y="+:”
JBW*-algebra P,(é) U which exchanges y and e, (by Corollary 2.5), and there-
fore y is a minimal tripotent of U. In the second case P,(y) is the identity on J so
P, (y) u=u. But (1. 7) implies P,(y)=P,(e) P,(y) so that

. In the first case, there is a symmetry in the

P,(e)u=P,(e) Pz(y)u=P2(y)u=u. O
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We are now ready to prove the main results of this paper. The following remark
is needed in Theorem 1.

Remark 2.8. Let ¢ be a normal functional on a JBW*-triple U. Since ¢|P,(¢) U
is a positive normal functional on the JBW*-algebra P,(¢) U we have, by using [1],
§ 5, a decomposition

@.3) 0=3 Lfi+¥

where {f;} is a sequence of pairwise orthogonal atoms of U, ¥ is orthogonal to each f;,
4,20, lell=X A4+ (¥, and P,(¥) U is a purely non-atomic JBW*-algebra.

Theorem 1. Let U be a JBW*-triple with predual U,. Let of be the norm closure
of the linear span of the atoms of U. Then U, = @, N where the unit ball of N has
no extreme points. In fact

N ={¥eU,: Y is orthogonal to all atoms of U}.

Proof. Each ¢ € U, has the form .<p=h+ ¥ where he o/, P,(¥) U is a purely
non-atomic JBW*-algebra, ¥ is orthogonal to A, and | ¢| = Al + || ¥|.

Let f be an arbitrary atom of U. We shall show that ¥ is orthogonal to f and that
the decomposition ¢ =h+ ¥ is unique. By Proposition 6, P,(¥)e(f)=A4v for some
minimal tripotent v of U and Ae C. If 440 than ve P,(¥) U which is purely non-
atomic, contradiction. Thus P,(¥)e(f)=0. Suppose now that ¢ =h,+¥,=h,+ ¥,
with hy, h, € o and P,(¥;) e(f) =0 for all atoms fof U and i=1, 2. Now

e(p)=e(h)+e(¥y, i=1,2,
so that
P, (¥,) e(9) = P,(¥,) (e(hy) +e(¥,)) = Pr(¥y) e(¥,)
and

Py(¥)) e(9) =P, (¥)) (e(h) +e(¥))=e(¥y).

Thus P,(¥,) e(¥,)=e(¥,) so e(¥,)=e(¥,) (by Corollary 1.7) and by symmetry we
have e(¥,) =e(¥,) and therefore P, (¥,)=P,(¥,). Thus

Y, =P2(lp1) (hl Sr W1)=Pz(q’z) (hz +¥,)= Y,.

To prove that ¥ is orthogonal to an arbitrary atom f, consider f+ ¥. By Remark
2.8 we can write f+¥Y=h,+ ¥, with h, e &/ and h, L ¥,. By the uniqueness just
proved, f=h, and ¥ =¥,. In particular ¥ is orthogonal to f. We have proved that
U,=oA ®, N where /' ={¥ € U,: ¥ is orthogonal to all atoms of U}. Since the sum
is I', any extreme point of the unit ball of #° would be extremal in the unit ball
of U,. O
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Corollary 2.9. A" ={pe U,: ¢(e(f))=0 for all atoms f of U}.

Proof. Each ¥ e .4 obvidusly satisfies ¥ (e(f))=0 for all atoms f since ¥Lf.
Suppose ¢ € U, satisfies this condition and let g be an arbitrary atom of U. Write
g+o=h+¥ with he o/ and ¥ € 4. Since ¢ and ¥ both vanish on all e(f) (f atom

of U), gle(f))=h(e())) for all atoms f of U. Now h(e(g))=g(e(g))=Igl=1 and,
writing A=Y 4;h; with h; orthogonal atoms of U, we have

el =h (X e(h)) =2 h(e(h))=g(X e(h)) <lgll =1,
the sum Y e(h;) converging in the weak *-topology of P, (k) U. Therefore ||k =1. On
the other hand, ||P,(g) hll Z(P,(g) b, e(g)> =h(e(g))=1. Thus 1 <|P,(g) kIl <|hl =1

so by Proposition 1, h=P,(g) h. Since g is an atom of U, Proposition 4 implies
h=P,(g) h=<h, e(g)) g=g. Therefore p =¥ € A" O

Since U=(U,)" we may write U=.4"* @, o/* where e.g. #™* denotes the anni-
hilator of A4". Let U, denote the linear span of the minimal tripotents of U and let 2/,
denote the linear span of the atoms of U.

Corollary 2. 10. U, is weak*-dense in N+,

Proof. For ¥ e A and x € U,, ¥(x)=0, so that U,= 4. Let ¢ € U, vanish on
U,. By Corollary 2.9 ¢ € A" so ¢ vanishes on 4™+, d

Lemma 2. 11. There is a linear bijection n,: of , — U, given by

Ty < "1 “ifi) = _é e (f).

The map m,, extends to a contractive linear map n of o/ into N+,

Proof. If ¥ a,f;=0 then b= Y &e(f,) is in 4. But b vanishes on </, by a

i=1 i=1
simple application of Lemma 2.2 so be o/* n A4+ =(0). This implies that the map
ny: o — U, is well defined, linear and onto. Another application of Lemma 2.2 to-

gether with Corollary 2. 9 shows that if > a;e(f;)=0 then } «&;fe & n A =(0). Thus
i=1 i=1
T, is a linear bijection of &/, onto Uj,.

We now define n: of — A+ as follows. Each h € o/ has the form h=3 A h; with
4;20, ¥ A,=| k|| and h; orthogonal atoms of U. Since e(h;) are orthogonal, 3 1e(h;)
converges in the w*-topology of P, (k) U. We define n(h) to be 3. 4;e(h;). By Lemma 2. 2
7 is well defined and therefore is linear and extends n,. Finally

In(®) =1L Leh)| =sup L, <X A=hl. O
We are now ready to prove the extreme ray property. For convenience we record
the following, which is a consequence of Proposition 1 and the proof of Proposition 3.

Remark 2.12. Let he U, and let u=e(h). If w is a tripotent in U, then
P,(w) u=u if and only if P,(w) h=h.

Proposition 7. Let e be a tripotent in a JBW*-triple U and let f be an atom
of U. Then P,(e) f is a scalar multiple of an atom of U.
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Proof. Set g=S_,(e)f,u=e(f),v=e(g) and let J be the Jordan triple system
generated by u and v. Since f and g are atoms of U, Proposition 4 implies that we are
in one of the five cases enumerated in Proposition 5. We also have with ¢, =P,(e) f

and @, =Py (e) f,
1
(.4) 7(f+g)=<p1+¢z-

Suppose J is of rank 1, i.e.,, J=C or J=M, ,(C). By Lemmas 2.6 and 2. 10
and Proposition 4, every linear combination of f and g is a multiple of some atom
of U. In particular ¢, + ¢, =Ah for some atom h of U and 4>0, and

A=lloill + 1@zl 2 1P (R) @]l + 11 P, () @,
2Py (h) @1, e(1)) + <P (h) @3, e(h)) =<9y + @3, e(h)) = 4.
By Propositions 1 and 4, ¢;= P, (h) ¢,=<¢;, e(h)) h.

Suppose next that J is of rank 2, i.e,, JXC®C, or J=S,(C), or J=M, ,(C).
Let e, and e, be two orthogonal minimal tripotents given by Lemma 2.7 so that
P,(w)a=a for all aeJ, where w=e;+e,. Thus P,(w)u=u, P,(wyv=v so by

1
Remark 2. 12, P,(w) h=h where h=7 (f+8)=9¢,+9,. We have

IAl=llell+ @zl 2 P, (W) @yl + [ P, (W) @,
2 (P, (W) @4, e(h)) + (P, (W) @y, e(h))>
={¢@,, e(h)) +<{¢p,, e(h)) (by Remark 2.12)
=|lA].

By Proposition 1, P,(w) ¢;=¢;, i=1,2. Let ¥;=¢;|U,(w), i=1,2. Then ¥; is a

is either
;1

normal functional on the JBW*-algebra U, (w) of rank 2. It follows that

faithful or extremal. Therefore, if Wz'_” is not an atom of U, then P,(¢;) a=a for all

a e U,(w). In particular, P,(¢;) a=a for all aeJ. By (1.7) P,(e) P,(¢,)=P,(¢,) and
therefore P,(e) a=a for all ae J. In particular P,(e) u=u and so P,(e) f=f, contra-
diction. O

Theorem 2. Let U be a JBW*-triple. Then U decomposes into an orthogonal direct
sum of JBW*-ideals A and N where A is the weak*-closure of the linear span of its
minimal tripotents, and N has no minimal tripotents.

Proof. We show first that A=.4"* and N=/* are JBW*-subtriples of U. Let

a= Y ae;€eU,, and set h=mny'(h)=> a;f,, By Proposition 7 we may write
i=1

h=P,(h) h=3 &,P,(h) f,=3 B;g; where g; is an atom of U with P,(h) g,=g;. Working

in the JBW*-algebra P,(h) U we may use [1], §5, to write A=Y A;h, with 4,>0,

> 4;=|lh|, and h; orthogonal atoms of U. Now a and b=n(h) =3 4;e(h;) belong to Nt

and by Lemma 2.2, a—b e s#*. Therefore a=b and {aaa} = {bbb} =3 A}e(h)eN "
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It follows from the standard polarization formulas (cf. Lemma 1.1) that
{UyUpUp} = 4. By (1. 14) and Corollary 2. 10, we get {4+ 4L N4} AL,

We show next that
.95 At = {Py(e) U: e a minimal tripotent of U},

which implies that o/* is a JBW*-subtriple of U. Let be o+, |b| =1, and let e be a
minimal tripotent of U. Since U=A4" @, o/* we have |e+b| =1. Therefore

llet P,(e) bl =1
and since e is an extreme point of the unit ball of P,(e) U, P,(e) b=0.

By Lemma 1.6 with x=e+b, we have P,(e) (e+b)=0 i.e, P,(e) b=0, and
therefore b= P,(e)b as required for the proof of (2. 5).

Now (2. 5) and Corollary 2. 10 imply that D(a, b)=0 and hence D(b, a)=0 for
(a,b)e Ax N. This implies that {AUU}c A, {UAU}< A4, {NUU}<N, {UNU}cN,
i.e., A and N are ideals in U.

It is easy to see that A4 is purely atomic and that N has no minimal tripotents. []

We conclude by showing that each norm exposed face in the unit ball K of the
predual U, of a JBW*-triple U, is projective. Recall that a face F< K is norm exposed
if there is an element x € U such that F=H, n K, where H,={fe U, : Re {f, x) =] x||}.
The norm exposed face F is said to be projective if the x can be chosen as a tripotent
in U.

Proposition 8. Let K be the unit ball of the predual of a JBW*-triple. Then every
norm exposed face in K is projective.

Proof. Suppose F=H, N K is a norm exposed face, with || x| =1 for simplicity.
By Remark 1. 9 write x = x, (¢) + x, (¢) for ¢ >0 where

1—e 1
x;=x,(6)= [ Adv, and x,=x,(e)= [ Adv,.
0 1-¢

We shall show that f(x,)=1 and f(x;)=0 for every feF. It will follow that
w=w*-lim x,(¢) is a tripotent in U with Ref(w)=1 for all f in F, and therefore

=0
FcH, n K. Writing x =y + w where y=w*-lim x, (¢) it will follow that F=H, N K.

e—=0
Let v; be the tripotent occurring in the polar decomposition of x;, i=1,2. For
every fe F, '
"~ 1=Re{f, xD)=Re{f, x;+x,)=Re <(Pz(v1)+Pz(Uz))f’ Xy +X3)
SIKPy(vy) £ x D1+ IKPy (v2) f, X201
SIPy(v) fIIA—e)+ [ Py (v2) f1I-
Now, if P,(v;) f+0 then 1<|P,(vy) fll+|P,(v;) fIl =l (P2(v) + P, (v2) I SIfll =1,

contradiction, where we have used Lemma 1.3 (b) since P,(v,)f and P,(v,)f are
orthogonal.
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Thus f(x,)={f, P,(v,) x,> =0 so that for all ¢,

1=Re {f, x,(¢)>, and Re {f, w)=!i_13, Re {f, x,(e))=1.

Finally, if x=y+w with y=lin2) x,(¢), we have, with u=the tripotent arising in the

polar decomposition of y, and fe H, N K,

1P, () fll +1=1P, () f1I + 1P, W) fll = 1 (P, () + P, (W) fIl SN S =1,

so that P,(u) f=0 and f(y)=<(f, P,(w)y)>=0. Thus H, n KcF and the proof is
complete. O

Remarks added in proof, January 22, 1984. 1. S. Dineen (The second dual of a
JB* triple system, preprint) has shown by a short elegant argument that the second dual
U” of a JB* triple is a JB* triple. His argument has been extended by T. Barton and
R. Timoney to show that U” is a JBW?* triple, i.e. (1. 14) holds. Thus all results in
this paper hold automatically for the dual of a JB* triple.

2. The authors have discovered a proof of Lemma 1. 6 which does not depend
on Lemma 1. 5, and is thus independent of the theory of Siegel domains. This elementary
proof is based on affine geometric properties of a JBW* triple which are developed in
a forthcoming paper.

3. K. McCrimmon (Pacific J. Math. 103 (1982), 57—102, § 1.8) has a characteriza-
tion of pairs of tripotents (in any Jordan triple system) for which the families of Peirce
projections commute. Our Lemma 1. 10 is included in his result.
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