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In this paper we show that the class of J*-algebras (a class of concrete
Jordan triple systems) is stable under the action of norm one projections.
This result constitutes a general solution to a problem considered by the
authors and others. Specifically our main result is:

THEOREM 2. Let P be an arbitrary contractive projection defined on a
J*-algebra M. Then P(M) is a Jordan triple system in the triple product
(@, b, c)— {a, b, c} = P(3(ab*c + cb*a)), for a,b,c € P(M); and (P(M), { })
has a faithful representation as a J*-algebra.

A J*-algebra is a norm closed complex linear subspace of ¥ (H, K), the
bounded linear operators from a Hilbert space H to a Hilbert space K, which
is closed under the operation a —» aa*a. A J*-algebra is a concrete example
of a Jordan triple system, i.e., a complex vector space J together with a map
{-»,-}: VXV X V-V which is linear in each outer variable, symmetric in
the outer variables, conjugate linear in the middle variable and satisfies the
identity:

Peyvfuvzt) — {uvixyz}} = o) vz} — {u{yxv} z}. (0.0)

In a J*-algebra, {xyz} = §(xy*z + zy*x).

By a contractive projection we mean an idempotent linear map of norm
one, ie., P2=P, ||P|=1.

The class of J*-algebras includes all Jordan operator algebras and has
connections with the theory of bounded symmetric domains and with
mathematical physics.

Although the natural setting for Theorem 2 is the class of J*-algebras, the
result is of interest and new even in the particular case when M is a C*-
algebra. Particular cases of Theorem 2 are known if additional assumptions
are made on the space M and/or on the projection P.
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Choi and Effros prove in [5] that if M is a C*-algebra and if P is
completely positive and unital then P(M) is a C*-algebra in a product given
by

a * b = P(ab), a,be PM).

Arazy and Friedman in [4] completely classified the range P(M) of an
arbitrary contractive projection in case M is the C*-algebra C_, of compact
operators on a separable complex Hilbert space. Using their classification,
Theorem 2 (with M = C_) can be verified on a case by case basis. Effros
and Stermer in [6] prove that if M is a JC-algebra and P is positive and
unital, then P(M) is a JC-algebra in the product

a o b= P(3(ab + ba)), a,b € P(M).

In |7], the authors proved Theorem 2 in case M is a commutative C*-
algebra and they gave a complete description of all contractive projections in
this case.

Influenced by these results, the authors suggested in [8] that the range of
an arbitrary contractive projection should have a faithful representation as a
J*-algebra. In [9], the authors developed tools needed for this problem, and
solved it in case P(M) is finite dimensional. Inspired by ideas in the paper
[1] we are now able to extend the techniques from [9] to the general case.
Although our result contains the main result of (6], our proof uses that
result.

Throughout this paper, with the exception of Theorem 2 itself, our results
deal with a contractive projection Q on the dual M’ of a J*-algebra M. All
of these results can be generalized with no change in proofs to contractive
projections on the pre-dual of a von Neumann J*-algebra, i.e., a weakly
closed J*-algebra.

As a by-product of our investigation we obtain geometric properties of the
unit ball of the range of a contractive projection Q on the dual of a J*-
algebra. These properties are entirely analogous to the properties developed
in [1] for the state space of a Jordan operator algebra (which corresponds to
the case M = Jordan algebra, Q = Id).

The state space of any algebraic system is important in mathematical
physics. Contractive projections are related to state spaces by virtue of the
induced action on the unit ball of the space and of its dual, and their study
has given rise to fundamental geometric properties of the dual ball of a
Jordan triple system. Further work in this direction will lead to a geometric
characterization of the dual ball of a J*-algebra. Such characterizations have
recently been obtained for the state spaces of JB-algebras and C*-algebras
[1,2].
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Recall the main theorem of [1]: a compact convex set K is the state space
of a JB-algebra iff

(i) K has the Hilbert ball property;
(ii) K splits into an atomic and a non-atomic part;
(iii) every norm exposed face of K is projective;

(iv) every continuous real affine function on K is the difference of
orthogonal positive continuous affine functions on K.

It is also shown in [1] that (i) and (ii) can be replaced by the following
“pure state properties,” which are less geometric but more physical:

(v) every extreme point of X is norm exposed (each pure state is
prepared by a filter);

(vi) every P-projection preserves extreme rays of K (filters change
pure states to pure states of smaller intensity);

(vii) for every pair f, g of extreme points of K with support projective
units v, u, respectively, we have f(u)= g(v) (symmetry of transition
probabilities).

The contents of this paper are the following. In Section | we generalize the
key lemma of {9] to arbitrary dimensions (Proposition 1) and improve on
two other lemmas from [9, Sect. 4]. We also use [6, Corollary 1.5] to prove
a local decomposition of a functional (Lemma 1.4), which is an important
tool in our investigation.

In Section 2 we begin by proving an analog (Lemma 2.1) of the property
called “symmetry of transition probabilities” in [1], and use it to show that a
certain J*-algebra is of rank 2 (Lemma 2.4). This and Proposition 1 then
show that the Peirce projections associated with an atom of Q leave the
canonical and atomic parts of Q' invariant (Proposition 2).

In Section 3 we prove a fundamental result (Proposition 3) analogous to
the property: “filters change pure states to pure states of smaller intensity” of
{1]. This result is needed for proving that the local decomposition of a
functional is in fact a global decomposition. To prove it we develop a
generalization of the Hilbert ball property (Lemma 3.2) and make use of the
classification of finite dimensional Jordan triple systems.

Our main results appear in Section 4. In Theorem 1 we decompose the
range of Q into an atomic and a non-atomic part and collect various conse-
quences of this decomposition which are used in the proof of Theorem 2. In
Theorem 3 we summarize the above mentioned geometric properties which
were obtained on the way to Theorems 1 and 2.

We now recall some notation and results from [9] which will be used
repeatedly in this paper.
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Let M be a J*-algebra. For each fin M’ let v = v(f') be the unique partial
isometry in M” occurring in the enveloping polar decomposition of f [9,
Theorem 1]. Then I(f)=wvv* and r(f)=v*v are projections in the von
Neumann algebra 4”, where 4 is any C*-algebra containing M as a J*-
subalgebra. More generally, for any partial isometry v in M”, the Peirce
projections are defined by E(v)x=Ixr, Flo)x=(1-Dx(1 —r), Gv)x=
x(1 —r)+ (1 — 1) xr, where /=vv* and r=v*y, We shall write E(f) for
E((f)) and similarly for G(f) and E(f).

The Peirce projections also act on linear functionals by duality:
E(v)g= go E(v), etc. We use the same notation for E(v) and its dual, etc.
More generally, in a binary algebra we use the notation x - g for the
functional z —» g(xz). Functionals f and g are orthogonal, in symbols f 1 g, if
F(f)g=g or equivalently F(g)f =/ We shall write E(f)>E(g) if
E()E(g)=E(&) E(f)=E(g).

The following two results from [9], concerning functionals on a J*-
algebra M, will be used frequently ([9, Lemma 2.7, Lemma 2.9]).

If f €M and x € M" satisfy f(x)=||f| and || x| = 1, then
x=v(f)+ F(f)x. 0.1)

If f, g€ M’ satisfy one of the three mutually exclusive
relations f = E(g)f, f = F(8)/, /= G(g)S then I(f)I(g)=
(&) US) and r(f) r(g) =r(g) r(f). Therefore {E(f), F(f),
G(f),E(g), F(g),G(g) is a commutative family of
operators. (0.2)

The following commutativity formulas from [9] are fundamental: let Q be
a contractive projection on the dual M’ of a J*-algebra M and let
fE Q(M"). Then

QE(f)=E(f) QE(f) ({9, Proposition 3.3]);  (0.3)
F()Q=F(f)QF(f)=0F(f)Q  ([9, Proposition 3.5]); (0.4)
G(f)Q=0G(/)Q ([9, Proposition 4.3});  (0.5)
E(f)Q=0QE(f)Q (|9, Proposition 4.3]).  (0.6)

Let Q be a contractive projection on the dual M’ of M. By an atom of Q
is meant any extreme point of the unit ball Q(M’), of Q(M’). Define

L =sup{l(f): f € QM")}, R =sup{r(f): f € (M)},
L, =sup{{(f): f atom of @}, R, =sup{r(f): f atom of Q}.

Then L, R, Ly, R, are projections in 4” (where A is any C*-algebra
containing M as a J*-subalgebra) and they define contractive projections &
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and &, on A” by &z =LxR, &,z =L,zR, for z € A”. We shall also make
use of the contractive projections &, &, on A" defined by
Ez=(1—-L)z(1-R), &yz=(1—Ly)z(1 —R,), for z€ 4".

We shall call £Q' the canonical projection associated with Q. (If M = A4 is
a C*-algebra, £Q’' is obviously a projection. In general £Q’ maps M” into
A".) Also & Q'(M") will be called the atomic part of Q.

Two fundamental properties of atoms proved in [9] are the following: Let
S be an atom of Q; then, with v = v(f),

QE(f)g=(gv)f for gEM; 0.7)
E(f)Q'x={f,ix)v for xeM” (19, Proposition 3.7]). (0.7)

For any element g € G(f) Q(M’), either
S=E(g)S o f=G(g)f (|9 Lemmad4d.7]). (0.8)

We shall assume the reader has a basic familiarity with the essentials of
JBW-algebra theory. In particular, we will need to use {1, Lemmas 5.2, 5.6]
and the “halving lemma” [3, Theorem 6.10]. A JBW*-algebra is the
complexification of a JBW-algebra.

Finally, by a Hahn-Banach extension we mean a norm preserving
extension of a functional, and if &, # are vectors in a Hilbert space H, w(¢, )
denotes the restriction of the linear functional x — (x&, ) to an appropriate
subspace of ¥ (H) which will be clear from the context.

1. MINIMAL TRIPOTENTS IN THE RANGE
OF A CANONICAL PROJECTION

In this section we generalize [9, Lemma 3.8] to arbitrary dimensions and
add more information to [9, Lemma 4.10].

PrOPOSITION 1. Let Q be a contractive projection on the dual of a J*-
algebra M and let f be an atom of Q. Then Q'v = v + £ Q'v, where v = v(f),
and consequently £Q'v =v and &Q'v=v.

The proof of this statement for finite dimensional range in [9, Lemma 3.8]
used the finite dimensionality of Q(M’) only to be able to write each element
of G{f)Q(M') as a finite sum of atoms of G(f)Q. This latter fact will be
proved in Lemma 1.5 below for arbitrary Q. Thus Lemma 1.5 together with
the work in [9, Sect. 4] constitute the proof of Proposition 1.

The following remark, which follows simply from the definition of the
Peirce projections, will be needed later.
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ReEMARK 1.1. Let g and h be orthogonal functionals on a J*-algebra M.
Then

(a) E(g+h)=E(g)+E(h)+G(g)Gh);
(b) iff €M satisfies f=G(g)G(h) /[, then E(f)E(g + )= E(/).

Our first lemma puts an upper bound (namely two) on the number of
orthogonal non-zero elements in the range of G(f)Q.

LEmMMA 1.2. Let Q be a contractive projection on the dual of a J*-
algebra M and let f be an atom of Q.

(a) Ifg=G(f)g and f=E(g)/ then F(g) G(f)=0;
(b) let g and h be orthogonal non-zero elements of G(f)Q. Then
f=E(g+h)f, and therefore F(g + h) G(f) =0.

Proof. (a) By |[9, Lemma2.9], f=E(g)f implies I{f)<(g) and
r(f) £ r(g). Thus for arbitrary x in M",

F(g)G(N)x=(1-1(g) G(f)x(1—r(g))
= (1 =D = US)) xr(f)
+U) x(L—r(f N1 —1r(g))=0.

(b) If either f=E(g)f or f=E(h)f, then by using the fact that
E(g+h)>E(g) and E(g+ h)>E(h) we have E(g+h)f =/ Thus by
(0.8), we may assume that f = G(g)f and f= G(h)f. By Remark 1.1(b),
f=E(f)f=E(g+h)E(f)f=E(g+ h)f By using (a), with g replaced by
g+ h, we have F(g + B) G(f)=0. 1

The next remark follows easily from {9, Lemma 3.1] and (0.3).

Remark 1.3. Let Q be a contractive projection on the dual of a J*-
algebra and let g = Qg. Then any atom of QE(g) or of E(g)Q is also an

atom of Q.

We now introduce a local decomposition of a functional in the range of a
contractive projection Q, into atomic and non-atomic parts. This decom-
position will be an important tool for our investigation. The proof is based
the powerful result of Effros and Stermer [6, Corollary 1.5] and on [,
Lemma 5.6].

LEMMA 1.4. Let Q be a contractive projection on the dual M' of a J*-
algebra M and let g = Qg. Then

(1) E(g)Q'(M")is a J*-subalgebra of M",
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(2) E(g)Q'(M") has a structure of JBW *-algebra and the restriction
of g to E(g)Q'(M") is a faithful positive normal functional;

(3) there is a sequence {g;} of pairwise orthogonal atoms of Q and an
element h € Q(M') orthogonal to each g, such that

g=>2Aigi+h (L.1)

where A, >0, | gl|=2_A; +| 4|, and E(h) Q'(M") is the purely non-atomic
part of the JBW*-algebra E(g) Q'(M");

(4) if g is not an atom of Q, then there are at least two orthogonal
non-zero elements of E(g) Q(M’).

Proof. (1) E(g)(M") is a J*-subalgebra of M” and E(g)Q’' is a
contractive projection on E(g)}M") satisfying the hypothesis of [9,
Theorem 2). Thus E(g) Q'(M”) is a J*-subalgebra of E(g)(M").

(2) By |9, Remark 3.2] and the proof of [9, Theorem 2| (which used
[6, Corollary 1.5]) the map x— v*x (where v =0v(g)) is an isometry of
E(g)Q'(M") onto a weakly closed Jordan *-algebra of operators. It is easy
to check that the restriction & of g to E(g) @Q'(M") is a faithful positive
normal functional in the JBW*-algebra structure on E(g) @Q'(M").

(3) Decompose g in the JBW *-algebra B = E(g) @’(M") according to
[1, Lemma5.6]. Thus §=3,4,§,+ A, where 1,>0, the §; are pairwise
orthogonal nox:_mal pure states of B, h is purely nonatomic and
18] =3 4+ | All. Define g;= & o E(g)°Q’, h=FhoE(g)°Q". Then g,
h€ Q(M') and extend g, and h, respectively. Clearly g=34,g,+ A,
lgh=23"4;+ k|, and E(h) Q'(M") is the purely nonatomic part of B. By
(1) and the pairwise orthogonality of g;, # in B we have the pairwise
orthogonality of g;, & in M'. Since g, is a normal pure state of B, g; is an
atom of QE(g), so by Remark 1.3 g, is an atom of Q.

(4) If this statement were false, there could be at most one non-zero
term in (1.1) and since g is not an atom we must have g=#4 in (1.1).
Therefore B is a purely non-atomic JBW *-algebra. The identity clement of B
can then be written as a sum of two orthogonal non-zero projections in B.
For this use any non-trivial central projection, or if B, , is a JB-factor use
the “halving lemma” [3, Theorem 6.10]. Since &= F is faithful, there exist
two orthogonal non-zero normal states of B. By transferring back to
E(g)Q'(M") we obtain two orthogonal non-zero elements of

QE(g)(M").
As remarked above, the following lemma, together with [9, Sect. 4] proves

the first assertion in Proposition 1. The second assertion follows from the
obvious relations £ =0 and &,& = &,.
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LEMMA 1.5. Let Q be a contractive projection on the dual of a J*-
algebra M, let f be an atom of Q and let g be a non-zero element of G(f)Q.
Then either

(1) g=a,g, with g, an atom of G(f)Q, a, > 0; or

(2) g=a,g +a,g, with g,, g, orthogonal atoms of G(f)Q and
a; >0, a,>0.

Proof. Apply Lemma 1.4 to the projection G{f)Q to obtain a decom-
position g=3_ 4, g; + h with {g;} pairwise orthogonal atoms of G(/)Q and
h orthogonal to each g;. By Lemma 1.2(b) there are at most two non-zero
terms in the decomposition. It suffices now to prove that #=0. In the
notation of Lemma 1.4, / is a faithful normal positive functional on the
purely non-atomic JBW*-algebra B = E(h) Q’G(f)(M"). Let e denote the
unit of B. If e+ 0, we can choose, using [3, Theorem 6.10] if necessary,
three non-zero pairwise orthogonal projections e,,e,,e; in B such that
e=e, +e,+e,. The elements e, e,, e; are partial isometries in
E(g)Q'(M") and if we define h,=E(e;)h then we have three pairwise
orthogonal non-zero functionals in  G(f)Q. This contradicts
Lemma 1.2(b).

With Proposition 1 now proved we turn to some other consequences of the
results in this section, which will be needed later.

The first part of the next remark generalizes {9, Lemma 4.8] which
required that g be an atom of G(f)Q.

REMARK 1.6. Let Q be a contractive projection on the dual of a J*-
algebra, let f be an atom of Q, and let g be a non-zero element of G(f)Q.

(@) Iff=G(g)f, then | gl 'g is an atom of Q.

(b) If there exists a non-zero element h of G(f)Q orthogonal to g,
then || g|~'g and || k|~ 'h are atoms of Q.

Proof. (a) If | g||~'g is an atom of G(f)Q, then || g| ‘g is an atom of
Q by [9,Lemmad4.8]. If | g|l"'¢g is not an atom of G(f)Q, then by
Lemma 1.5(2) and Lemma 1.2(b) f = E(g) /, contradiction.

(b) By (0.8) either f=E(h)f or f=G(h)f If f=E(h)f then by
Lemma 1.2(a) F(h) G(f)=0 and since g is orthogonal to h, g=F(h)g=
F(h)G(f)g=0, a contradiction. Therefore f = G(h)/f. Similarly /= G(g)/
and by (a) || gl "¢ and || A|| " 'A are atoms of Q.

The next remark conveniently summarizes the form of an arbitrary non-
zero element g of G(f)Q, where fis an atom of Q.

REMARK 1.7.  For a non-zero element g in G(f)Q with f an atom of Q,
there are two possibilities:

580/60/1-5
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(1) g=a,8,+a,g, where g,, g, are atoms of Q, a, > 0 and a, > 0;
or

(2) lgl~'g is an atom of G(f)Q and E(g)f = /.

The following lemma completes [9, Lemma 4.10].

LEmMa 1.8. Let Q be a contractive projection on the dual of a J*-
algebra M, let f be an atom of @, let g be an atom of G(f)Q, and suppose

f=E(g)f Then:

(a) There exists an atom h of Q such that E(h)=E(g)F(f) and
E(g)=E(f +h);

(b) g=a,8,+a,g,, where g,, g, are orthogonal atoms of Q and
a,>0,a,>0.

Proof. 1In the proof of [9, Lemma 4.10] a functional 4 is constructed
satisfying A€ F(f)Q, I(f +h)=1g), r(f +h)=r(g). To prove (a) it
remains to show that any such # of norm 1 is an atom of Q. By
Lemma 1.4(4} if 4 is not an atom of (, then there are two orthogonal non-
zero elements, say A,, h, of E(h) Q(M'). Now h, =E(g)h,=F(f) h, so by
(0.2), (0.3), and (0.5), F(h,)g=G(f)QE(g) F(h,)g=Ag, the latter by
(0.7), since g is an atom of G(f)Q. If A+#0, g is orthogonal to A, and
hi=F(g)h,=F(g)E(g)h,=0, contradiction. If 1=0, then since
F(h,)g=0and E(h,)g=E(h,) E(h) G(h) g =0 we have g = G(h,) g and by
Remark 1.1(b) E(g)=E(g)E(f+h,). Since E(f+h)<E(+h)=
E(g)<E(f + h,) we have E(h,)= E(h), which contradicts the existence of
k.

{b) By Lemma 1.4, B=E(f + k) Q'(M") has a structure of JBW*-
algebra with pre-dual B, =~ QE(f + h)(M'). Because f and % are orthogonal
atoms of Q, the identity element of B is a sum of two orthogonal minimal
projections, Since g€ QFE(f+ h)(M’')~B, we can therefore write
g=a,g,+a,g, with g,, g, orthogonal atoms of QE(f + &) and a, >0,
a,> 0. By Remark 1.3 g,, g, are atoms of Q. [

For a contractive projection Q on the dual of a J*-algebra M recall that
ZQ' is called the canonical projection associated with Q. An arbitrary partial
isometry u in M" is said to be a minimal tripotent of Q’, if £Q'u = u and
Ew)yg'(M")=Cu

The following lemma implies the existence of sufficiently many minimal
tripotents of Q’. We shall see in §4 that the norm closure of the linear span
of the minimal tripotents of Q’ forms a J*-algebra which is weakly dense in
the range of &, Q’.
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LEMMA 1.9. Let Q be a contractive projection on the dual M’ of a J-
algebra M and let u be a partial isometry in M". The following are
equivalent:

(a) u=v(g) for some atom g of Q;
(b) u is a minimal tripotent of Q.

Proof. (a)=> (b). By Proposition 1 and (0.7).

(b)=(a). For each x in M”", determine a number A(x) by the rule
E(u) Q'x =A(x)u. Then 1 is an element of the unit ball of M’, and g, defined
by g=40¢ @', belongs to G(M'}). Now gu)u=2{(Q'u)u=E(u)Q@'u=u so
that gw)=1 and |gll=1. By (0.1), u=uv(g)+F(gu so that
E(g)=E(g)E(u). Therefore, for xEM”, E(g)Q'x=E(g)Em)Q'x=
E(g) A(x)u=A(x)v(g). Thus QF(g)(M’) is one dimensional and g, being an
element of norm one of QE(g)(M’), is an atom of QE(g). By Remark 1.3, g
is an atom of Q. By Proposition 1, v(g)=&Q'v(g) and so v(g)=
E(u)v(g)=E(u) EQ'v(g) =A(v(g))u, ie., v(g)=u

2. INVARIANCE OF THE ATOMIC PART
UNDER THE PEIRCE PROJECTIONS OF AN ATOM

In Section | we showed that the Peirce projection E(f), with fan atom of
a contractive projection @ on the dual of a J*-algebra, leaves invariant the
canonical and atomic parts of Q’, i.e., RE(f)R = E(f)R, where R is £Q’ or
&, Q. In this section we prove

RG(f)R = G(f)R. (2.0)

It then follows that all three of the Peirce projections associated with an
atom f of Q leave the canonical and atomic parts of Q invariant. The fact
that the Peirce projections of an arbitrary ¢ in Q(M') leave Q(M’) invariant
is less deep and is proved by using (0.4), (0.5), and (0.6).

ProposITION 2. Let Q be a contractive projection on the dual M' of a
J*-algebra M and let f be an atom of Q. Then &,Q’a=a and £Q'a= a for

all a € G(f) Q'(M").

We shall prove Proposition 2 by showing that every element of
G(f)Q'(M”) is a linear combination of two orthogonal minimal tripotents
of @', i.e.,, G(f) Q'(M") is a J*-algebra of rank < 2. Proposition 2 and (2.0)
then follow from Proposition 1.

In each of the following lemmas, Q will denote a contractive projection on
the dual of a J*-algebra M.
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The first part of the following lemma is the analog of the “pure state
property” called “symmetry of transition probabilities” in [1].

LEmMA 2.1. (1) Let fand g be atoms of Q. Then f(v(g)) = g(v(f)).

(2) Let (4, denote the linear span of the atoms of Q. There is a linear
map t: 0y — (U such that for any atoms f; of Q and complex a; we have

<‘£’ (f; a; ,.), g>= <g, i d,-v(ﬁ)>, Sor ged,. 2.1

Proof. (1) Let v=v(f) Then for any xeM", {v,&Qx,v}=
o(L(Q'x)R)*v =vR(Q'x)*Lv = v(Q'x)*v =f(x)v by (0.7'). Let w=v(g).
By Proposition 1, w=&Q'w and so vw*v = f(w) v. Similarly wo*w = g(v) w.
In  general {xy{xzx}}= {x{yxz}x} holds. Since {wv{wow}}=
{w,v, gw)w} = g)’w and {wlvwv}w} = fiw)lwow} = f(w)g)w we
have g(v)? = g(v) f(w). Similarly f(w)? = f(w) g(v). Thus g(v) =0 implies
that f(w) = 0; and g(v) # 0 implies f(w) = g(v).

(2) For f€l, of the form f=37 ,a,f;, define v formally by
(2.1). We need only to prove that 3 7_, a,f; =0 with f; atoms of Q and «;
complex implies (g, > @v(f;))=0 for all g€ ,. This follows easily
from (1). Let g=3X7,8;g, let v,=v(f}) and w;=v(g;). Then
<ga_Zfisv,-> = QiBign i divy = X2 2 Ba,:8v) = 2 X BianS{wy) =
2B aifi wy) =0.

The following commutativity formula is now needed. Unlike (0.3) to (0.6),
it requires that f be an atom.

LEMmA 2.2. Let f be an atom of Q. Then, with G=G(f) we have
QG = GQG and QG is a contractive projection. In particular, QG and GQ
have the same range.

Proof. If QG = GQG then (QG)* = QGQG = 0(QG) = QG so that QG is
a projection: To prove 0G = GQG, write QG = EQG + GQG + FQG, where
F=F(f), E=E(f) By |9, Lemma 3.4] FQG =0 so it remains to prove
EQG=:0. Let h€ M’ and let g = Gh. We shall prove that EQg =0. Let
hE€ A’ be a Hahn—Banach extension of 4 and write g= g, + g,, where
gi=(0=D-h-riM g,=1-h-(1—r)|Mand I=I(f), r=r(f). We shall
show EQg, =0 and a similar proof will yield EQg, = 0. Write g, = w(&, 7)
with E=r& n=(1—0Dn, |€|=1. With o=w( vé), v=0v(f), we have
w=E(f)w and Quw=QE(f)w ={w,v)f=f by (0.7). By (0.6), we have
EQg, = QEQg,=Af for some scalar A. Thus EQ(w(¢, vé) + tw(& n)) =
(1 + tA)f for arbitrary scalar ¢ and therefore |1+ tA|< |[Jw(& v€+ i)l <
lve+ || = (1 +|£]* | 7)|*)"/?, since vé and n are orthogonal. Since ¢ is
arbitrary, 4 =0.
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The formula QG = GQG just proved and (0.5) now show that GQ and QG
have the same range.

In Lemma 2.4 we shall obtain properties of a concrete realization of the
map ™ defined in Lemma 2.1, with Q replaced by G(f)Q. In this case, by
Lemma 1.5, ,=G(f)Q(M') and therefore by Lemma22, ;=
[G(f) QM) =|QG(f)M’)]’, which is canonically isomorphic to
G(f)Q'(M"). Let o be the mapping from (7§ to G(f) Q'(M") and let 7=
oot:G(f)QM')— G(f)Q'(M"), which is a concrete realization of 7. To
obtain these properties we need the following lemma.

LEmMA 2.3. Let f be an atom of Q, and let g be an atom of G(f)Q.
Then G(f) Q'v(g) = v(g).

Proof. By Lemma 2.2, QG(f) is a projection with the same range as
G(f)Q. Therefore g is also an atom of G(f)Q. By (0.8), either f = E(g)f or
S=G(g)/.

If f=E(g)f then G(f) F(g)=0 by Lemma 1.2(a). But by Proposition 1,
G(f) Q'v(g)=v(g) + F(g) G() Q'v(g) =v(g).

If f=G(g)f then by Remark 1.6(a), g is an atom of @ and therefore
by Proposition 1, Q'v(g)=1u(g) + & 0'v(g)=0v(g) + F(f) EQ'v(g) so
G(f) Q'v(g)=G()v(g) + G(f) F(N)EQ'v(g)=v(g) |

LEMMA 2.4. Let [ be an atom of Q. The linear mapping n: QG(f)(M') -
G(f) Q'(M") defined above satisfies:

(1) 7Qli, 0 8)=21-,dv(g) for g atoms of G(f)Q and a,
complex;

(2) the image of m is a J*-algebra of rank < 2;
(3) the mapping = is onto G(f) Q'(M").

Proof. (1) For @€ [G(f) QM")|', o(P) is the unique element x of
G(fYQ'(M") satisfying P(h)=h(x) for all A€ G(f)QM') Let
&=13"_,0;g) defined by (2.1. By Lemma23, }7 6 Guv(g)€E
G(f) Q'(M"), so o(P) = 3_ a;v(g,), proving (1).

(2) By Lemma 1.5 each element in the image of 7 is a linear
combination of at most two orthogonal partial isometries in G(f) Q'(M")
and therefore the image of n is closed under the operation x-» xx*x.
Lemma 1.5 also implies that 7 satisfies 3|lg] <|[n(g)ll <l gl for any
g€ G(f) Q(M'). Thus the image of # is norm closed.

(3) Since a J*-algebra of finite rank is weakly closed [l1,
Theorem 6.2], it will suffice to prove that the image of # is 0-weakly dense in
G(f)Q'(M"). Let g€ G(f)QM’) vanish on the image of = Since by
Lemma 1.5 g=a, g, + a, g,, With g,, g, orthogonal atoms of G(f)Q, the
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conditions g(v(g,)) = g(v(g,)) =0 force a, = a, = 0. Therefore the image of
n is weak-*dense in G(f)Q'(M") so the result follows from [13,
Theorem I1 2.6].

Proof of Proposition 2. Let a =n(g) for some g € G(f) Q(M’), g+ 0. By
Remark 1.7 either

£=0,8,+0,8; (2.2)

with g, g, orthogonal atoms of Q, or |lg||~'g is an atom of G(f)Q
satisfying f = E(g)f. In the latter case Lemma 1.8 says that g still has the
form (2.2). Thus in either case, a=7z(g)=4a,v(g,) + a,v(g,) with g,, g,
atoms of Q. By Proposition 1, £Q’a=aq and &,Q'a =a.

3. THE EXTREME RAY PROPERTY

In this section we shall prove the foliowing proposition, which is an
important tool for proving global properties from local ones. We shall use
Proposition 3 in Section4 to show that the decomposition (1.1) in
Lemma 1.4 is global in the sense that the functional 7 occurring in (1.1) is
orthogonal to all atoms of Q.

ProrosiTioN 3 (Extreme Ray Property). Let Q be a contractive
projection on the dual M’ of a J*-algebra M, let f be an atom of Q and let
9 EQM’). Then E(p)f is a scalar multiple of some atom of Q.

A property similar to Proposition 3 has occurred in the context of Jordan
algebras [1, Sect. 4]. Since Proposition 3 is of fundamental importance and
its proof is rather lengthy we shall begin by sketching its proof.

Let S be the symmetry determined by ¢, i.e., S = E(p) + F(¢) — G(p). We
show first (Lemma 3.1) that S is a linear isometry and therefore a J*-
automorphism of M [10]. Since S’ leaves Q(M’) invariant, g = S'f is also an
atom of Q.

A simple algebraic argument (Remark 3.3) results in the remarkable fact
that any Jordan triple system generated by a pair of minimal tripotents ¢, e,
is linearly spanned by the four elements e,,e,, G(e,)e,, G(e,)e,. (A
tripotent e is minimal if {exe} = Ae for arbitrary x.)

Using Propositions 1 and 2 and a similar algebraic argument applied to
u=v(f), v =v(g), it is shown (Lemma 3.2) that the J*-algebra J generated
by u, v is of dimension at most 4, and lies in the canonical and atomic parts
of Q’. This results can be considered as a generalization of the celebrated
Hilbert ball property of [1].

The classification of finite dimensional Jordan triple systems [12] then
implies (Remark 3.4) that J is isomorphic to one of the following: C,
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M, ,(C), CaC, §,,(C), M,;,(). Lemma3.5 and Remark 3.6 prove
Proposition 3 in the first two cases, and Lemma 3.7 and Lemma 3.8 prove
Proposition 3 in the remaining three cases.

Lemma 3.1. (1) For each partial isometry v in a J*-algebra M, the
map S, = E@v) + F(v) — G(v)} is asymmetry (i.e., S, is norm preserving and
S2=1d).

(2) If Q is a contractive projection on M’ and v = v(p) € M" for some
9 E QM) then S,QM')=Q(M"’). Therefore if f is an atom of Q, so is
g=S.f and we have S, (v(f))=v(g).

Proof. (1) Writing r=r(v) and x =xr + x(1 — r) for x € M", we have
x| =lxx*|| = |[xr —x(1 —r)||*.  Similarly with I=I@v), |x|=
{lIx — (1 — })x||. Therefore

[x]l = llxr —x(1 — )i

=lxr—Ix(1 —r)— (U —=Dxr+ (1 -Dx(1 —r)=|S,xl

By (10, Theorem 4] S, is a J*-isomorphism and clearly S2=1.
(2) By (0.4)-(0.6), we have

5/Q0=(E+F—G)Q=EQ+FQ—GQ
=QEQ +QFQ - 0G0 = 05,0

Therefore S, G(M’') < Q(M') and since S, has order 2, equality holds. Since
S/ is an isometry, atoms of Q are preserved and since S, is a J*
isomorphism all polar decompositions are preserved. In particular

SN =v(g)- I

In the next lemma we shall need the following purely algebraic identities
which are valid in an arbitrary Jordan triple system (see (12, JP7, 9, 10,
16]). Recall that in a J*-algebra, {xpz} = 3(xp*z + zy*x).

{{xpz} ya} = {z{yxy}a} + {x{yzy}a}, (3.1)
{xp{zyat} = {x{yay}z} + {x{yzy}a}, (3.2)
{x(yxa}z} = {{xyx} az} + {zy{xax}}, (3.3)
{txyu} va} — {u{yxv}a} = {x{vuy}a} — {{uvx} ya}. (3.4)

LemMA 3.2. Let Q be a contractive projection on the dual of a J*-
algebra M, let f and g be atoms of Q, let u = v(f), v = v(g) and let J(u, v) be
the J*-algebra generated by u and v in M". Then
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(1) J(u, v) is linearly spanned by u, v, {uuv}, {vou};
(2) J(u,v) is linearly spanned by u, v, G(u)v, G(v)u;
(3) &, Qa=aforall a€ J(u,v)

Progf. By Proposition 1 &,Q'u=u, &Q'v=1v and by Lemma 1.9 u and
v are minimal tripotents of Q’. In general {uuv}= E(u)v + iG(u)v and
{vou} = E()u + 3G(v)u. Now Gu)Q'v=Gu)v +&Q'v)=Gu)v by
Prop. 1. It follows from Propositions 1 and 2 that & Q'({uuv})= {uuv}.
Similarly &,Q’({vvu}) = {vvu}. Therefore the two sets in (1) and (2) have
the same linear span, which is fixed elementwise by &,Q".

To complete the proof it suffices to show that any triple product {abc}
with a, b, ¢ in {u,v, {uwv}, {vou}} is a linear combination of
{u, v, {uuv}, {vou}}. By symmetry of u and v it suffices to consider only the
15 elements a,, a,, a;, a,, as, b,,...b,, ¢,, ¢,, ¢, listed below. Using (3.1)
to (3.4), respectively, we have

{ f

{ b= {uuv} + Ayus
{vv{uuu}} = A, {uuv} + {vou};
{ i

v{uuvtu} — {{uuvou}

Using (3.4) again, we have
as= {{uuv} uu} = {v{uuutu} + {u{uvuju} — {{vuu} uu}
so that as = §{vuu} + 3A,u

Using (0.0), the following elements can be shown to lie in the linear span
of u, v, {uuv}, {vou}

b, = {ufuuv {uuv}}, b, = {u{uuv }{vou}},
by = {ufvvu{uuv}}, b, = {u{vou}{vou}},
by = {{uuv} u{uuv}l, be = {{uuv} ufvou}),
b, = {{vvu} u{vvu}}, ¢, = {{uuv Huuv }{uuv}l,
¢, = {{uuv {uuv}{ovu}}, ¢y = {{uuv Hovu Huuv}}.

Remark 3.3. Lemma 3.2 has the following purely algebraic counterpart
which is essentially the case Q =1: any two minimal tripotents in a Jordan
triple system generate a Jordan triple subsystem of linear dimension at
most 4.



CONTRACTIVE PROJECTION 71

Remark 3.4. The Jordan triple system J in Lemma 3.2 or in Remark 3.3 is
simple unless u is orthogonal to v. For if J=J, ® J,, then u, v must each lie
in a component J, or J,.

Therefore according to the classification of simple finite dimensional

complex Jordan triple systems [12], J is isomorphic to one of the following:

(1) C dimension 1, rank 1
(2) M, ,(C) dimension 2, rank 1 (1 by 2 complex matrices)
3) CpC dimension 2, rank 2

4) A,({C) dimension 3, rank 1 (3 by 3 antisymmetric matrices)
(5) M, ,(C) dimension 4, rank 1
6) S,C) dimension 3, rank 2 (2 by 2 symmetric matrices)

(7 M, ,(C) dimension 4, rank 2

Recall that the rank of a J*-algebra is the largest number of mutually
orthogonal tripotents. We note next that cases (4) and (5) cannot occur. To
see this note that J of rank 1 implies F(u)v =0 and F(v)u = 0 and therefore
v=E@)v + Glu)v + F(u)v = Au + G{u)v so that G(u)v (and by symmetry
G(v)u) lies in the span of ¥ and v, so dimJ < 2.

The following notation will be used in the rest of this section: Q is a
contractive projection on the dual of a J*-algebra M, fis an atom of Q, ¢ is
an element of Q(M’), g is the atom of Q defined by g = Sf; where S is the
symmetry determined by ¢, u = v(f"), v =v(g), and J is the J*-subalgebra of
M" generated by u and v. Since f=FE(p)f + F(p)f +G(p)f and g=
E(p)f + F(p)f — G(p)f, we have

3(f+8)=Ep)S+F)f 3.5)

LemmA 3.5. IfJ~M, ,(C), then every linear combination of fand g is a
multiple of an atom of Q.

Progf. Let w be a partial isometry in J which is orthogonal to « in the
Hilbert space structure of J induced by M, ,(C). The orthogonality of u and
w is equivalent to E(u)w=0=E(w)u. Since J has rank 1, F(w)u=0=
F(u)w. Therefore

Guyw=w and G(w)u =u. (3.6)

By Lemma 3.2(3) and Proposition 2 we have w=&Q'w=G(f) &Q'w =
ZG(f)Q'w=G(f)Q'w. Therefore, by Lemma2.4, w=n(h) for some
element € QG(f)(M') and E(h)f = E(w)f =0. Thus by (0.8), Gh)f =/
and by Remark 1.6(a) 4 is an atom of Q with v(h)=w.
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We show next that for every a, € C,
laf + BRI = (la]* + 81" (3.7

Since f = G(h)f and h = G(f)h, (0.2) implies that the support projections
of fand h commute and that we have the block matrix representation shown
in Fig. 1, where r\ =r(f) r(h), r, = r(f)(1 — r(h)), etc.

If r,#0 let &,=r¢,, ||&,]l=1, and let n=u, so that /,7=#. Then
Q(@(&;, M) = QE(f)(@(&y, m) = Wéy, m)f =f Now define &3=w*(n).
Then it follows similarly that Q(w(&;,7n))=h. Therefore ||af + fh| =
I Qlaw(&y, m) + Bw(Cs, Ml < llw(@é, + BE, Il < Jady + B =
(la]* +|B81*)/2 Since f|J, k|J is the orthonormal basis for J' dual to u, w,
(af + Bh)|J]| = (a|* +|B]*)"/* so (3.7) is proved in case r,# 0. In case
r, =0, a similar proof of (3.7) can be given that begins by choosing a non-
zero vector in the range of /5.

We next show that g belongs to the linear span of f and 4 and therefore
span{f, h} = span{f, g}.

There are scalars a, § such that g{J = (af + fh)|J, and therefore || g|| =
gw)=|gl|J|=(al* +|B8|>)**% Let & denote af+ fh. Since £(v)=| g,
IlE@)g|l=1 £l so [9, Lemma 3.1] implies § = E(v) §. Because g is an atom
of 0, §=E(®)g§=0QE(v)§= (g v)g and therefore g = § =af + ph.

To prove our lemma it is enough to show that every linear combination of
f and A of unit norm is an atom of Q. Let ¢=7y+dhk and
[7/* + 131 =|loll = 1. Suppose ¢ =3(p,+0,) with ¢, 0,€QM’'),. We
shall show that ¢ = ¢,. Since J is a Hilbert space and ||¢ | /|| =1, ¢ and ¢,
agree on J. Therefore ¢,(u)=¢(u)=1y and ¢,(w)=¢(w)=4J so that by
(0.7), E(f)9,=E(f)Qp,=(¢\,u)f =y and similarly E(h)¢,=0h.
Moreover ¢ assumes its norm on § = ju + ow and therefore E(s) ¢, =¢,.
Since ¢, = (E(h) + Fh) + GOYE(S )Y+ FfY+ G Do, = yf +dh +
G(h) G(f) ¢,, 9, has the block matrix representation shown in Fig. 2, where
y=GHhH)G()¢,. Thus ¢,=9p+w. Let E,, F, G, be the
Peirce projections on A4” defined by the projections /,, r,. Then
¢, (MM E,(4"))=0 and therefore there exists a Hahn—Banach extension @,
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of @, to A which vanishes on E (4”). We have ||G,d,|| > lell =lo,ll=
lé,l=II(G, +F)@,|| and by [9, Corollary 4.2], F,¢, =0 and therefore
v=¢,|(MNF,4")=0. B

REMARK 3.6. If J is isomorphic to C or to M, ,(C), then E(p)f is a
multiple of some atom of Q, i.e., Proposition 3 is true in cases (1) and (2) of
Remark 3.4.

Proof. If J is isomorphic to C, then u is a multiple of v, fis a multiple of
g, so 3(f+ g) is a multiple of the atom g of Q. If J is isomorphic of
M, ,(C), then 3(f + g) is a multiple of an atom of Q by Lemma 3.5. Since
E(p)f and F(g)f are orthogonal, (3.5) implies that E(p)f € E(f + g)(M’).
Since E(p)f € Q(M’) by (0.6), and || f + g||"'(f + g) is atom of Q, (0.7)
implies E(p)f is a multiple of f + g.

LemMA 3.7. If J is isomorphic to C® C, S,(C), or M, ,(C), then there
exist two orthogonal atoms f,.f, of Q such that E(f, + f,)a=a foralla € J.

Proof. 1f J is isomorphic to C@® C we may choose f; =1 and f, = g.
Now suppose that J is isomorphic to either S,(C) or M, ,(C). Let u,, u,, u,
in J correspond, respectively, to the matrices (J ), (¢ §), (5 }). We may
assume u, = u = v(f).

Obviously u,=Gu)u,=G(f)u,=G(f)&€Q'u, =G(f)Q'u, so by
Lemma 2.4 there exists k€ QG(f)M’) such that =m(h)=wu,. Since
EhYu,=FE(uy)u,=u,#u,, h is not an atom of ¢ and therefore by
Remark 1.7 and Lemma 1.8, # = a, f; + a,f, for two orthogonal atoms f,, f,
of Q. Finally, for any a €J, E(f, + fy)a=E(h)a=E@u,)a=a. 1

Lemma 3.8. If J is ismorphic to C® C, S,(C), or M, ,(C), then E(p)[f
is a multiple of some atom of Q, i.e., Proposition 3 is true in cases (3), (6)
and (7) of Remark 3.4.

Proof. Let f, and f, be two orthogonal atoms of @ satisfying
E(f,+ f,)a=a for all a € J. The existence of f,, f; is given in Lemma 3.7.
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For notation’s sake let w=v(f,+/1,), o,=E@)/f 9,=F@)f Then
EWu=u, E(w)v=v implies Ew)f=/f, E(w)g=g and therefore
EW)(f + &)= 3(f + g)- By (3.5) and the orthogonality of ¢,, ¢, we have
Ew)o,=9,, E(W)p,=9,. Thus ¢, and ¢, belong to QE(w)(M'), which is
the predual of the JBW*-algebra E(w)Q'(M"} (cf. Lemma 1.4). Since
w=uv(f}) +v(f;) with f, f, orthogonal atoms of Q, the JBW*-algebra
E(w)Q'(M") has rank 2, i.e., its identity is the sum of two orthogonal
minimal (self-adjoint) idempotents.

We now use the following fact about such Jordan algebras. Every element
v of norm 1 in the predual is either extremal, or E(y) is the identity, i.e.,
w)=r(w) = 1. Indeed if r(w) # L; then r(y) is a minimal projection so that
|w| is a pure state in this casé_and y =v(y)- |y/| is extremal. Similarly if
I(w)# 1, |y*| is a pure state and ¥ = |y*| - v(y) is extremal.

If |¢,| '@, is not an atom of Q, then E(p,)a=a for all a €J. Since
¢, =E(p)f we have E(p,) < E(p) and therefore E(¢)a=a for all a€ J. In
particular E(p)u=u and therefore E(p)f=f Thus g=E(p)f+
F(p)f — G(p)f = f, and J ~ C, contradiction.

Proposition 3 is now proved. Using the same proof we have the following.

REMARK 3.9. Let f be an atom of Q, and let 9 = Qp. Then F(p)f is a
scalar multiple of an atom of Q.

4. THE MAIN RESULTS

In this section we shall prove our main results. The first lemma will be
used to show uniqueness of a decomposition in Theorem 1.

LEMMA 4.1. Let M be a J*-algebra and let g,,g,EM' satisfy
E(g,)g,=8,and E(g,) g, =&, Then g, = g,.

Proof. For x&eM”, g(x)=g,(l,xr)=g,(,1,xr ,ry), where [,=1(g,),
ri=r(g) Thus |g | = g()=gllLvrr)=g(,vry) Since
Lo <1, (0.1) implies that Luv,r,=v,+{—1)Lv,r,(1—r).
Therefore v, =1,l,v,r, and v, = ,v,r,r, so that [, =v,vf = Lv,r,r,r,v¥l,,
ie, I,<l,; and ri=v¥v, =rv¥Ll Lv,r,, ie, r,<r,. By symmetry,
L, r,<r 508, =E(g)8,=E(g)g,=8,- I

THEOREM 1. Let Q be a contractive projection on the dual M’ of a J*-
algebra M, let (I be the norm closure of the linear span of the atoms of Q,
and let /" ={¥Y€QM'): ¥ is orthogonal to all atoms of Q). Then
OQM')=0 @, .+, and the unit ball of .#~ contains no extreme points.
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Proof. Let g€ Q(M’). By Lemmald ¢o=h+y with hET and
y € Q(M’) such that [|¢||=||&]| +|lwll, # L w, and E(y) Q'(M") is a purely
non-atomic JBW*-algebra. Let f be an arbitrary atom of Q. We show next
that v is orthogonal to f, and the decomposition ¢ = & + y is unique. To this
end we first show that E(y)f = 0. Indeed by Proposition 3 E(y)f = Ag for
some 4 € C and some atom g of Q. If 4+ 0 then g € QE(w)(M’), which is
the predual of the purely non-atomic JBW *-algebra E(y) Q'(M"). Since g is
an atom of Q it corresponds to an extremal elements of QE(w)(M’),
contradiction. Therefore E(y)f ==0. We show next a strong uniqueness
property: Suppose ¢ =h, + y,=h, +y, with h,,h, € and E(y,)f =0
and E(y,)f =0 for all atoms f of Q. Then E(y;)h;=0 for i, j=1,2 and
therefore  y, =E(y,)¢=E(w,) v, and y,=E(y,)p=E(y,)y,. By
Lemma 4.1, v, = y, and therefore A, = h,. To prove that y is orthogonal to
an arbitrary atom f of (), consider /' + w. By Lemma 1.4 we can write
fHw=h +w, with h e, y, € Q(M’) and w, L h,. By the uniqueness
property just proved, f = A, and v = y,. In particular y is orthogonal to f.

Since the norms in the direct sum add, each extreme point of the unit ball
of .#" would also be extremal in Q(M’). |

REMARK 4.2. Let 9=h+ vy be the decomposition of an element
© € Q(M') given by Theorem 1. Then h=&,0 |M and y = £, | M, where ¢
is any Hahn—Banach extension of ¢ to A.

COROLLARY 4.3. " ={p€ QM"): o(v(f)) =0 for all atoms [ of Q).

Proof. Suppose ¢ € Q(M') satisfies p(v(f)) =0 for all atoms fof Q. We
shall show that ¢ €.#". Let g be an arbitrary atom of @, and write
gt+o=h+y, where h€ &, yw € .#". Since ¢ and y both vanish on v(f),
where f is an arbitrary atom of Q, we have

gw())=h@()) for all atoms f of Q.

We shall prove that g = A, hence ¢ = w € .#". In the first place ||2]| = 1 since
on the one hand, A(v(g))= g(v(g))=1 and on the other hand, writing
h =73 A;h; with h; orthogonal atoms of @, ||| = A3, v(h;)) =2, h(v(h,)) =
X S@(h,) =f (T v(h)) <|f]] = L. Tn the second place, (E(g)h, v(f)) = 1
implies |E(g)h| > 1, and 1 <[ E(g)h||<||k]|=1 and by [9, Lemma 3.1]
E(g)h=h. Now by (0.6) and (0.7), h=E(g)h=E(g) Oh=0QF(g)0Qh=
(hv(gheg=g 1

The following notation will be used in order to obtain other important

consequences of Theorem 1. First, write [Q(M')]' =4 @ . X, where
A= (D e [QM)]): D(#)=0}, and Al={d e [QM")]: ®()=0}.
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Then let T:Q'(M")— [Q(M’')]’ be the linear isometry onto given by
Tx(p)=p(x) for x€ Q'(M") and ¢ € Q(M'). We then have

Q'M")=T (W) D T~ (@7). 4.1)

Note that T can be considered as a restriction operator and 77! as an
extension operator.

COROLLARY 4.4. Let My, be the set of all finite linear combinations of
minimal tripotents of Q': Mg, = {>']_, a;v;: a; complex, v;=v(f)), f; atom
of Q: n=1,2..}. Then

(a) Q'(Mpg,) is a-weakly dense in T~'(#"4);
(b) My, is 6-weakly dense in &, T (/™).

Proof. (a) Since T~'(#™*) is o-weakly closed in M, it suffices by [13,
Theorem 11 2.6], to show that Q'(Mg,) is weak*-dense in T '(/™),
equivalently that TQ'(M,) is weak *-dense in .#™*. Let ¢ € Q(M') vanish
on TQ'(M,). Then p(v(f))=0 for every atom of Q so by Corollary 4.3,
@ € 4. Therefore ¢ vanishes on /™.

(b) By Proposition 1, My, =& Q'(Mg,), and by (a) it is o-weakly
dense in & T '(/ ). |

We shall now obtain a splitting of Q'(M”) into orthogonal parts,
analogous to the splitting of Q(M’) in Theorem 1.

LemMma 4.5. For each x€ T~ (1Y), we have x =%,x. Therefore by
(4.1), &Q'(M")=&T ' (™).

Progf. By definition of £, it suffices to prove that F(f)x =x for each
atom f of Q. We note first that by definition of T~ '((74), (g, x) = 0 for every
atom g of Q. Therefore, by (0.7), E(f)x=E(f)Q'x={f,x)v(f)=0. It

remains to show that G(f)x=0. For arbitrary ¢ € M’, we have by
Remark 1.7, Lemma 1.8, and Lemma 2.2,

(G(N)x,0)=(x,0G()g)=(x,0,8,+a,8,)=0

where g,, g, are atoms of 0. 1

ProrosiTiON 4. Let Q be a contractive projection on the dual of a J*-
algebra M. Then for each x in Q'(M"), x = &yx + &,x.

Proof. For x in Q'(M"), we have by (4.1), x=x,+x, with
x, €T Y™ and x, € T-H*). By Corollary 4.4 the element x, can be
approximated o-weakly by elements of the form Y}  a,Q'v,=
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& Y0+ & Y a,Q'v; (by Proposition 1). Therefore x, =& x, + € x,.
By Lemma 4.5 x,=£,x, so x=&x + &,x. 1

Proposition 4 says that Q' (M) < & Q'(M") + &, @'(M"). We prove next
that &,Q'(M") is a J*-subalgebra of 4”. For this we shall use the following
lemma.

Recall that (7, is the linear span of the atoms of Q and My, is the linear
span of the minimal tripotents of Q'.

LEMMA 4.6. There is a linear bijection n: (1 y —» My, given by

# (3 as) = T awt @2)

i=1
where f; are atoms of Q and o, € C.

Progf. We show first that }_ @, f; =0, with f; atoms of Q and ¢, € C,
implies ) d,v;=0 where v;,=uv(f;). Since b=} av,€&Q'M"), it
suffices by Lemma 4.5 to show that b€ T~ '((7*), i.e., that g(b) =0 for all
atoms g of Q. This follows from Lemma 2.1. It now follows that the map
m: 0y - Mp, defined by (4.2) is well defined, linear, and onto. Finally we
shall show that it is one-to-one. Suppose > 7_, a,v; = 0. We are to prove that
>r,df;=0. By Lemma2l, if g is an atom of (@, we have
w(g)dYafiy={gY,av;)=0. By Corollary4.3, > a,f;€.#". Since
3@, f; € X, < A, the proof is complete. [

PROPOSITION 5. Let Q be a contractive projection on the dual of a J*-
algebra M. Then &,Q'(M") is a J*-subalgebra of A”.

Proof. We show first that if a € M, then aa*a € £,Q'(M"). Indeed if
a=Y"7_,a;v; then n~'(a) € (7, can be written as a (possibly infinite) linear
combination of pairwise orthogonal atoms of @, say 7#n '(a)=
i1 fi=24;8;, where g, are orthogonal atoms of Q, 4,>0. Let
b= Av(g;), which exists as a strong limit in &7 '(#)=&,Q'(M").
We shall show that b =a. Since a,b € &Q'(M") it suffices to show that
(g.ay=1{g,b) for every atom g of Q. This follows from Lemma 2.1:

(8.a) =3 alg,v) =3 alf,v(g) =X g v(g) =X A& v(g)) =
(g 2 A;v(g)y={g b). Thus a=b, and by the orthogonality of g; we have
aa*a=>bb*b=3 Alv(g,) E & Q' (M").

It now follows from the polarization identities [10, p.17] that
a, b, c € My, implies ab*c+ ch*a€ &,Q'(M"). By the separate o-weak
continuity of multiplication and the o-weak continuity of involution, the
Proposition follows from Corollary 4.4 and Lemma 4.5. |
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REMARK 4.7. Proposition3 and |1, Lemma5.1] show that the
orthogonal decomposition b=Y" A,v(g;) in the proof of Proposition5 is
actually finite, i.e., My, is closed under the operation x — xx*x.

We are now able to prove Theorem 2, which is a complete solution to the
contractive projection problem.

THEOREM 2. Let P be an arbitrary contractive projection defined on a
J*-algebra M. Then P(M) is a Jordan triple system in the triple product
(a, b,c)- {a, b,c} = PG(ab*c + cb*a)), for a,b,c € P(M); and P(M), { })
has a faithful representation as a J*-algebra.

Proof. From Krein and Milman, the mapping &, is norm preserving on
P(M). We prove that & P(M) is a J*-subalgebra of & P"(M"), which, by
Proposition S, is a J*-subalgebra of A", Let y € &,P(M), say y = &,x with
X € P(M). By Proposition 4 x = y + z, where z = £;z. Therefore

xx*x = yy*y +zz%z 4.3)

and E,(zz¥*z)=zz*z. Now y*y&€ & P'(M") so by Proposition 1,
Corollary 4.4 and Lemma 4.5, &£, P”(yy*y)= yy*y. On the other hand, with
F=zz*z, £,7 = 7 implies that F(f)Z = 7 for all atoms f of P’. Thus by (0.4)
P'Z=P'F(f)Z=F(f)P"F(f)Z, ie., P"Z=&,P"Z so & P"Z=0. Finally,
applying &,P to (4.3) results in

& Plxx*x) = yy*y. 4.4)

This proves that &,P(M) is a J*-algebra and therefore a Jordan triple
system. We transfer this Jordan triple system structure from &,P(M) to
P(M) by defining |a, b, ¢| = 3& ; (&, a(&,b)*&,c + &, c(&,b)*&ya) for a, b, ¢
in P(M). Note that by (4.4),

la,a,a] = &5 (& a(&,a)*Ea) = & ;' (&, Plaa*a)) = P(aa*a).
By polarization, [a, b, c] = P(3(ab*c + cb*a)) for a, b, ¢ in P(M). 1

As a by-product of this investigation we obtain the following properties of
the unit ball of the range of a contractive projection @ on the dual of a J*-
algebra. These properties are entirely analogous to the properties developed
in [1] for the state space of a Jordan operator algebra (which corresponds to
the case M = Jordan algebra, Q = 1d.).

THEOREM 3. Let Q be a contractive projection on the dual M’ of a J*-
algebra M and let K be the solid unit ball of Q(M"). Then

(1) the a-convex hull of the extreme points of K forms a split face in
K;
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(2) every extreme point of K is norm exposed,

(3) for each ¢ € Q(M'), the operator E{¢) preserves extreme rays of
K, i.e., E(p) maps an atom into a multiple of an atom;

(4) for each pair f, g of extreme points of K, f(v(g))=gw(f)).

Proof. (1) is a restatement of Theorem 1; (2) follows from (0.7); (3) is
Proposition 3; (4) is Lemma 2.1. i
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