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§ 0. Introduction

IN this paper we discuss the problem of characterizing geometrically those
Banach spaces which admit an algebraic structure.

For ordered Banach spaces well known results of Alfsen—Schultz [3]
and Alfsen—Schultz—Hanche—Olsen [1] give geometric characterizations
of the state spaces of Jordan operator algebras and C*-algebras respec-
tively. Several of the properties occurring in these characterizations are
natural assumptions for the state space of a physical system. This gives
added importance to the problem we are considering.

Let’s examine two known mathematical models for quantum mechanics
(cf. e.g. [6]). In the Hilbert space model, states are unit vectors on a
separable complex Hilbert Space &, identified modulo the unit circle,
and the observables are self-adjoint operators on #. The spectral
decomposition A = [g A dE; of observable A yields the distribution of A
and its expected value in the state ¥ via the formulas

Py{A<Ai}=(EY, ¥)=||EY|>% 0.1)
Eu(A) = LA dEY, W) = LA d || 0.2)

In the algebraic model, the set of observables is assumed to be
equipped with two algebraic structures, namely sum and square. This
leads to a Jordan algebra structure in which the states are now positive
functionals of norm 1. The fact that the classification theorem of
Jordan—von Neumann-Wigner has now been extended to infinite dimen-
sions [8], has lead to renewed interest in this approach.

In order to avoid some of the unnatural algebraic assumptions in these
models we propose here a geometric model for quantum mechanics. OQur
starting point will be the assumption that the states of a physical system
are the unit vectors of some normed space Z. We shall impose some
natural axioms on the geometry of the unit ball of Z which involve its
facial structure and certain symmetries of Z. The observables will be
elements of the dual space Z* and so a spectral theorem is needed for
elements of Z*. This requires that an analog of “spectral projection” be
defined and that an appropriate notion of orthogonality be formulated.
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264 YAAKOV FRIEDMAN AND BERNARD RUSSO

For ordered Banach spaces, a complete theory exists (Alfsen—Schultz [2])
which can be used to construct a Jordan algebra structure on Z* under
appropriate additional assumptions.

Let’s see why an order structure on Z is needed in order to obtain a
binary product structure on Z*. For simplicity we temporarily assume Z
is finite dimensional.

Generally, the building blocks for the affine geometric structure of any
convex subset K of a Banach space are the extremal points of K, or more
generally, extremal subsets or faces of K.

As shown originally by Effros [5] and Prosser [9], the norm closed faces
of the normal state space of a von Neumann algebra M are in one-to-one
correspondence with the projections (self-adjoint idempotents) of M,
which are the building blocks for the algebraic structure of M. Moreover,
orthogonality of faces (defined geometrically) corresponds to or-
thogonality of projections (defined by having zero product).

In principle then, a spectral decomposition of an element x € Z* should

k
have the form x = }, ayu; where q; is a scalar and {u,, ..., ui} is an
i=1

orthogonal (in an appropriate sense) family of “n-potents”, i.e., for an
n-ary product, u” =u. The “n-potents” should form a distinguished
subset of Z* which is in one-one correspondence with the set of norm
exposed faces of a convex subset of the unit ball Z; of Z.

It is natural to assume that any algebraic structure should be real linear
in each component. We ignore unary operations and consider first the
construction of a binary product on the real Banach space Z*. As noted
earlier, each face F in Z, should correspond uniquely to an idempotent
(=2-potent) e in Z*, e*=e. But —F is also a face, corresponding to —e,
which is not an idempotent: (—e)>=e # —e. In order to distinguish F
from —F, geometry alone is not enough. One needs a mechanism for
picking out faces F which corresponds to idempotents. That mechanism is
given by an order structure on Z, i.e., a convex cone P with PN (—P) =
(0)and Z=P —P.

We conclude that if one wishes to construct a binary structure, one
must begin with an ordered Banach space. Stated another way, in order
to construct an algebraic structure on a Banach space without order, one
must consider n-ary operations, with n = 3. Fortunately, n =3 should be
enough, as suggested below. .

If a triple product is to exist, then n-potents become “‘tripotents”, i.e.,
e’>=e, and if e corresponds to a face F then —e, which corresponds to
—F, is also a tripotent: (—e)*= —e. Furthermore, upon moving to the
case of a complex Banach space, the faces aF with || =1, a complex,
correspond to ae and in order to have (ae)’ = ae, our triple product must
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A GEOMETRIC SPECTRAL THEOREM 265

be conjugate linear in one component, which we may assume to be the
“middle” variable, and complex linear in the two outer variables.

Returning to a binary structure for a moment, a binary product can be
defined as follows: if x = ¥ a,u; is the spectral decomposition of x € Z*,
then by the orthogonality of u,, and the bilinearity of the product, one
has x® =Y, a?u;, and finally

(x +y)@ — x®@ _ @

xOy: 2

In a similar way, in the ternary context, as soon as one has a spectral
theorem together with the appropriate notion of orthogonality, one can

define the “cube” of x = 3! Au; as x@ = f] AAAu. Tt follows that if
i=1 {m]

(x, y, z) denotes our triple product, then, by the linearity and conjugate
linearity,
(xyz) +(zyx) =4 3 aBlx +ay + B2)®. (0.3)

at=1
=1

Thus if you have a triple product which is complex linear in two
variables and conjugate linear in the third, only the symmetrized version
of it can be defined in terms of cubes. Stated otherwise, a triple product,
which is to be derived from geometry alone must be symmetric in the 2
variables in which it is linear.

In order to motivate our main axiom, let’s return again to the
geometric setting appropriate for binary products. In this case there is a
" set of projection operators on Z (called P-projections, and occurring in
pairs P, P') in one-one correspondence with the sets of idempotents and
norm exposed faces {2: §2]. Thus each norm exposed face gives rise to a
symmetry (a surjective linear map of order 2), given by Sg =2(Pr +
Pp) — I (where the face F corresponds to the P-projection Pr), and the
fixed point set of Sy is generated by F and its complementary face F'.
This situation also prevails in the non-ordered context considered by the
authors in (7], i.e., for any norm exposed face of the unit ball of the
predual of a JBW *-triple, there exists an isometric symmetry which fixes
precisely spF and the set of elements which are orthogonal to each
element of F.

In the present paper, we shall postulate the existence of such a
symmetry corresponding to each norm exposed face of the unit ball Z,.
With this axiom alone we are able to give an abstract definition of
tripotent corresponding to each norm exposed face, and prove the
one-to-one correspondence of these two sets. This is done by showing
that the existence of a symmetry Sy corresponding to the face F gives rise
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266 YAAKOV FRIEDMAN AND BERNARD RUSSO

to a family Py(F), P(F), P(F) of contractive projections, which are
analogs of the Peirce projections corresponding to a tripotent in a Jordan
triple system, (cf. [7]).

In Section 1 we develop the notion of orthogonality for elements and
faces of Z, and establish the one-to-one correspondence between
generalized tripotents (the building blocks in the spectral theorem) and
norm exposed faces.

In Section 2 we define orthogonality for elements of Z*, and discuss
properties relating orthogonality of elements and projective units in Z*
with norm exposed faces in Z. The main result (Theorem 1) gives, for a
reflexive space Z satisfying the symmetry axiom, the existence and
uniqueness of a spectral decomposition of an arbitrary element of Z*.

This paper is completely self contained. All of the proofs used only
elementary functional analysis, except for some remarks which are
included for motivational purposes only.

§ 1. Orthogonality and projective units
We begin by making precise what is meant by orthogonality.

ProrosiTioN 1.1. Let Z be a real or complex normed space, and let
f, 8 € Z. The following are equivalent:

@) llg+£II=1llg —fll=ligl + lI£ll;
. (b) llag + Bfll = « llgll + B IIfIl for all @, B with a>0, >0, &+ B =

©) llag +Bfll = el light + Bl IfIl forall a,peR.

Iff+0and g+0, we may add
(d) There exist u,veZ* such that |lu]|=|vl]|=1=|luxv], f(u)=
f1l, g(v) = llgll, f(v) =g(u)=0.

Proof. (a)=> (b): |Ifl| + [lgll = Ilf + gl| = ll(a + B)f £ (a + Blg|| =
l(af + Bg) + (Bf + ag)ll < llof + Bgll + [IBf  agll < e |Ifl| + B llgll +
B Ilfll + allgll = I + llell-

(b)=>(c): Let y=|a|+ |B] and f, § denote +f, g respectively. Then
llag + BfIl = ¥ lllal y™'g + Bl y™'F Il = (vlel v~ ligll + 1Bl v~ IIFI) =
lo| llgll + 18] IIf]I-

(c)=>(a): Trivial.

(a)=>(d): We may assume ||f|| = |lg]| = 1. Choose x, y € Z* of norm 1
with f(x) + g(x) =2 = f(y) - g(»). Then u = 3(x +), v = 3(x — y) satisfy
the requirements. '

Ilfl(ld) >@): ligll +lfll =gv) +fw) = (g £Nv tu)y<|lg fl| <[lgll +
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A GEOMETRIC SPECTRAL THEOREM 267

We shall say f and g are orthogonal if they satisfy one, hence all of the
conditions of Proposition 1.1. The zero vector is orthogonal to all f. Note
that, by (b), if |[f||=|lgll=1 and f is orthogonal to g, the four line
segments connecting f to g and ~g, and —f to g and —g, all lie in the
boundary of the unit ball.- Z,, which we denote by 3Z,. Thus Z; N
spr {f, g} is the closed parallelogram with vertices +f, +g.

4

[/

—f———f

We shall write f O g to indicate that f is orthogonal to g. For a subset §
of Zwelet S°={feZ: fOg for all ge S} and call S© the orthogonal
complement of S. It is obvious that Sc T=>S°>TC; and §< §°.
Hence §° =590, It follows that S T if and only if T < S. In this
case we say that S and T are orthogonal and write SO T.

We note that S is invariant under real scalar multiplication but we
shall show that in general, S+ S and S© is not additive or complex
linear.

If Z is an L' space, it is well known that our notion of orthogonality
corresponds precisely to disjointness of the supports of the real functions
f and g. A similar result holds if Z is the self-adjoint part of the pre-dual
of a von-Neumann algebra. It is easy to extend this result, via the polar
decomposition to all (complex valued) normal functionals. The following
remark is for motivational purposes only and will not be used in the
sequel.

Remark 1.2. Let f and g be normal functionals on a JBW*-triple U (cf.
[7]). Then f O g if and only if e(f) and e(g) are orthogonal tripotents of
U, where e(f) is the tripotent occurring in the polar decomposition of f
[7: Prop. 2].

Proof. We may assume ||f|| = ||g|| = 1. Suppose first that e(f) and e(g)
are orthogonal tripotents. Then e.:= e(f) te(g) is of norm 1, and
(Fxg)es)=2 so |f£gll=2=]lfll +llgll. Conversely if fOg, se
w=e(G(f+g)). Then 2=(f+g)(w)=Ff(w)+g(w)<[f(w)| +lg(w)| =<
171+ llgll =2 so that £(w)=g(w)=1. It follows that [|P,(w)fll = Il
and ||B(w)g|l = llgll, so by [7: Prop. 1] f and g may be identified with
normal states on the JBW *-algebra Uy(w). We still have ||f £ g|| =2, so
by the Jordan decomposition in JBW -algebras, f and g are orthogonal in
the JBW*-algebra U,(w), and hence orthogonal.

Now let Z = M, 5(C) with the trace norm, which is the predual of the
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268 YAAKOV FRIEDMAN AND BERNARD RUSSO

JBW *-triple M; ,(C) and let S = {(a;) € Z: a,3=ay =0}. Then S© = {0}
and §°°=2Z, so S+ 5°C.

We now consider orthogonality of faces of the unit ball Z, of Z.

Let K be a convex set. A face of K is a non-empty subset F of K with
the following property: if f € F and g, h € K satisfy f = Ag + (1 — A)h for
some A € (0, 1), then g, h € F. An important example for us is: K =2, =
the unit ball of Z and F = {f € K: f(x) = 1} for some element x € Z* of
norm 1. We shall denote this F which is either empty, or a face (called a
norm exposed face), by F,.

We now have the following consequence of Proposition 1.1.

CoroLLarY 1.3. (a) Let F, and F, be norm exposed faces of Z, with
e £yl| = 1. Then E.OF,.

(b) Let f, g be unit vectors in Z with f Og. Then there exist orthogonal
norm exposed faces F,, F, of Z, with fe F,, g € F,.

Proof. (a) If peE, then 1=|p(x £ y)|=|1£ p(y)| and so p(y)=0.
Similarly if o € F,, then o(x) = 0. By (d) of Proposition 1.1, p $ 0.
(b) This follows immediately from Proposition 1.1(d) and (a).

We next consider some examples of unit balls in R? which illustrate the
concepts just introduced.

ExampLE 1. Let C be a double cone in R? with circular base and let x
be the apex (Fig. 1). Since C is convex and symmetric it is the unit ball Z,
for some norm on Z =R>. Then {x}® N 3Z, is the base circle so {x}< is
a linear space.

{x}*naz, (x}*Nd Z,

2 7
e S

FiG. 1 FiG. 2
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A GEOMETRIC SPECTRAL THEOREM 269

ExampLE 2. Chop C by two parallel planes to define C, a convex
symmetric set which is the unit ball Z;, of some norm on Z = R? (Fig. 2).
In this case {x}® N 3Z, consists of two arcs and so {x}< is not a linear
space.

We shall call an element u € Z* a projective unit if ||ul|=1 and
(u, FY) =0. Note that this implies F, + & so that F, is a norm exposed
face in Z,, and F, is “parallel” to FQ, i.e., {u, F,) =1, {(u, FQ) =0.

In Examples 1 and 2, {x} is a face and the unique plane passing
through x which is parallel to the base determines a projective unit.

Let & and ¥ denote the collections of proper norm exposed faces of Z,
and projective units in Z*, respectively. The map % 5 u+— F, € ¥ is not
onto in general (see Example 4).

ExampLE 3. Consider a “‘straight” tent of height 1 sitting on a frozen
lake (Fig. 3). This is the unit ball for some norm on Z =R>. The face
F=[-1,1]x {0} x {1} is of the form F, for the projective unit u =
(0,0,1) € Z* since (u, F) =1 and (u, F®) =0.

A X3

F°Naz,

N\

\ ! %

\

]

/ A ]

/ > X
]

/

Fig. 3

ExampLE 4. Consider a “crooked” tent, extended downward so as to
remain convex and symmetric (Figure 4). It is clear that F is norm
exposed but not of the form F, for any u € %, since F and F are not
parallel.

In order to motivate the next definition, consider the following. Let Z
be the pre-dual of a JBW*-triple. As follows from (7], the set ¥ of
projective units coincides with the set of tripotents and the map u— F, is
a bijection of % onto the set of all norm exposed faces of Z;. Moreover,
the Peirce projections P, (u), k=0, 1, 2 corresponding to a tripotent u
give rise to a symmetry S, = Py(u) — Pi(u) + Po(u) which makes the norm
exposed face F, into a symmetric face, which is defined as follows.
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270 YAAKOV FRIEDMAN AND BERNARD RUSSO

F*NoZ,

FiG. 4

DEFINITION. A norm exposed face F of the unit ball Z, of a complex
normed space Z is a symmetric face if there is a unique linear isometry Sg
of Z onto Z of order 2 whose fixed point set is spc F @ F©.

Note that if F< is not a linear space, then F is not a symmetric face.
For instance the face {x} in Example 2 is not symmetric.

Symmetries of this type occur naturally in measuring processes in
quantum mechanics. With any measurement we can associate a filtering
projection py, a face f, which consists of states which “pass” through the
filter with probability 1, and a projective unit exposing this face (cf.
Araki [4]). Each filtering projection has a complementary filtering
projection pf =p~ corresponding to particles which do not pass the
filter. The mapping 2(p; + pf —id.) is a symmetry which fixes span f and
span f*. Under appropriate assumptions this leads to a Jordan algebra
structure on the set of observables.

Our model differs from the Jordan algebra model in the following way.
The latter model implies uniqueness of the complementary filtering
projection, which may be questionable from a physical standpoint. In our
model this is not the case, as seen from the example of a JBW *-triple.
Here, the complementary projection corresponding to a face of F
(namely Po(F)) is the smallest projection containing all possible com-
plementary filtering projections.

We shall now construct a family of projections, called generalized
Peirce projections, corresponding to each symmetric face.

Let (T, A) denote the eigenspace of an operator T corresponding to
the eigenvalue A. If F is a symmetric face, we have

&(Sk, 1) =spc F® F°. (1.1)
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A GEOMETRIC SPECTRAL THEOREM 271

For each symmetric face F, we may define contractive projections
P(F), k=0, 1, 2 on Z as follows. First, P(F):= 4(I—S¢) is the
projection on €(Sr, —1). Secondly, because of (1.1) we may define P,(F)
as the composition of the projection P(F): = (I + Sg)( = the projection
on &(Sr, 1)) followed by the projection of (S, 1) onto sp¢e F. Similarly
Py(F) is the projection with range F°. Note that P,(F) + P(F)=34(I +
Sr) is a contractive projection. We also have

IP(F)p|l + | P F)pll = |P(F)p + P(F)pll, (p € Z);
Py(F)+ P(F)+ R(F)=1,
Py(F)— P(F) + Py(F) = SF.

In the geometric framework appropriate to ordered Banach spaces,
there are one-to-one correspondences between three collections of
objects: certain faces, certain projections (called P-projections) and
certain elements (called projective units), cf. [2: §2].

The following proposition gives a one-to-one correspondence between
generalized tripotents and symmetric faces, analogous to [2: Corollary
2.18].

DEFINITION. A generalized tripotent is a projective unit u € U with the
property that F, is a symmetric face and Sgu = u.

ProposiTiON 1.4. The map u— F, is a bijection of the set of generalized
tripotents and the set of norm exposed symmetric faces of Z,.

Proof. Let F be a symmetric face and suppose F = F, for some x € Z*
with ||x|| = 1. Set u: = P,(F)*x. Then u is a tripotent and F, = F. Indeed,
let peF. Then (u, p) = (Py(F)*x, p) =(x, P(F)p) = (x, p) =1. This
shows that F c F, and [ju|| = 1. Since P,(F) is contractive, [[u| =1.

Now suppose p € F,. Then (Py(F)p, x)={(p, P(F)*x)=(p, u)=1
and so P(F)peF, and ||P(F)p|l=1 Then 1=||p||=||P(F)p+
P(F)p| = IP(F)p|l + |[Po(F)pll =1+ ||P(F)p|| and so Py(F)p=0.
Hence 3(p + Sgp) = P,(F)p € F and since F is a face, p € F. This proves
F,cF, so F=F, is symmetric and (u, FQ)=(Py(F)*x, F°)=
(x, P(F)F®) =0. Since obviously Sku = (Py(F)* — Py(F)* + Py(F)*) x
P,(F)*x = u, u is a generalized tripotent, and the map u— F, is onto.

Suppose u; and u, are tripotents and F, = F, = F say. By definition of
tripotent, P,(F)*u;=0 for i =1, 2. By definition of projective unit,
(Po(F)*w;, Z) =(w, FQ) =0, i.e., P(F)*u; =0, i =1, 2. Therefore, for
arbitrary peZ,  (w, p) =((P(F)* + P(F)* + P(F)*)u;, p)=
(PF)*w;, p)={w, P(F)p). But Py(F)Z=5pcF and (u, F) =1, so
Uy = Us.
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272 . YAAKOV FRIEDMAN AND BERNARD RUSSO

§ 2. Spectral theorem

In this section we shall prove, for a certain class of normed spaces, the
existence and uniqueness of a spectral decomposition for each element x
in the dual.

Let Z be any normed space. Elements a, b € Z* are orthogonal if there
is a symmetric face F c Z; such that either

(1) aeim Py(F)* and b eim Py(F)*;
or
(if) aeim P(F)* and b eim Py(F)*.
We shall write a O b or b O a to indicate this relation.
LemMA 2.1. Let a, b € Z* and suppose a Ob. Then

(@) lla + b = max (|laf[, ||6])
(i) FEcE., if [laf=1 and [b]<1.
(iii) EOF, if |lall=1 and ||b]|=1.

Proof. Without loss of generality, we may assume that a € im P,(F)*
and b eimFPy(F)* for some symmetric face F. If M denotes
max ([la||, Ib|l), and peZ, we have |[(a+b, p}|=|(P(F)*a, p) +
(P(F)*b, p)| =< lalllP(F)pll + o]l [[P(F)pll < M||(P(F) +
P(F)p|l < M|p|l, so that |la+b||<M. On the other hand since
Py(F)*(a+b)=a, P(F)*(a+b)=b, we have |la +b| =M.

Now suppose |la||=1 and ||p||<1. Then |[a+b|=1, and [{a +
b, p) <|p|| for p € Z. This implies F, c F, .

The last statement follows from Corollary 1.3(a) since |la £ b} =1 by
>i).

CoRrOLLARY 2.2. If Z is a reflexive Banach space then every family of
pairwise orthogonal elements of Z* is finite.

Proof. If the conclusion were false we would have an infinite sequence
of pairwise orthogonal non-zero elements in Z*. By the lemma their span
would be a copy of [ in Z*. Therefore Z* and hence Z cannot be
reflexive.

DerntTioN. Let Z be a normed space. We call Z a facially symmetric
normed space if each norm exposed face F in the unit ball Z, is strongly
symmetric, i.e., F is symmetric and for each y € Z* of norm one with
F c F,, we have Sty =y, where Sy is the symmetry corresponding to F.

From the theory of JB*-triples developed in [7] we know that if Z is
the dual of a JB*-triple, or more generally, if Z is the pre-dual of a
JBW*-triple, then Z is a facially symmetric Banach space. In particular,
the dual of a C*-algebra (or a JB*-algebra) or more generally the predual
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A GEOMETRIC SPECTRAL THEOREM 273

of a von Neumann algebra (or a JBW *-algebra) are examples of facially
symmetric Banach spaces.

Note that Example 2 shows that, in general, not every projective unit is
a tripotent. However, for facially symmetric spaces we have:

Remark 2.3. Let Z be a facially symmetric normed space. Then every
projective unit in Z* is a generalized tripotent. Hence by Proposition 1.4,
the map u— F, is a bijection of the set of projective units in Z* and the
set of norm exposed faces of Z,.

Throughout the rest of this section we shall assume for convenience
that Z is a facially symmetric normed space. By Remark 2.3 we can
denote by vg the unique projective unit with the property that F,_=F
where F is any norm exposed face of Z,.

LemMma 2.4. Let S be a linear isometry of Z onto Z. Then S™'(F)=
Fsepy and S*(vr) = vs-yr) for each norm exposed face F of Z,.

Proof. Let G denote the face S™'(F). Then (S$*(vg), G) = (vg, F) =
1, s0 G cFge,). Conversely, p € Fg.,,, implies 1= (S*(vg), p)=
(g, Sp),ie.,SpeForpeS~ 1(F) Hence G = Fg(y,y.

We next show that (S*(vr), GP)=0. If pe G, then Sp e S(GO) =
S(G)® = F©, and so ($*(v;), p) = (vr, $p) =0.

We have shown that S7Y(F) = Fy.(,,, and that $*(vs) € %. By Remark
2.3 the lemma follows.

The following gives equivalent conditions for orthogonality of projec-
tive units in the dual of a facially symmetric Banach space.

LemMa 2.5. For u, v € 4, the following are equivalent:

D) udv

() ELOF,

(3) v eim Py(u)*
(4) u eim Py(v)*
Byutveu

Proof. (1)=>(2): By Lemma 2.1, ||u £ v||=1. By Corollary 1.3(a),
(2) follows.

(2> (3): Since E,c FY=im Py(u), we have S,(F,)=E, where S,
denotes the symmetry corresponding to F,. By Lemma 2.4, Si(v)=
Sa(vg) = vsr) = Vg, =, ie., P(u)*v =0.

To prove (3) it remains to show that Py(u)*v =0. Since F, c FS and
(v, F®) =0, we have (v, F,) =0. Now let p € Z. Then (Py(u)*v, p) =
(v, Py(u)p) =0 since Py(u)p €im Py(u) =sp F,. Hence P(u)*v =0.
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274 YAAKOV FRIEDMAN AND BERNARD RUSSO

Similarly, (2) > (4).

3)=>(1): trivial.

(4)=>(1): trivial.

Thus (1), (2), (3), (4) are equivalent.

(1)>(5): By Lemma 2.1, (1) implies that |[u +v||=1 and F,UE, c
E,.,. Therefore FONFPoFS,, and (uzv, FS.) = (u, FS)
(U) Fuo+u> = 0'

(5)=>(2): By Corollary 1.3(a).

COROLLARY 2.6. Let uy, u,, us € U and suppose u, O uy and uy 5 (uy +
uy). Then us; S uy and us O us.

Proof. By Lemma 2.1, F, cF,,,, Therefore FQ>FSQ,,, Now
u3<>(ul + u2) $ El;OFll,-f'uz $ El; = Fuol+u1 < Fg $ El;OE[l :
us Oy

The following lemmas describe connections between faces and ele-
ments exposing them.

LemMa 2.7. Let ued, xeZ*, ||x||=1 and suppose F,c F,. Then
either F,=F,or F°PNE.+O.

Proof. Suppose F,+ F, and fix p € F, with p ¢ F,. Since Z is facially
symmetric, {(S,0,x)=(p, Sox)=(p,x)=1 and therefore Py(u)p +
Puw)p = (p +S.p)/2 € F.

Case 1. Py(u)p =0; then Py(u)p € FO N E,.

Case 2. Py(u)p+0 and Py(u)p+0; then since Py(u)p + Po(u)p € E,,
1=||Py(u)p|l + || Po(u)p|| and

IPpl () + 1Pl (e €

|P()pll |l Po(u)p |
P
By definition of face, —0@— eF.NE,.
|Po(w)pll

Case 3. Py(u)p =0; then Py(u)p eF,. But Py(u)p €im Py(u)=spF,
implies Py(u)p =1lim X Afof with of e F,. Since F,cF, oieF, and
p(u)=(Py(w)p, u)= lim L Afor(u) =lim L Afof(x) = (Py(u)p, x)=
1,50 p € F, a contradiction, and this case does not occur.

Lemma 2.8. Let ue@, xeZ* |x||=1 and suppose F,cF,. Then
x =u+ Py(u)*x. Moreover, if Z is reflexive, then F,=F, if and only if,
x =u+ Po(u)*x, with ||Py(u)*x]| <1.
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Proof. By definition, since F, c F,, Six =x, i.e., P,(u)*x =0.

Now let y =Py(u)*x so that ||y]|<1. Let peF, Then (y, p)=
(Py(u)*x, Py(u)p)=(x,p)=1since F,cF,. Thus F,cF, and [|y||=1.
Now (y, FQ) = (Py(u)*x, Py(u)Z)=0 and since FYcF? we have
yeu.

We next show that F, = F,. If F, + F, then by Lemma 2.7 we can find
0e FENF, But geFY implies (y, o) = (Py(u)*x, Py(u)o)=0 con-
tradicting o € F,. Therefore F, = F,, u =y = Py(u)*x.

Suppose now that Z is reflexive and that F, = F,. By the first statement,
x =u+ Py(u)*x. If c: = Py(u)*x has norm one, then by reflexivity F, # .
By Lemma 2.1 then F, c E, which is a contradiction since F. ¢ F,.

Conversely, suppose ||c|| <1. If F, # F, then by Lemma 2.7 there exists
pe FCNF, so1=p(x)=p(c) <1, contradiction.

The following is the key step in the proof of our spectral theorem.

LEMMA 2.9. Suppose that Z is reflexive and let ue 4, b eim Py(u)*,
6|l =1. Then there exists we U, wu, such that b=w+c, with
llell <1 and ¢ O (1 + w).

Proof. Choose w € 4 such that F, = F,. By Lemma 2.8, b = w + ¢ with
llcll <1 and ¢ €im Py(w)*. By Lemma 2.1(iii) F, OF, and therefore
F,OF,. By Lemma 2.5, u&w. It remains to prove that ¢ € im FPo(u +
w)*.

Notice that by Lemma 2.1, ||b + u|| = ||w + u|| = 1. We will show that
Fy.,=F,,,. To do this consider p € Z, ||p||=1 and a € Z*, ||a]| =1 with
aGu. Then p(a + u) = pla) + p(u) = (Po(w)p, a) + (B(w)p, u) <
| Po()pll + [[P2(w)pll < lloll = 1. Thus

Fo(u)p
pef . opbtu)=1———¢
b @ PO+ 1) = 1SR ol <
and
P. P,
2 . o(u)p cE,
| Poe)e || Po(u)e ||
and
Py(u)p '
————cF, &pw+u)=1.
IPGoe] )

Therefore F,,,=F, ..
Finally, by Lemma 2.8, b+u=w+u+ P(w+u)*(b+u)orc=>b—
w e im Py(u + w)*.

THEOREM 1 (Spectral Theorem). Let Z be a reflexive facially symmetric
Banach space. Then for each non-zero x in Z*, there exist a unique family
of pairwise orthogonal generalized tripotents u,, . . . , u, and real numbers
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A, ..., A, Such that
x=l§n:1}.,u, and A >A,>--->1,>0.
Prootf.' Let x be given. We shall prove by induction the following
proposition:

( For any integer k= 1, either
(1) the theorem holds for some n <k, or
(2) there is a family of pairwise orthogonal generalized tripotents

*) ¢ Uy, ..., U, real numbers A, >4, > - .- > 1, >0, and non-zero
k
dkEZ‘ such that x = E l,u,+dk, dk<>(u1+ e +uk), and
i=1
L [ldell <A

Consider first the case kK =1. Let by = x/||x||. Since Z is reflexive, F,, is
a norm exposed face. Let u, be the generalized tripotent corresponding
to this face, i.e., F, = F,,. By Lemma 2.8 b, =u, + ¢,, where ¢, Ou; and
llea]| <1. Let A;=||x|, di=Ayc;. Then x=4Aiu,+d,, d; u; and
[l < 4.

Suppose now that (*) holds for k=/—1. If (1) holds for k=1—-1,
then it holds for k = L. If (2) holds for k = — 1, we define 4, = ||d,_,|| and
b,=A;'d,_,. By Lemma 2.9 (since b, € im Py(u; + - - - + u;_1)*), we have
U € 4 with u,(}(ul + .- +u,_1), b[= u, +cy, c,<>(u1+ R o u,) and
[l < 1. This implies x = Aju; + - - - + Ay, + A,c;. With d; = A,c; we have
that d, satisfies (*). By Corollary 2.6, u,, . . ., 4, is a pairwise orthogonal
family. Thus (*) holds for k=1

By Corollary 2.2, for sufficiently large k, only (1) can occur. This
proves existence.

n
Suppose now that x has two such decompositions, say x = ¥ Au; and
im]

x= Y ww, with 4, >4,> - >2,>0, gy >, > - >, >0, u;, we
j=1

U, uy, ..., u, pairwise orthogonal, wy, . . ., w,, pairwise orthogonal.
If, for some k=1 we have A, = u; and u, =w, for all i <k — 1, then set

k-1 k-1
y:=x— ¥ Au;=x— L ww. By Lemma 2.1 A, = ||y|| = u,. Moreover
i=1 J=1
E,=F,),;=F,, so by Remark 2.3, u; = w,. The uniqueness follows by
induction.
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