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On a Banach space X a projection Pe~(X) is called bicontractive if IIPll __<1 
and ]II-Pll  <1. Such projections may be constructed as follows. Let 0 be an 
isometry of X onto X of order 2. Then 

(0.1) P=�89 

is a bicontractive projection. It would be of interest to characterize the class 5" 
of those Banach spaces for which every bicontractive projection is~of the above 
form. Evidently X s 5  P if X', its dual, belongs to 

The purpose of this paper is to show that if X is a JB*-triple, then X65~. It 
follows that all JB*-algebras (=Jo rdan  C*-algebras) and their duals and pre- 
duals (when existing) belong to 

By a theorem of Kaup [14, 18], JB*-triples are precisely those Banach 
spaces (within isometric isomorphism) for which the open unit ball is a 
bounded symmetric domain (within biholomorphic equivalence). For  the pre- 
cise definition and basic properties of JB*-triples we refer to [11, 14, 18]. 

In Bernau-Lacey [-3] it is shown that X=Lp(#),  l__<p<oo belongs to 5~. 
Earlier Byrne-Sullivan [-4] proved the special cases 1 < p <  0o and # a probabil- 
ity measure. As a bi-product of the classification of all contractive projections 
on the space C 1 of all trace class operators on a separable Hilbert space, 
Arazy-Friedman show in [1] that C 1, and therefore its predual (the space of all 
compact operators), belongs to 

A study of unit preserving bicontractive projections on unital Jordan (oper- 
ator) algebras was begun in Robertson-Youngson [16]. Using some ideas from 
[16] and the classification of type I Jordan factors, Stormer [17] proved that 
every unital bicontractive projection on an arbitrary C*-algebra is of the form 
(0.1) with 0 a Jordan automorphism of order 2. 

In [9] the authors showed that every C*-algebra belongs to 5~. This result 
generalized the above mentioned results of Arazy-Friedman and of Stormer. 
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The proof was based on the authors' detailed study of contractive projections 
in a setting of operator algebras without order [7, 8, 10]. It was actually 
proved for the class of J*-algebras and therefore also showed that all JC*- 
algebras belong to 5~. 

The proof of our main result below depends only on global properties of 
JB*-triples and contractive projections thereon, as developed in [11, 15] and 
Sects. 1 and 2 below. As such it includes as true corollaries all of the above 
mentioned results of Arazy-Friedman, Robertson-Youngson, Stormer, and the 
authors on bicontractive projections. 

Recall that a J*-algebra is a concrete example of a JB*-triple. Other 
examples of JB*-triples which are not J*-algebras are the two exceptional JB*- 
triples of dimensions 16 and 27, which we denote by C 5 and C 6. The structure 
of an arbitrary JB*-triple has been studied by the authors in [11] and [123. As 
a result of this study some problems for JB*-triples can be reduced to the 
corresponding problem for J*-algebras and the two exceptional JB*-triples. 
The former act on Hilbert space and the latter are finite dimensional. 

It is natural to attempt a direct proof that C 5 and C 6 belong to 5 P and to 
use this, together with the structure theorem mentioned above, in order to 
show that an arbitrary ./B*-triple belongs to 5~. 

We found that this approach seems to require showing the invariance of 
the special and exceptional summands of a JBW*-triple under the projection. 
To prove this would require much of the fine structure of a contractive 
projection, as developed in [7] and [10] for J*-algebras. Hence it is more 
efficient to follow the outline that  solved the bicontractive projection problem 
for J*-algebras [9]. 

This paper is organized as follows. In Sect. 1 we prove some commutativity 
formulas involving a contractive projection and the Peirce projections as- 
sociated with an element in the range of the dual projection. The correspond- 
ing formulas for the J*-algebra case played important roles in the study of a 
contractive projection, and the same is true here. The main tools used in the 
proofs of these formulas are Propositions 1, 2 and 3 of [11]. In Sect. 2 we 
exploit two results of Kaup [15] to develop the fine structure of a contractive 
projection P on a JB*-triple U. The main results, Theorems 2 and 3, give a 
concrete realization of P(U) in the second dual U", and a new conditional 
expectation formula for P. Our final result, that JB*-triples belong to the class 

is proved in Sect. 3. 
The following are some of the notational conventions used in this paper. If 

X is a Banach space, X' denotes its normed dual and X .  denotes a predual of 
X, i.e., (X.)'~_X (isometric). We use the same notation, namely Pk(v), k=0,  1, 2, 
for the Peirce projections associated with a tripotent v, and their adjoints. For 
a normal functional f on a JBW*-triple U, e(f) denotes the tripotent occuring 
in the polar decomposition of f We write Pk(f) for Pk(e(f)). Two functionals 
f g are orthogonal, denoted by f_l_g, if e(f)sPo(g ) U. The symbol _1_ will also 
denote orthogonality of elements of U. 

The following consequence of [7: Lemma 2.4] and [11: Cor. 1.63 will be used 
several times: 
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(0.2) If P is a contractive projection on a JB*-triple U and feP'(U'), then 
with v = e (f) we have P" v = v + P0 (f)  P' ' v. 

More generally: 

(0.3) I f x sU" ,  Ilxll--1, a n d f ( x ) =  LI//I, for some f sU ' ,  then x=v+Po( f )x .  

1. Commutativity Formulas for Contractive Projections 

In this section we use freely the notation and results of Friedman-Russo [11: 
Sect. 1]. By Dineen [5] and Barton-Timoney [2], if U is a JB*-triple, we may 
regard U' as the predual of the JBW*-triple U". 

Lemma 1.1. Let U be a JB*-triple and let e be a tripotent of U". For each 
gePz(e) U', let r(g) denote the restriction of g to P2(e) U". Then T is an isometric 
isomorphism of P2(e) U' onto (P2(e) U"),. 

Proof. The map T is clearly linear, norm decreasing and takes P2(e)U' into 
(P2(e) U"),. By [11: Prop. 1] T is onto and isometric. [] 

The proof of the following proposition is the same as [-7: Prop. 3.3], with 
Lemma 1.1 replacing [7: Remark 3.2]. 

Proposition 1.2. Let P be a contractive projection on a JB*-triple U and let 
f eP'(U'). Then P'P2(f) =P2(f) P' Pz(f). 

Proof. Let B. '=(P2(f)U"), ,  T: P2(f)U'--*B as in Lemma 1.1 and let Vf be the 
face generated by T( f )  in B +. By Emch-King [-6, 13] Vy is norm dense in B +. 
Since B § linearly spans B, it will suffice, by Lemma 1.1, to prove that 
P'(T-I(Vs))=_P~(f) U '. 

For zeVy, write r ( f ) = e ~ + a  for some c~>0 and ar Then f = e ~ + 8  
where ~= r - l ( z )  and g-= T-l(o-), and 

Ihflk = ilT(f)l/=~ II~kl + I1~11 =~  II~ll + Ilail 

>c~ lIe"z II + IIP'~ll >c~ lIP2(/)e'-~ II + IIP2(f)P' ~-11 > llfll 

since f=Pz(f )P' f=P2(f)P'(e~+~r) .  Therefore ILP'~ll--[IP2(f)e'~ll so by [11: 
Prop. 1] P'~=P2(f)P'~. [] 

In order to prove our second commutativity formula we need a lemma 
which generalizes [7: Lemma 3.4]. 

Lemma 1.3. Let P be a contractive projection on a JB*-triple U and let 
feP'(U'). Then Po(f)P'P~(f)=O. 

Proof. With v=e( f )  consider the map ~: P~(f)U"~U'  defined by ~r(y) 
=D(v, y) f. We shall show that ~z is a linear bijection of Pl(f) U" onto a norm 
dense subspace S of Pl(f)U'. Then we shall show that Po ( f )P ' g=0  for all geS, 
completing the proof. 
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We show first that S~-PI(f)U'.  Let x~U". By the Peirce rules [11: (1.7)], 
and the fact that f = P2 ( f )  f, 

(D (v, y) f x )  = ( f  P2 (f)  {v y x} ) = (f ,  {v y P1 (f)  x} ) 

= (Pl( f )  D(v, y) f x ) .  
Thus S ~_P~(f) U'. 

Now let z~U" satisfy ( z , S ) = 0 ,  so that (Zl, S ) = 0  where z l=Pl ( f ) z .  Then 
f { v y z l } = O  for all yePl( f )  U" and in particular f { v z l z l } = O .  Since, by [11: 
Sect. 1], {vz lz l}  is positive in Pz(f) U" and f is faithful there, {vz l z l }=O and 
so z 1 =0. Thus (z, Pl(f) U ' )=0,  proving that S is norm dense in Pl(f) U'. 

Next, let g = D ( v , y ) f e S  for some y~P~(f)U". We shall show that Po(f )P 'g  
= 0. Since D(y, v) + D(v, y) is hermitian 

[(f, (exp i t(D(y, v) + D(v, y))) x )[ < 1 

for all xEU" with rlx][ <1 and all tER. Therefore 

[f(x) + i t f ( { y  v x} + {v y x}) + O(t2)[ __< 1, 

and since by the Peirce rules 

f { y v x } = O ,  [ f ( x )+ i t  f {vyx} l<=l  +O(t2). 
Thus 

[If+itg[[ < 1 + O(tZ). 

Set w,= P ' ( f  + i t g). Since P" v=v  + po(f) P" v, 

w&)  = (P' f ,  v) + i t ( P '  g, v) = 1. 

Therefore 1 < ]l P2 (f)  w, I] < JI w, ]l < 1 + O(t2). 
Finally, since by Proposition 1.2 Po( f )P ' f=O,  we have 

1 + t  Npo(f)P'gl[ =< ][P2(f)w, ll + [Ipo(f)P'(f+itg)[I 

= II(P2 (f)  + Po(f)) w,H < IIw, lF = 1 + O(t2), 

which forces P0(f) P' g = O. [] 

By using this lemma and Proposition 1.2, the following proposition can be 
proved exactly as [7: Prop. 3.5]. 

Proposition 1.4. Let P be a contractive projection on a aB*-triple U and let 
fsP'(U') .  Then Po( f )P '=Po( f )P 'po ( f )=P 'Po( f )P '  and Po(f)P' and Pdf)P' are 
projections. 

Proof Writing Pk for Pk(f) we have 

PoP'=PoP'(P: +P~ +Po)= PO P'P2 + Po P'P, + Po P'PO = Po P'Po 

by Proposition 1.2 and Lemma 1.3. Also PoP'POP'=POP'P'=PoP' is a pro- 
jection. 



Conditional Expectation on Jordan C*-algebras and Generalizations 231 

Let g~U'. Then IlPoP'gl[=llPoP'PoP'g]l~]lP'PoP'g[l~[lPoP'gll. By [11: 
Prop. 1] P'PoP'g=PoP'PoP'g=PoP'g. Finally, 

P~ P' = P~ P' ( P2 + P~ + Po) P' = P~ ( P' P2) P' + P~ ( P' Po P') + PI P' P~ P' -~ P~ P' P1P'. [] 

T o  establish our final commutativity formula we need a lemma which 
generalizes and considerably simplifies [7: Cot. 4.2]. 

Lemma 1.5. Let v be a tripotent in U" where U is a JB*-triple and suppose 
fEP2(v ) U' and geP~(v) U'. I f  f=t:O, then I]f+g]] > ]lgl{. 

Proof Suppose that ][f+gU<[]g[]. Let u=e(g). Then by [11: Prop. 3], 
uEP~(v) U" and [-Pk(v), Pj(u)] = 0  for all j, k. Thus ( / + g ,  u)--- (g, u) = []g[[ > ]If 
+g[I. By [11: Prop. 1], f + g  and g belong to Pz(u)U', implying f~Pz(u)U'. Let 
x~U" be such that f (x)4:0 and set y=Pz(v)Pz(u)x. Denote by # the involution 
on the JBW*-algebra Pz(u)U". Then by Peirce rules with respect to v, yg 
={uyu}~Po(v) U". Since g(y)=g(Pl(v)y)=O and f + g  is positive, hence self- 
adjoint on P2(u) U", we have 

f ( x ) = f ( y ) = ( f + g , y )  = ( f + g , y ~ ) = 0 ,  a contradiction. [] 

The proof of our final commutativity formula is the same as [7: Prop. 4.3] 
with Lemma 1.5 in place of [7: Cor. 4.2]. 

Proposition 1.6. Let P be a contractive projection on a JB*-triple U and let 
feP'(U').  Then P~(f)P'=P'PI(f)P' ,  Pz( f )P '=P'Pz( f )P ' ,  and Pz(f)P' is a pro- 
jection. 

Proof We have 

P' P~ P' = ( P2 + Pt + Po ) P' P~ P' = P2 P' P~ P' + P~ P' P~ P' + Po P' P~ P' = P2 P' P~ P' + P~ P' . 

Therefore for arbitrary g~ U', 

]]P2(P'P~P'g)+P~(P'g)H = ]]P'P~ P'g]l < ]]P~(P'g)]], 

and by Lemma 1.5, PzP'PtP'g=O, so P'P1P'=P~P'. 
Furthermore, 

P2 P' = (1 -P~ - P o ) P ' = P ' - P ~ P ' - P o P '  

=p'  _ p ' p ~ e ' - p ' p o p ' = p ' ( 1  -P~ -Po)P' =P'Pap'. 

Finally P2(P'P2P')=P2P2P'-=P2 n'. [] 

We summarize the results of this section in the following theorem. 

Theorem 1. Let P be a contractive projection on a JB*-triple U and let feP'(U').  
With Pk = Pk(f), k = 0  1,2 we have 

(a) On U', P'P2=P2P'P2, Pon'=Pon'Po=n'Pon', 

Pt p' = p' P~ P', P2 p' = P' Pz p' ; 

(b) On U", P2P"=PzP"P2, P"Po=PoP"Po=P"Po n'', 

p" p~ = p" pa p", p" p2 = p" p2 p"" 
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2. Conditional Expectation Property of a Contractive Projection 

In this section we shall use the following two results of Kaup [-15] concerning 
a contractive projection P on a JB*-triple U. 

(2.1) P { P a b P c } = P { P a P b P c } ,  for a,b, ceU; 

(2.2) P(U) is a JB*-triple in the triple product {xyz}e(v):=P{xyz}, for 
x, y, z~P(U). 

As noted earlier in (0.2) iff~P'(U'), then P"v=v+b  where v=e( f )  and b is 
orthogonal to v. The next lemma, which will be needed in Lemma 2.6, shows 
that in fact b is orthogonal to e(g) where g is an arbitrary element of P'(U'). 

Lemma 2.1. Let P be a contractive projection on a JB*-triple U, let f~P'(U') 
and let v=e( f )  and b=P" v - v .  Then for any geP'(U') we have b~Po(g) U". 

Proof Let u=e(g). Set c = P " u - u .  Then bLv  and c_l_u. We calculate 2: 
=g{P"v,  P"v, P"u} in two ways. First, by (2.1) applied to P", 

2=g(P'{P" v, P" v, P" u})=g(P"{P" v, v, P" u}) 

= g(fv + b, v, P" u}) = g({v v P" u}). 

Second, 2=g({v+b,v+b,P"u})=g{vvP"u}+g{bbP"u} .  Therefore g{bbP"u} 
=0, i.e., g{bbu}+g{bbc}=O. 

Let b=b2+b 1 +b o be the Peirce decomposition of b with respect to u. Then 
by the "Peirce rules for multiplication" and the fact that g=P2(u)g, we have 
g{bbc}=O (so that g({bbu})=O), and g{bbu}=g{b2b2u}+g{blblU }. Since 
{b2b2u } and {blblU } belong to (P2(u)U") + and g is positive we have g{blblu } 
=g{b2b2u}=O. Moreover g is faithful on P2(u)U'; so that {blblU}={b2b2u} 
=0. Finally by [11: p. 73] we have b 1=b2=0 .  [] 

It follows from (2.2) that M:=P"(U") is a JBW*-triple with predual M.  
=P'(U'). The next proposition gives the connection between the polar decom- 
positions of an element feP'(U') with respect to M and U". Together with 
Lemma 2.1 it will clarify the relationship between orthogonality in M and in 
N i t  

Proposition 2.2. Let P be a contractive projection on a dB*-triple U, let 
fsP'(U'), and let v=e( f )sU".  Then ~ : = P " v  is the tripotent occurring in the 
polar decomposition o f f  with respect to the JBW*-triple M:=P"(U"). 

Proof We show first that ~ is a tripotent in P"(U"). By (0.2), we have ~=v+b 
where bePo(v ) U". By (2.1) applied to P", 

{V V V}M=P"{v VV} = P"{~, v, ~} =P"{v+b, v, v+b} =P"{vvv} =P"v=~. 

Therefore ~ is a tripotent. 
We show next that if u is a tripotent in P"(U") with f ( u ) =  If/ll, then u >~  in 

34. Since f ( u ) =  [Ifll, we have u=v+c  with cEPo(v)U" (by (0.3)). Thus u=P"u 
=~+P"c and ~:=P"csPo(v)U" by Theorem i. It remains to show that ~ is 
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orthogonal to ~ in M. By (2.1), we have 

{55~}M=P"{55~} =P"{~v~} =P"{v+b, v, ~} =P"{v, v, ~} =P"O=O [] 

To obtain the connection between orthogonality in M and U" we need the 
following 

Lemma 2.3. Let f and g be normal functionals on a JBW*-triple U. Then f l g  if 
and only if Ilf_+g[j = llf ll + }]gll- 

Proof We may assume H f[[ = []g][ = 1. Let u=e(g), v=e(f) .  

Suppose first that f i g .  Then e+:=u•  has norm one and <f__g,e+_>=2. 
Therefore 2 <  ][fig[]  < I[f][ + [[g]] =2. 

Suppose now that []fig[[  = []f[] + ]]gH, and set w..=e(f+g). Then 

2 = < f +  g, w) = <f, w) + <g, w) =< [<f w>[ + Kg, w)[ =< [If H + [Ig[k =2.  

Thus <fw)=<g,w>=l  and so f, geP2(w) U, by [11: Prop. 1]. By the Jordan 
decomposition in JBW-algebras [13: Appendix] f and g are orthogonal states 
on the JBW*-algebra U 2(w), and hence f i g .  [] 

Corollary 2.4. For a contractive projection P on a JB*-triple U and ,f, geP'(U'), 
let v=e(f) ,  u=e(g),  ~=P"v, fi=P"u. Then u l v  in U" if and only if fiA_~ in M 
=P"(U").  

Proof For any h~P'(U')~_U', IkhLiM,=]ihliv,. By Proposition 2.2 and Lemma 
2.3, 

u i v  in U"~=~ [[f•  Hf[Pv,+ [Pg[[v ,*~ [[fig[[M, 

= ][fi lM,+ [[g[lM, e:>fi-l-~ in M. [ ]  

To extend this corollary to arbitrary tripotents we need: 

Lemma 2.5. Let v be a tripotent in a JBW*-triple U. Then there is a family of 
mutually orthogonal functionaIs (f~) c_ U, with v = ~ e(f~) (w*-convergence). 

Proof. Let A =  U2(v) which is a JBW*-algebra with unit v. Since the normal 
states of A are separating [13], v=sup{%:  ~b~A +} where e4 is the support 
projection of ~b in A. By Zorn there is an orthogonal family {%~} such that v 
= ~ e~  in A. Then (%~) are pairwise orthogonal tripotents in U and %=e(f~) 
where f~ = ~b~, P2 (v). []  

The following lemma gives a correspondenc e between tripotents in M and 
in U" which is needed in order to describe the fine structure of the range of a 
contractive projection. We first establish some notation. 

If P is a contractive projection on a JB*-triple U, we let 

~f: = the w*-closure of span {e(f):  feP'(U')} c_ U", 

o:= 0 
g~P'(U') 

It is obvious that (9 is a JB*-subtriple of U" and that c~ L (9. Therefore the sum 
c~+(9 is direct and the projection Q of cg+(9 onto cg is contractive. 
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Lemma 2.6. Let P be a contractive projection on a JB*-triple U and let w be a 
tripotent of the JBW*-triple M = P"(U"). Then Qw is a tripotent of U". More- 
over, if w 1 and w z and orthogonal tripotents of M, then Q w 1 and Q w 2 are 
orthogonal in U". 

Proof Let us apply Lemma 2.5 to a tripotent w of the JBW*-triple M,  
P"(U") We obtain orthogonal elements (f~)~_P'(U') and by Proposition 2.2 

w = ~  (e(f~)+b~) (w*-convergence in M) where, by Lemma 2.1, b,e(9. By Corol- 

lary 2.4 the e(f~) are orthogonal in U" so w . = ~ e ( f ~ ) + ~ b ~ ,  ~ e ( s  w*- 

converges to a tripotent QweCg of U" and b ,=~b~e (9  exists in U" as a w*- 

limit. The second statement follows from Corollary 2.4 and the formula Q w 

=Z e(L). [] 

By Lemma 2.6 each tripotent of M=P"(U " )  lies in cd+(~. By the spectral 
theorem [11: Rk. 1.9] M=Cg+(9, and Q is a homomorphism of M into U", i.e., 
Q({abc}M)={QaQbQc  }. On the other hand, for xeP(U)~_M, and feP'(U') ,  
f ( x ) = f ( Q  x), and 

[Ixl[--sup{l<f, Qx>l: f~v ' (u ' ) ,  ]If I[ < 1} < IlQxll < [Ixll. 

Thus, by restricting Q to P(U), we have: 

Theorem 2. Let P be a contractive projection on a JB*-triple U. Then the JB*- 
triple P(U) is isometrically isomorphic to a closed subtriple of U". 

Since it is elementary that the second dual of a J*-algebra is a J*-algebra, 
we obtain as a consequence of (2.2) and Theorem 2, the main result of [10] : 

Corollary 2.7. Let P be a contractive projection on a J*-algebra. Then the range 
of P is a JB*-triple which is isometrically isomorphic to a J*-algebra. 

Our next result is a conditional expectation formula analogous to (2.1). 
Recall that the triple product {abc} is symmetric and linear in a and c and 
conjugate linear in b. The formula (2.1) was proved in [15] using holomorphic 
methods. Holomorphic methods are unavailable for the proof of Theorem 3 
because of the conjugate linearity in b. Both formulas had been proved in [9] 
for J*-algebras. 

Theorem 3. Let P be a contractive projection on a JB*-triple U. Then 

(2.3) P { P a P b c } = P { P a P b P c }  for a ,b ,c~U.  

Proof There is no loss of generality in assuming that a=b .  By approximating 
Pa by finite linear combinations of orthogonal tripotents of M=P"(U") ,  it 
suffices to prove that 

(2.4) P"{w I w 2 x} =P"{w 1 w 2 P"x}  

whenever wl, w z are tripotents of M and x~U". We only need to consider two 
cases, namely wl--w e and w 1 _1_ w 2. 
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Note  first that  by the Peirce rules, for any a 1, aaSC, 

z~U" and g~P ' (U ' ) ,  we have(g ,{ala2z})=O.  

Therefore  P" {a 1 a a z} =0.  
If  w 1 _1_ w2, then writ ing w i = Q wi + b i = v~ + b i as in L e m m a  2.6 implies 

{W 1 W 2 X} = {V 1 V 2 X} d- {b 1 b 2 x} = {b 1 b 2 x}. 

Therefore  P"{w 1 w 2 x} = 0 = P " { w  1 w 2 P" x}. 
If w 1 = W z = W  say, write w = Q w + b = v + b  as in L e m m a  2.6. Then  P"{wwx} 

=P"{vvx}+P"{bbx}=P"D(v ,  v)x and since D(v, v)=P2(v)+�89 T h e o r e m  1 
implies 

P"{wwxI=P"(P2(v)+ �89 �89 x=P"{wwP"x} .  [] 

3. Structure of a Bicontractive Projection 

In the previous section, we showed that  the dB*-tr iple  P(U) is i somorphic  to a 
subtriple of  U' .  Here  of course P is any contract ive  project ion on a JB*-t r ip le  
U. In  this section we m a k e  the assumpt ion  that  P is bicontract ive,  i.e., I - P  is 
also contractive.  

It  turns out  that  in this case, the i somorph i sm Q of P(U) into U" is the 
identity, which results in: 

Proposition 3.1. Let P be a bicontractive projection on a JB*-triple U. Then 
P(U) is a JB*-subtriple of U. 

Proof. Since M:=P"(U") is a JBW*-triple, it suffices to prove  that  Q w = w  for 
each t r ipotent  w in M. By L e m m a  2.5 and L e m m a  2.6 it suffices to prove  that  
P" v = v whenever  v = e( f )  for some fEP'(U'). 

Let b = P " v - v .  Then, by (2.1), 

P"{bbb} =P"{v+b, b, v+b} =P"{P" v, b, P" v} =P"{P" v, P"b, P" v} = 0 .  

By induct ion P"(B)=0 where B is the JB*-t r ip le  genera ted by b. I t  follows that  
I - P "  restricts to a bicontract ive  project ion on CvQB with range B. Then, for 
any zeB with IIzll <1 ,  we have /Iv+zll <1  so that  II(I-P')(v+z)lI <1,  i.e., 1 [ -b  
+z[[ < 1. This forces b = 0 .  [ ]  

By Propos i t ion  3.1, if P is bicontract ive,  the condi t ional  expecta t ion for- 
mulas  (2.1) and (2.3) take on a neater  form:  

P { a b x } = { a b P x }  and P { a x b } = { a P x b }  

for a, beP(U) and xeU. 
Finally, let P be a b icontract ive  project ion on a JB*- t r ip le  U, and  set 0 

= 2 P - I .  By the a rgument  in [-9: p. 355], the two condi t ional  expectat ion 
formulae  (2.1), (2.3) and Propos i t ion  3.1 imply that  0 is a h o m o m o r p h i s m  of U. 
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S ince  a h o m o m o r p h i s m  is a l w a y s  c o n t r a c t i v e  (as fo l lows  f r o m  H{zzz}l] = Ilzll 3) 
we o b t a i n  

Theorem 4. Let P be a bicontractive projection on a JB*-triple U. Then there zs 
a surjective isometry 0 on U of order 2 such that P=I( I+O) .  Thus all JB*- 
triples, their duals, and all pre-duals of JBW*-triples belong to the class 5(. 
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