

Conditional Expectation and Bicontractive Projections on Jordan C^* -algebras and Their Generalizations*

Yaakov Friedman¹ and Bernard Russo²

¹ Department of Mathematics, University of California, Riverside, CA 92521, USA

² Department of Mathematics, University of California, Irvine, CA 92717, USA

On a Banach space X a projection $P \in \mathcal{L}(X)$ is called *bicontractive* if $\|P\| \leq 1$ and $\|I - P\| \leq 1$. Such projections may be constructed as follows. Let θ be an isometry of X onto X of order 2. Then

$$(0.1) \quad P = \frac{1}{2}(I + \theta)$$

is a bicontractive projection. It would be of interest to characterize the class \mathcal{S} of those Banach spaces for which every bicontractive projection is of the above form. Evidently $X \in \mathcal{S}$ if X' , its dual, belongs to \mathcal{S} .

The purpose of this paper is to show that if X is a JB^* -triple, then $X \in \mathcal{S}$. It follows that all JB^* -algebras (=Jordan C^* -algebras) and their duals and preduals (when existing) belong to \mathcal{S} .

By a theorem of Kaup [14, 18], JB^* -triples are precisely those Banach spaces (within isometric isomorphism) for which the open unit ball is a bounded symmetric domain (within biholomorphic equivalence). For the precise definition and basic properties of JB^* -triples we refer to [11, 14, 18].

In Bernau-Lacey [3] it is shown that $X = L_p(\mu)$, $1 \leq p < \infty$ belongs to \mathcal{S} . Earlier Byrne-Sullivan [4] proved the special cases $1 < p < \infty$ and μ a probability measure. As a bi-product of the classification of all contractive projections on the space C_1 of all trace class operators on a separable Hilbert space, Arazy-Friedman show in [1] that C_1 , and therefore its predual (the space of all compact operators), belongs to \mathcal{S} .

A study of unit preserving bicontractive projections on unital Jordan (operator) algebras was begun in Robertson-Youngson [16]. Using some ideas from [16] and the classification of type I Jordan factors, Størmer [17] proved that every unital bicontractive projection on an arbitrary C^* -algebra is of the form (0.1) with θ a Jordan automorphism of order 2.

In [9] the authors showed that every C^* -algebra belongs to \mathcal{S} . This result generalized the above mentioned results of Arazy-Friedman and of Størmer.

* Research sponsored by N.S.F. grant DMS-8402640

The proof was based on the authors' detailed study of contractive projections in a setting of operator algebras without order [7, 8, 10]. It was actually proved for the class of J^* -algebras and therefore also showed that all JC^* -algebras belong to \mathcal{S} .

The proof of our main result below depends only on global properties of JB^* -triples and contractive projections thereon, as developed in [11, 15] and Sects. 1 and 2 below. As such it includes as true corollaries all of the above mentioned results of Arazy-Friedman, Robertson-Youngson, Størmer, and the authors on bicontractive projections.

Recall that a J^* -algebra is a concrete example of a JB^* -triple. Other examples of JB^* -triples which are not J^* -algebras are the two exceptional JB^* -triples of dimensions 16 and 27, which we denote by C^5 and C^6 . The structure of an arbitrary JB^* -triple has been studied by the authors in [11] and [12]. As a result of this study some problems for JB^* -triples can be reduced to the corresponding problem for J^* -algebras and the two exceptional JB^* -triples. The former act on Hilbert space and the latter are finite dimensional.

It is natural to attempt a direct proof that C^5 and C^6 belong to \mathcal{S} and to use this, together with the structure theorem mentioned above, in order to show that an arbitrary JB^* -triple belongs to \mathcal{S} .

We found that this approach seems to require showing the invariance of the special and exceptional summands of a JBW^* -triple under the projection. To prove this would require much of the fine structure of a contractive projection, as developed in [7] and [10] for J^* -algebras. Hence it is more efficient to follow the outline that solved the bicontractive projection problem for J^* -algebras [9].

This paper is organized as follows. In Sect. 1 we prove some commutativity formulas involving a contractive projection and the Peirce projections associated with an element in the range of the dual projection. The corresponding formulas for the J^* -algebra case played important roles in the study of a contractive projection, and the same is true here. The main tools used in the proofs of these formulas are Propositions 1, 2 and 3 of [11]. In Sect. 2 we exploit two results of Kaup [15] to develop the fine structure of a contractive projection P on a JB^* -triple U . The main results, Theorems 2 and 3, give a concrete realization of $P(U)$ in the second dual U'' , and a new conditional expectation formula for P . Our final result, that JB^* -triples belong to the class \mathcal{S} , is proved in Sect. 3.

The following are some of the notational conventions used in this paper. If X is a Banach space, X' denotes its normed dual and X_* denotes a predual of X , i.e., $(X_*)' \cong X$ (isometric). We use the same notation, namely $P_k(v)$, $k=0, 1, 2$, for the Peirce projections associated with a tripotent v , and their adjoints. For a normal functional f on a JBW^* -triple U , $e(f)$ denotes the tripotent occurring in the polar decomposition of f . We write $P_k(f)$ for $P_k(e(f))$. Two functionals f, g are orthogonal, denoted by $f \perp g$, if $e(f) \in P_0(g)U$. The symbol \perp will also denote orthogonality of elements of U .

The following consequence of [7: Lemma 2.4] and [11: Cor. 1.6] will be used several times:

(0.2) If P is a contractive projection on a JB^* -triple U and $f \in P'(U')$, then with $v = e(f)$ we have $P''v = v + P_0(f)P''v$.

More generally:

(0.3) If $x \in U''$, $\|x\| = 1$, and $f(x) = \|f\|$, for some $f \in U'$, then $x = v + P_0(f)x$.

1. Commutativity Formulas for Contractive Projections

In this section we use freely the notation and results of Friedman-Russo [11: Sect. 1]. By Dineen [5] and Barton-Timoney [2], if U is a JB^* -triple, we may regard U' as the predual of the JBW^* -triple U'' .

Lemma 1.1. *Let U be a JB^* -triple and let e be a tripotent of U'' . For each $g \in P_2(e)U'$, let $T(g)$ denote the restriction of g to $P_2(e)U''$. Then T is an isometric isomorphism of $P_2(e)U'$ onto $(P_2(e)U'')_*$.*

Proof. The map T is clearly linear, norm decreasing and takes $P_2(e)U'$ into $(P_2(e)U'')_*$. By [11: Prop. 1] T is onto and isometric. \square

The proof of the following proposition is the same as [7: Prop. 3.3], with Lemma 1.1 replacing [7: Remark 3.2].

Proposition 1.2. *Let P be a contractive projection on a JB^* -triple U and let $f \in P'(U')$. Then $P'P_2(f) = P_2(f)P'P_2(f)$.*

Proof. Let $B := (P_2(f)U'')_*$, $T: P_2(f)U' \rightarrow B$ as in Lemma 1.1 and let V_f be the face generated by $T(f)$ in B^+ . By Emch-King [6, 13] V_f is norm dense in B^+ . Since B^+ linearly spans B , it will suffice, by Lemma 1.1, to prove that $P'(T^{-1}(V_f)) \subseteq P_2(f)U'$.

For $\tau \in V_f$, write $T(f) = \alpha\tau + \sigma$ for some $\alpha > 0$ and $\sigma \in V_f$. Then $f = \alpha\tilde{\tau} + \tilde{\sigma}$ where $\tilde{\tau} = T^{-1}(\tau)$ and $\tilde{\sigma} = T^{-1}(\sigma)$, and

$$\begin{aligned} \|f\| &= \|T(f)\| = \alpha\|\tau\| + \|\sigma\| = \alpha\|\tilde{\tau}\| + \|\tilde{\sigma}\| \\ &\geq \alpha\|P'\tilde{\tau}\| + \|P'\tilde{\sigma}\| \geq \alpha\|P_2(f)P'\tilde{\tau}\| + \|P_2(f)P'\tilde{\sigma}\| \geq \|f\| \end{aligned}$$

since $f = P_2(f)P'f = P_2(f)P'(\alpha\tilde{\tau} + \tilde{\sigma})$. Therefore $\|P'\tilde{\tau}\| = \|P_2(f)P'\tilde{\tau}\|$ so by [11: Prop. 1] $P'\tilde{\tau} = P_2(f)P'\tilde{\tau}$. \square

In order to prove our second commutativity formula we need a lemma which generalizes [7: Lemma 3.4].

Lemma 1.3. *Let P be a contractive projection on a JB^* -triple U and let $f \in P'(U')$. Then $P_0(f)P'P_1(f) = 0$.*

Proof. With $v = e(f)$ consider the map $\pi: P_1(f)U'' \rightarrow U'$ defined by $\pi(y) = D(v, y)f$. We shall show that π is a linear bijection of $P_1(f)U''$ onto a norm dense subspace S of $P_1(f)U'$. Then we shall show that $P_0(f)P'g = 0$ for all $g \in S$, completing the proof.

We show first that $S \subseteq P_1(f) U'$. Let $x \in U''$. By the Peirce rules [11: (1.7)], and the fact that $f = P_2(f) f$,

$$\begin{aligned}\langle D(v, y) f, x \rangle &= \langle f, P_2(f) \{v y x\} \rangle = \langle f, \{v y P_1(f) x\} \rangle \\ &= \langle P_1(f) D(v, y) f, x \rangle.\end{aligned}$$

Thus $S \subseteq P_1(f) U'$.

Now let $z \in U''$ satisfy $\langle z, S \rangle = 0$, so that $\langle z_1, S \rangle = 0$ where $z_1 = P_1(f) z$. Then $f \{v y z_1\} = 0$ for all $y \in P_1(f) U''$ and in particular $f \{v z_1 z_1\} = 0$. Since, by [11: Sect. 1], $\{v z_1 z_1\}$ is positive in $P_2(f) U''$ and f is faithful there, $\{v z_1 z_1\} = 0$ and so $z_1 = 0$. Thus $\langle z, P_1(f) U' \rangle = 0$, proving that S is norm dense in $P_1(f) U'$.

Next, let $g = D(v, y) f \in S$ for some $y \in P_1(f) U''$. We shall show that $P_0(f) P' g = 0$. Since $D(y, v) + D(v, y)$ is hermitian

$$|\langle f, (\exp i t (D(y, v) + D(v, y))) x \rangle| \leq 1$$

for all $x \in U''$ with $\|x\| \leq 1$ and all $t \in R$. Therefore

$$|f(x) + i t f(\{y v x\} + \{v y x\}) + O(t^2)| \leq 1,$$

and since by the Peirce rules

$$f \{y v x\} = 0, \quad |f(x) + i t f \{v y x\}| \leq 1 + O(t^2).$$

Thus

$$\|f + i t g\| \leq 1 + O(t^2).$$

Set $w_t = P'(f + i t g)$. Since $P'' v = v + P_0(f) P'' v$,

$$w_t(v) = \langle P' f, v \rangle + i t \langle P' g, v \rangle = 1.$$

Therefore $1 \leq \|P_2(f) w_t\| \leq \|w_t\| \leq 1 + O(t^2)$.

Finally, since by Proposition 1.2 $P_0(f) P' f = 0$, we have

$$\begin{aligned}1 + t \|P_0(f) P' g\| &\leq \|P_2(f) w_t\| + \|P_0(f) P'(f + i t g)\| \\ &= \|(P_2(f) + P_0(f)) w_t\| \leq \|w_t\| = 1 + O(t^2),\end{aligned}$$

which forces $P_0(f) P' g = 0$. \square

By using this lemma and Proposition 1.2, the following proposition can be proved exactly as [7: Prop. 3.5].

Proposition 1.4. *Let P be a contractive projection on a JB*-triple U and let $f \in P'(U')$. Then $P_0(f) P' = P_0(f) P' P_0(f) = P' P_0(f) P'$ and $P_0(f) P'$ and $P_1(f) P'$ are projections.*

Proof. Writing P_k for $P_k(f)$ we have

$$P_0 P' = P_0 P' (P_2 + P_1 + P_0) = P_0 P' P_2 + P_0 P' P_1 + P_0 P' P_0 = P_0 P' P_0$$

by Proposition 1.2 and Lemma 1.3. Also $P_0 P' P_0 P' = P_0 P' P' = P_0 P'$ is a projection.

Let $g \in U'$. Then $\|P_0 P' g\| = \|P_0 P' P_0 P' g\| \leq \|P' P_0 P' g\| \leq \|P_0 P' g\|$. By [11: Prop. 1] $P' P_0 P' g = P_0 P' P_0 P' g = P_0 P' g$. Finally,

$$P_1 P' = P_1 P' (P_2 + P_1 + P_0) P' = P_1 (P' P_2) P' + P_1 (P' P_0 P') + P_1 P' P_1 P' = P_1 P' P_1 P'. \quad \square$$

To establish our final commutativity formula we need a lemma which generalizes and considerably simplifies [7: Cor. 4.2].

Lemma 1.5. *Let v be a tripotent in U'' where U is a JB*-triple and suppose $f \in P_2(v) U'$ and $g \in P_1(v) U'$. If $f \neq 0$, then $\|f + g\| > \|g\|$.*

Proof. Suppose that $\|f + g\| \leq \|g\|$. Let $u = e(g)$. Then by [11: Prop. 3], $u \in P_1(v) U''$ and $[P_k(v), P_j(u)] = 0$ for all j, k . Thus $\langle f + g, u \rangle = \langle g, u \rangle = \|g\| \geq \|f + g\|$. By [11: Prop. 1], $f + g$ and g belong to $P_2(u) U'$, implying $f \in P_2(u) U'$. Let $x \in U''$ be such that $f(x) \neq 0$ and set $y = P_2(v) P_2(u) x$. Denote by $\#$ the involution on the JBW*-algebra $P_2(u) U''$. Then by Peirce rules with respect to v , $y^\# = \{u y u\} \in P_0(v) U''$. Since $g(y) = g(P_1(v) y) = 0$ and $f + g$ is positive, hence self-adjoint on $P_2(u) U''$, we have

$$\overline{f(x)} = \overline{f(y)} = \overline{\langle f + g, y \rangle} = \langle f + g, y^\# \rangle = 0, \quad \text{a contradiction.} \quad \square$$

The proof of our final commutativity formula is the same as [7: Prop. 4.3] with Lemma 1.5 in place of [7: Cor. 4.2].

Proposition 1.6. *Let P be a contractive projection on a JB*-triple U and let $f \in P'(U')$. Then $P_1(f) P' = P' P_1(f) P'$, $P_2(f) P' = P' P_2(f) P'$, and $P_2(f) P'$ is a projection.*

Proof. We have

$$P' P_1 P' = (P_2 + P_1 + P_0) P' P_1 P' = P_2 P' P_1 P' + P_1 P' P_1 P' + P_0 P' P_1 P' = P_2 P' P_1 P' + P_1 P'.$$

Therefore for arbitrary $g \in U'$,

$$\|P_2(P' P_1 P' g) + P_1(P' g)\| = \|P' P_1 P' g\| \leq \|P_1(P' g)\|,$$

and by Lemma 1.5, $P_2 P' P_1 P' g = 0$, so $P' P_1 P' = P_1 P'$.

Furthermore,

$$\begin{aligned} P_2 P' &= (1 - P_1 - P_0) P' = P' - P_1 P' - P_0 P' \\ &= P' - P' P_1 P' - P' P_0 P' = P'(1 - P_1 - P_0) P' = P' P_2 P'. \end{aligned}$$

Finally $P_2(P' P_2 P') = P_2 P_2 P' = P_2 P'$. \square

We summarize the results of this section in the following theorem.

Theorem 1. *Let P be a contractive projection on a JB*-triple U and let $f \in P'(U')$. With $P_k = P_k(f)$, $k = 0, 1, 2$ we have*

(a) *On U' , $P' P_2 = P_2 P' P_2$, $P_0 P' = P_0 P' P_0 = P' P_0 P'$,*

$$P_1 P' = P' P_1 P', \quad P_2 P' = P' P_2 P';$$

(b) *On U'' , $P_2 P'' = P_2 P'' P_2$, $P'' P_0 = P_0 P'' P_0 = P'' P_0 P''$,*

$$P'' P_1 = P'' P_1 P'', \quad P'' P_2 = P'' P_2 P''.$$

2. Conditional Expectation Property of a Contractive Projection

In this section we shall use the following two results of Kaup [15] concerning a contractive projection P on a JB^* -triple U .

$$(2.1) \quad P\{PabPc\} = P\{PaPbPc\}, \quad \text{for } a, b, c \in U;$$

$$(2.2) \quad P(U) \text{ is a } JB^*\text{-triple in the triple product } \{xyz\}_{P(U)} := P\{xyz\}, \text{ for } x, y, z \in P(U).$$

As noted earlier in (0.2) if $f \in P'(U')$, then $P''v = v + b$ where $v = e(f)$ and b is orthogonal to v . The next lemma, which will be needed in Lemma 2.6, shows that in fact b is orthogonal to $e(g)$ where g is an arbitrary element of $P'(U')$.

Lemma 2.1. *Let P be a contractive projection on a JB^* -triple U , let $f \in P'(U')$ and let $v = e(f)$ and $b = P''v - v$. Then for any $g \in P'(U')$ we have $b \in P_0(g)U''$.*

Proof. Let $u = e(g)$. Set $c = P''u - u$. Then $b \perp v$ and $c \perp u$. We calculate $\lambda := g\{P''v, P''v, P''u\}$ in two ways. First, by (2.1) applied to P'' ,

$$\begin{aligned} \lambda &= g(P''\{P''v, P''v, P''u\}) = g(P''\{P''v, v, P''u\}) \\ &= g(\{v + b, v, P''u\}) = g(\{v v P''u\}). \end{aligned}$$

Second, $\lambda = g(\{v + b, v + b, P''u\}) = g\{v v P''u\} + g\{b b P''u\}$. Therefore $g\{b b P''u\} = 0$, i.e., $g\{b b u\} + g\{b b c\} = 0$.

Let $b = b_2 + b_1 + b_0$ be the Peirce decomposition of b with respect to u . Then by the “Peirce rules for multiplication” and the fact that $g = P_2(u)g$, we have $g\{b b c\} = 0$ (so that $g\{b b u\} = 0$), and $g\{b b u\} = g\{b_2 b_2 u\} + g\{b_1 b_1 u\}$. Since $\{b_2 b_2 u\}$ and $\{b_1 b_1 u\}$ belong to $(P_2(u)U'')^+$ and g is positive we have $g\{b_1 b_1 u\} = g\{b_2 b_2 u\} = 0$. Moreover g is faithful on $P_2(u)U''$, so that $\{b_1 b_1 u\} = \{b_2 b_2 u\} = 0$. Finally by [11: p. 73] we have $b_1 = b_2 = 0$. \square

It follows from (2.2) that $M := P''(U'')$ is a JBW^* -triple with predual $M_* = P'(U')$. The next proposition gives the connection between the polar decompositions of an element $f \in P'(U')$ with respect to M and U'' . Together with Lemma 2.1 it will clarify the relationship between orthogonality in M and in U'' .

Proposition 2.2. *Let P be a contractive projection on a JB^* -triple U , let $f \in P'(U')$, and let $v = e(f) \in U''$. Then $\tilde{v} := P''v$ is the tripotent occurring in the polar decomposition of f with respect to the JBW^* -triple $M := P''(U'')$.*

Proof. We show first that \tilde{v} is a tripotent in $P''(U'')$. By (0.2), we have $\tilde{v} = v + b$ where $b \in P_0(v)U''$. By (2.1) applied to P'' ,

$$\{\tilde{v} \tilde{v} \tilde{v}\}_M = P''\{\tilde{v} \tilde{v} \tilde{v}\} = P''\{\tilde{v}, v, \tilde{v}\} = P''\{v + b, v, v + b\} = P''\{v v v\} = P''v = \tilde{v}.$$

Therefore \tilde{v} is a tripotent.

We show next that if u is a tripotent in $P''(U'')$ with $f(u) = \|f\|$, then $u \geq \tilde{v}$ in M . Since $f(u) = \|f\|$, we have $u = v + c$ with $c \in P_0(v)U''$ (by (0.3)). Thus $u = P''u = \tilde{v} + P''c$ and $\tilde{c} := P''c \in P_0(v)U''$ by Theorem 1. It remains to show that \tilde{v} is

orthogonal to \tilde{c} in M . By (2.1), we have

$$\{\tilde{v} \tilde{v} \tilde{c}\}_M = P''\{\tilde{v} \tilde{v} \tilde{c}\} = P''\{\tilde{v} v \tilde{c}\} = P''\{v + b, v, \tilde{c}\} = P''\{v, v, \tilde{c}\} = P''0 = 0. \quad \square$$

To obtain the connection between orthogonality in M and U'' we need the following

Lemma 2.3. *Let f and g be normal functionals on a JBW*-triple U . Then $f \perp g$ if and only if $\|f \pm g\| = \|f\| + \|g\|$.*

Proof. We may assume $\|f\| = \|g\| = 1$. Let $u = e(g)$, $v = e(f)$.

Suppose first that $f \perp g$. Then $e_{\pm} := u \pm v$ has norm one and $\langle f \pm g, e_{\pm} \rangle = 2$. Therefore $2 \leq \|f \pm g\| \leq \|f\| + \|g\| = 2$.

Suppose now that $\|f \pm g\| = \|f\| + \|g\|$, and set $w := e(f + g)$. Then

$$2 = \langle f + g, w \rangle = \langle f, w \rangle + \langle g, w \rangle \leq |\langle f, w \rangle| + |\langle g, w \rangle| \leq \|f\| + \|g\| = 2.$$

Thus $\langle f, w \rangle = \langle g, w \rangle = 1$ and so $f, g \in P_2(w) U_*$ by [11: Prop. 1]. By the Jordan decomposition in JBW-algebras [13: Appendix] f and g are orthogonal states on the JBW*-algebra $U_2(w)$, and hence $f \perp g$. \square

Corollary 2.4. *For a contractive projection P on a JB*-triple U and $f, g \in P'(U')$, let $v = e(f)$, $u = e(g)$, $\tilde{v} = P''v$, $\tilde{u} = P''u$. Then $u \perp v$ in U'' if and only if $\tilde{u} \perp \tilde{v}$ in $M = P''(U'')$.*

Proof. For any $h \in P'(U') \subseteq U'$, $\|h\|_{M_*} = \|h\|_{U'}$. By Proposition 2.2 and Lemma 2.3,

$$\begin{aligned} u \perp v \text{ in } U'' &\Leftrightarrow \|f \pm g\|_{U'} = \|f\|_{U'} + \|g\|_{U'} \Leftrightarrow \|f \pm g\|_{M_*} \\ &= \|f\|_{M_*} + \|g\|_{M_*} \Leftrightarrow \tilde{u} \perp \tilde{v} \text{ in } M. \quad \square \end{aligned}$$

To extend this corollary to arbitrary tripotents we need:

Lemma 2.5. *Let v be a tripotent in a JBW*-triple U . Then there is a family of mutually orthogonal functionals $(f_\alpha) \subseteq U_*$ with $v = \sum_\alpha e(f_\alpha)$ (w^* -convergence).*

Proof. Let $A = U_2(v)$ which is a JBW*-algebra with unit v . Since the normal states of A are separating [13], $v = \sup\{e_\phi : \phi \in A_*^+\}$ where e_ϕ is the support projection of ϕ in A . By Zorn there is an orthogonal family $\{e_{\phi_\alpha}\}$ such that $v = \sum e_{\phi_\alpha}$ in A . Then (e_{ϕ_α}) are pairwise orthogonal tripotents in U and $e_{\phi_\alpha} = e(f_\alpha)$ where $f_\alpha = \phi_\alpha P_2(v)$. \square

The following lemma gives a correspondence between tripotents in M and in U'' which is needed in order to describe the fine structure of the range of a contractive projection. We first establish some notation.

If P is a contractive projection on a JB*-triple U , we let

$$\mathcal{C} := \text{the } w^*\text{-closure of } \text{span}\{e(f) : f \in P'(U')\} \subseteq U'',$$

$$\mathcal{O} := \bigcap_{g \in P'(U')} P_0(g) U''.$$

It is obvious that \mathcal{O} is a JB*-subtriple of U'' and that $\mathcal{C} \perp \mathcal{O}$. Therefore the sum $\mathcal{C} + \mathcal{O}$ is direct and the projection Q of $\mathcal{C} + \mathcal{O}$ onto \mathcal{C} is contractive.

Lemma 2.6. *Let P be a contractive projection on a JB*-triple U and let w be a tripotent of the JBW*-triple $M=P''(U'')$. Then Qw is a tripotent of U'' . Moreover, if w_1 and w_2 are orthogonal tripotents of M , then Qw_1 and Qw_2 are orthogonal in U'' .*

Proof. Let us apply Lemma 2.5 to a tripotent w of the JBW*-triple $M=P''(U'')$. We obtain orthogonal elements $(f_\alpha) \subseteq P'(U')$ and by Proposition 2.2 $w = \sum_\alpha (e(f_\alpha) + b_\alpha)$ (w^* -convergence in M) where, by Lemma 2.1, $b_\alpha \in \mathcal{O}$. By Corollary 2.4 the $e(f_\alpha)$ are orthogonal in U'' so $w = \sum_\alpha e(f_\alpha) + \sum_\alpha b_\alpha$, $\sum_\alpha e(f_\alpha)$ w^* -converges to a tripotent $Qw \in \mathcal{C}$ of U'' and $b := \sum_\alpha b_\alpha \in \mathcal{O}$ exists in U'' as a w^* -limit. The second statement follows from Corollary 2.4 and the formula $Qw = \sum_\alpha e(f_\alpha)$. \square

By Lemma 2.6 each tripotent of $M=P''(U'')$ lies in $\mathcal{C} + \mathcal{O}$. By the spectral theorem [11: Rk. 1.9] $M \subset \mathcal{C} + \mathcal{O}$, and Q is a homomorphism of M into U'' , i.e., $Q(\{abc\}_M) = \{QaQbQc\}$. On the other hand, for $x \in P(U) \subseteq M$, and $f \in P'(U')$, $f(x) = f(Qx)$, and

$$\|x\| = \sup \{|\langle f, Qx \rangle| : f \in P'(U'), \|f\| \leq 1\} \leq \|Qx\| \leq \|x\|.$$

Thus, by restricting Q to $P(U)$, we have:

Theorem 2. *Let P be a contractive projection on a JB*-triple U . Then the JB*-triple $P(U)$ is isometrically isomorphic to a closed subtriple of U'' .*

Since it is elementary that the second dual of a J^* -algebra is a J^* -algebra, we obtain as a consequence of (2.2) and Theorem 2, the main result of [10]:

Corollary 2.7. *Let P be a contractive projection on a J^* -algebra. Then the range of P is a JB*-triple which is isometrically isomorphic to a J^* -algebra.*

Our next result is a conditional expectation formula analogous to (2.1). Recall that the triple product $\{abc\}$ is symmetric and linear in a and c and conjugate linear in b . The formula (2.1) was proved in [15] using holomorphic methods. Holomorphic methods are unavailable for the proof of Theorem 3 because of the conjugate linearity in b . Both formulas had been proved in [9] for J^* -algebras.

Theorem 3. *Let P be a contractive projection on a JB*-triple U . Then*

$$(2.3) \quad P\{P a P b c\} = P\{P a P b P c\} \quad \text{for } a, b, c \in U.$$

Proof. There is no loss of generality in assuming that $a=b$. By approximating Pa by finite linear combinations of orthogonal tripotents of $M=P''(U'')$, it suffices to prove that

$$(2.4) \quad P''\{w_1 w_2 x\} = P''\{w_1 w_2 P'' x\}$$

whenever w_1, w_2 are tripotents of M and $x \in U''$. We only need to consider two cases, namely $w_1 = w_2$ and $w_1 \perp w_2$.

Note first that by the Peirce rules, for any $a_1, a_2 \in \mathcal{O}$,

$$z \in U'' \quad \text{and} \quad g \in P'(U'), \quad \text{we have } \langle g, \{a_1 a_2 z\} \rangle = 0.$$

Therefore $P''\{a_1 a_2 z\} = 0$.

If $w_1 \perp w_2$, then writing $w_i = Q w_i + b_i = v_i + b_i$ as in Lemma 2.6 implies

$$\{w_1 w_2 x\} = \{v_1 v_2 x\} + \{b_1 b_2 x\} = \{b_1 b_2 x\}.$$

Therefore $P''\{w_1 w_2 x\} = 0 = P''\{w_1 w_2 P'' x\}$.

If $w_1 = w_2 = w$ say, write $w = Q w + b = v + b$ as in Lemma 2.6. Then $P''\{w w x\} = P''\{v v x\} + P''\{b b x\} = P'' D(v, v) x$ and since $D(v, v) = P_2(v) + \frac{1}{2}P_1(v)$, Theorem 1 implies

$$P''\{w w x\} = P''(P_2(v) + \frac{1}{2}P_1(v)) x = P''(P_2(v) + \frac{1}{2}P_1(v)) P'' x = P''\{w w P'' x\}. \quad \square$$

3. Structure of a Bicontractive Projection

In the previous section, we showed that the JB^* -triple $P(U)$ is isomorphic to a subtriple of U'' . Here of course P is any contractive projection on a JB^* -triple U . In this section we make the assumption that P is bicontractive, i.e., $I - P$ is also contractive.

It turns out that in this case, the isomorphism Q of $P(U)$ into U'' is the identity, which results in:

Proposition 3.1. *Let P be a bicontractive projection on a JB^* -triple U . Then $P(U)$ is a JB^* -subtriple of U .*

Proof. Since $M := P''(U'')$ is a JBW^* -triple, it suffices to prove that $Q w = w$ for each tripotent w in M . By Lemma 2.5 and Lemma 2.6 it suffices to prove that $P'' v = v$ whenever $v = e(f)$ for some $f \in P'(U)$.

Let $b = P'' v - v$. Then, by (2.1),

$$P''\{b b b\} = P''\{v + b, b, v + b\} = P''\{P'' v, b, P'' v\} = P''\{P'' v, P'' b, P'' v\} = 0.$$

By induction $P''(B) = 0$ where B is the JB^* -triple generated by b . It follows that $I - P''$ restricts to a bicontractive projection on $Cv \oplus B$ with range B . Then, for any $z \in B$ with $\|z\| \leq 1$, we have $\|v + z\| \leq 1$ so that $\|(I - P'')(v + z)\| \leq 1$, i.e., $\|-b + z\| \leq 1$. This forces $b = 0$. \square

By Proposition 3.1, if P is bicontractive, the conditional expectation formulas (2.1) and (2.3) take on a neater form:

$$P\{a b x\} = \{a b P x\} \quad \text{and} \quad P\{a x b\} = \{a P x b\}$$

for $a, b \in P(U)$ and $x \in U$.

Finally, let P be a bicontractive projection on a JB^* -triple U , and set $\theta = 2P - I$. By the argument in [9: p. 355], the two conditional expectation formulae (2.1), (2.3) and Proposition 3.1 imply that θ is a homomorphism of U .

Since a homomorphism is always contractive (as follows from $\|\{z z z\}\| = \|z\|^3$) we obtain

Theorem 4. *Let P be a bicontractive projection on a JB*-triple U . Then there is a surjective isometry θ on U of order 2 such that $P = \frac{1}{2}(I + \theta)$. Thus all JB*-triples, their duals, and all pre-duals of JBW*-triples belong to the class \mathcal{S} .*

References

1. Arazy, J., Friedman, Y.: Contractive projections in C_1 and C_∞ . *Mem. Am. Math. Soc.* **13**, No. 200 (1978)
2. Barton, T., Timoney, R.: Weak $*$ -continuity of Jordan triple products and its applications. *Math. Scand.* To appear
3. Bernau, S.J., Lacey, H.E.: Bicontractive projections and reordering of L_p spaces. *Pac. J. Math.* **69**, 291–302 (1977)
4. Byrne, C., Sullivan, F.E.: Contractive projections with contractive complement in L_p -space. *J. Multivariate Anal.* **2**, 1–13 (1972)
5. Dineen, S.: The second dual of a JB*-triple system. In: *Complex Analysis, Functional Analysis and Approximation Theory*, pp. 67–69, J. Mujica (ed.). Amsterdam: Elsevier (North Holland) 1986
6. Emch, G.G., King, W.P.C.: Faithful normal states on JBW-algebras. *Proc. Symp. Pure Math.* **38**, 305–307 (1982)
7. Friedman, Y., Russo, B.: Contractive projections on operator triple systems. *Math. Scand.* **52**, 279–311 (1983)
8. Friedman, Y., Russo, B.: Algebres d'opérateurs sans ordre: solution du problème du projecteur contractif. *C.R. Acad. Sci. Paris* **296**, 393–396 (1983)
9. Friedman, Y., Russo, B.: Conditional expectation without order. *Pac. J. Math.* **115**, 351–360 (1984)
10. Friedman, Y., Russo, B.: Solution of the contractive projection problem. *J. Funct. Anal.* **60**, 56–79 (1985)
11. Friedman, Y., Russo, B.: Structure of the predual of a JBW*-triple. *J. Reine u. Angew. Math.* **356**, 67–89 (1985)
12. Friedman, Y., Russo, B.: The Gelfand-Naimark theorem for JB*-triples. *Duke Math. J.* **53**, 139–148 (1986)
13. Iochum, B.: Cones autopolaires et algebres de Jordan. *Lecture Notes in Math.* **1049**. Berlin-Heidelberg-New York: Springer 1984
14. Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. *Math. Z.* **183**, 503–529 (1983)
15. Kaup, W.: Contractive projections on Jordan C^* -algebras and generalizations. *Math. Scand.* **54**, 95–100 (1984)
16. Robertson, A.G., Youngson, M.A.: Positive projections with contractive complements on Jordan algebras. *J. Lond. Math. Soc. (2)* **25**, 365–374 (1982)
17. Størmer, E.: Positive projections with contractive complements on C^* -algebra. *J. Lond. Math. Soc. (2)* **26**, 132–142 (1982)
18. Upmeier, H.: *Symmetric Banach manifolds and Jordan C^* -algebras*. Amsterdam: Holland 1985

Received November 18, 1985; in revised form June 10, 1986