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On a Banach space X a projection Pe #(X) is called bicontractive if |P| <1
and |I—P| £1. Such projections may be constructed as follows. Let 8 be an
isometry of X onto X of order 2. Then

0.1) P=i(I+6)

is a bicontractive projection. It would be of interest to characterize the class &
of those Banach spaces for which every bicontractive projection is-of the above
form. Evidently Xe.% if X', its dual, belongs to &%

The purpose of this paper is to show that if X is a JB*-triple, then Xe%. It
follows that all JB*-algebras (=Jordan C*-algebras) and their duvals and pre-
duals (when existing) belong to &

By a theorem of Kaup [14, 18], JB*-triples are precisely those Banach
spaces (within isometric isomorphism) for which the open unit ball is a
bounded symmetric domain (within biholomorphic equivalence). For the pre-
cise definition and basic properties of JB*-triples we refer to [11, 14, 18].

In Bernau-Lacey [3] it is shown that X=L (), 1=p<oo belongs to &
Earlier Byrne-Sullivan [4] proved the special cases 1 <p< oo and p a probabil-
ity measure. As a bi-product of the classification of all contractive projections
on the space C,; of all trace class operators on a separable Hilbert space,
Arazy-Friedman show in [1] that C,, and therefore its predual (the space of all
compact operators), belongs to &

A study of unit preserving bicontractive projections on unital Jordan (oper-
ator) algebras was begun in Robertson-Youngson [16]. Using some ideas from
[16] and the classification of type I Jordan factors, Stormer [17] proved that
every unital bicontractive projection on an arbitrary C*-algebra is of the form
(0.1) with 8 a Jordan automorphism of order 2.

In [9] the authors showed that every C*-algebra belongs to & This result
generalized the above mentioned results of Arazy-Friedman and of Stormer.
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The proof was based on the authors’ detailed study of contractive projections
in a setting of operator algebras without order [7, 8, 10]. It was actually
proved for the class of J*-algebras and thercfore also showed that all JC*-
algebras belong to &

The proof of our main result below depends only on global properties of
JB*-triples and contractive projections thereon, as developed in [11, 15] and
Sects. 1 and 2 below. As such it includes as true corollaries all of the above
mentioned results of Arazy-Friedman, Robertson-Youngson, Stormer, and the
authors on bicontractive projections.

Recall that a J*-algebra is a concrete example of a JB*-triple. Other
examples of JB*-triples which are not J*-algebras are the two exceptional JB*-
triples of dimensions 16 and 27, which we denote by C> and C®. The structure
of an arbitrary JB*-triple has been studied by the authors in [11] and [12]. As
a result of this study some problems for JB*-triples can be reduced to the
corresponding problem for J*-algebras and the two exceptional JB*-triples.
The former act on Hilbert space and the latter are finite dimensional.

It is natural to attempt a direct proof that C> and C® belong to & and to
use this, together with the structure theorem mentioned above, in order to
show that an arbitrary JB*-triple belongs to &

We found that this approach seems to require showing the invariance of
the special and exceptional summands of a JBW*-triple under the projection.
To prove this would require much of the fine structure of a contractive
projection, as developed in [7] and [10] for J*-algebras. Hence it is more
efficient to follow the outline that solved the bicontractive projection problem
for J*-algebras [9].

This paper is organized as follows. In Sect. 1 we prove some commutativity
formulas involving a contractive projection and the Peirce projections as-
sociated with an element in the range of the dual projection. The correspond-
ing formulas for the J*-algebra case played important roles in the study of a
contractive projection, and the same is true here. The main tools used in the
proofs of these formulas are Propositions 1, 2 and 3 of [11]. In Sect.2 we
exploit two results of Kaup [15] to develop the fine structure of a contractive
projection P on a JB*-triple U. The main results, Theorems 2 and 3, give a
concrete realization of P(U) in the second dual U”, and a new conditional
expectation formula for P. Our final result, that JB*-triples belong to the class
%, is proved in Sect. 3.

The following are some of the notational conventions used in this paper. If
X is a Banach space, X’ denotes its normed dual and X, denotes a predual of
X, ie, (X,)= X (isometric). We use the same notation, namely B(v), k=0, 1,2,
for the Peirce projections associated with a tripotent v, and their adjoints. For
a normal functional f on a JBW*-triple U, e(f) denotes the tripotent occuring
in the polar decomposition of f. We write F(f) for E(e(f)). Two functionals
/, g are orthogonal, denoted by flg, if e(f)eR(g)U. The symbol L will also
denote orthogonality of elements of U.

The following consequence of [7: Lemma 2.4] and [11: Cor. 1.6] will be used
several times:
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(0.2) If P is a contractive projection on a JB*-triple U and feP'(U’), then
with v=e(f) we have P"v=v+F(f)P"v.

More generally:

0.3) U xeU” ||x|=1, and f(x)=|f|, for some feU’, then x=v+ B (f)x.

1. Commutativity Formulas for Contractive Projections

In this section we use freely the notation and results of Friedman-Russo [11:
Sect. 1]. By Dineen [5] and Barton-Timoney [2], if U is a JB*-triple, we may
regard U’ as the predual of the JBW*-triple U"".

Lemma 1.1. Let U be a JB*-triple and let e be a tripotent of U”. For each
geP,(e) U, let T(g) denote the restriction of g to P,(e) U". Then T is an isometric
isomorphism of P,(e) U’ onto (P,(e) U"),.

Proof. The map T is clearly linear, norm decreasing and takes PB,(e) U’ into
(B(e)U"),. By [11: Prop. 1] T is onto and isometric. []

The proof of the following proposition is the same as [7: Prop. 3.3], with
Lemma 1.1 replacing [7: Remark 3.2].

Proposition 1.2. Let P be a contractive projection on a JB*-triple U and let
JeP'(U'). Then P'R,(f)=PB,(f) P'B(f).
Proof. Let B:=(B(f)U"),, T: B(f)U'—>B as in Lemma 1.1 and let V; be the
face generated by T(f) in B*. By Emch-King [6, 13] V; is norm dense in B*.
Since B* linearly spans B, it will suffice, by Lemma 1.1, to prove that
P(TH (V) ER(NHU"

For teV}, write T(f)=at+0 for some «>0 and oe€V,. Then f=0%+5
where T=T"1(1) and 6=T"*(0), and

£ = 1T =alzl+llo]=a]z]+]a]
2o [P T+ Pl zalB() P2+ B P eIz ]S

since f=PR(f)P' f=B(f)P'(«T+8). Therefore |P'I||={|P(f)P'%| so by [11:
Prop. 1] P'#=R(f)P'T. [J

In order to prove our second commutativity formula we need a lemma
which generalizes [7: Lemma 3.4].

Lemma 1.3. Let P be a contractive projection on a JB*-triple U and let
JeP'(U"). Then E,(f) P'E(f)=0.

Proof. With v=e(f) consider the map =n: P (f)U”"— U’ defined by =n(y)
=D(v,y) f. We shall show that = is a linear bijection of F(f) U” onto a norm

dense subspace S of B (f) U’ Then we shall show that B,(f)P'g=0 for all geS,
completing the proof.
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We show first that SSF(f)U’. Let xeU"”. By the Peirce rules [11: (1.7)],
and the fact that f=B/(f) f,

D, y) f,x) =L BN {vyx})={f{vy R(f) x}>

={R() D@, y) f, x>
Thus S€F(f)U.

Now let zeU"” satisfy {z,§)> =0, so that {z,,8)> =0 where z; =F,(f)z. Then
f{vyz,}=0 for all yeB(f)U” and in particular f{vz,z,}=0. Since, by [11:
Sect. 1], {vz,z,} is positive in B(f)U"” and f is faithful there, {vz,z,} =0 and
so z; =0. Thus {z, F,(f) U") =0, proving that S is norm dense in F(f)U"

Next, let g=D(v,y) feS for some yeF,(f) U". We shall show that B, (f)P'g
=0. Since D(y, v)+ D(v, y) is hermitian

[<fs (expit(D(y, v)+ D(v, y)) x| <1
for all xeU” with |x|| <1 and all teR. Therefore
[f)+it f({yvx}+{oyx})+0@H <1,
and since by the Peirce rules
flyvx}=0, [fe)+itf{vyx}<14+0(?).
If+itg] <1+0(?).
Set w,=P'(f+itg). Since P"v=0v+P,(f) P"v,
w,(0)=(P o) +it{P'gvy=1.

Therefore 1 <||By(f) w,l| < |w,| <1+ 0(t?).
Finally, since by Proposition 1.2 Fy(f) P'f=0, we have

L+t BN P el = B wl+ 1B P'(f+itg)]
=B +RUMNwI<Iw]=1+0(>),
which forces B (f)P'g=0. [

Thus

By using this lemma and Proposition 1.2, the following proposition can be
proved exactly as [7: Prop. 3.5].

Proposition 1.4. Let P be a contractive projection on a JB*-triple U and let
JeP'(U). Then R(f)P'=R(f)P'R(f)=P R(f)P" and B(f)P" and E(f)P are
projections.

Proof. Writing E, for E(f) we have
RP'=BP(B+P+B)=RPB+EPP+BPPR=PPR

by Proposition 1.2 and Lemma 1.3. Also RPPR,P'=EP'P'=E P is a pro-
jection.
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Let geU. Then |KPg|=|RPEPg|<|P'EPgl=|RPgl| By [L1:
Prop.1] P'R\P'g=F P'F,P'¢=F, P'g. Finally,
PP =PFP(P+P+PR)P=R(PB)P+F(PRP)+FPFP=FPEP. [
To establish our final commutativity formula we need a lemma which
generalizes and considerably simplifies [7: Cor. 4.2].

Lemma 1.5. Let v be a tripotent in U" where U is a JB*-triple and suppose
feR, (U and geR) U If f+0, then | f+gl|> |g}.

Proof. Suppose that |f-+gl|<|gl. Let u=e(g). Then by [ll: Prop.3],
ueR()U" and [R(v), Ew)]=0 for all j k. Thus {f+gup={guyr=[glz]f
+g|l. By [11: Prop.1], f+g and g belong to B,(u) U’, implying feP,(u) U". Let
xeU” be such that f(x)=+0 and set y=_PF,(v) P,(u) x. Denote by # the involution
on the JBW*-algebra B(u) U”. Then by Peirce rules with respect to v, y*
={uyu}eR(v) U". Since g(y)=g(B(v)y)=0 and f+g is positive, hence self-
adjoint on P,(u) U”, we have
fX)=f)={+gy>={f+gy*>=0, a contradiction. J

The proof of our final commutativity formula is the same as [7: Prop.4.3]
with Lemma 1.5 in place of [7: Cor. 4.2].

Proposition 1.6. Let P be a contractive projection on a JB*-triple U and let
feP'(U). Then R(f)P'=P'E(f)P, B(f)P'=P'B(f)P, and F(f)P is a pro-
Jection. :

Proof. We have
PPRP=(R+P+R)PRP=RPRP+FPFP+RPFP=FPFP+EP.
Therefore for arbitrary geU’,
|B(P'RP'g)+ (Pg)l=IPFPgl<|HP I,

and by Lemma 1.5, BP'FP'g=0,s0 PRP'=FP.
Furthermore,

PRP=(1—-P—-ER)P=P—-FP—-RP
=P'—P'BP -PRP=P(1—-F—-R)P=PPP.
Finally B(PPBP)=B B P =PP. [
We summarize the results of this section in the following theorem.

Theorem 1. Let P be a contractive projection on a JB*-triple U and let feP'(U’).
With B=E(f), k=01,2 we have

(a) On U, PB,=P,P'P,, B,P’=PB,P'P,=P'R,P'
BP=PPRP, PBP=PPP;

(b) On U”, B,P"=PB,P"B,, P’"P,=P,P"P,=P"R,P",
P'R=P'BP’, P'B=P'RP"
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2. Conditional Expectation Property of a Contractive Projection

In this section we shall use the following two results of Kaup [15] concerning
a contractive projection P on a JB*-triple U.

(2.1) P{PabPc}=P{PaPbPc}, for ab,celU,

(22) P(U) is a JB*-triple in the triple product {xyz}py,:=P{xyz}, for
x, ¥, ze P(U).

As noted earlier in (0.2) if feP'(U’), then P"v=v+b where v=e(f) and b is
orthogonal to v. The next lemma, which will be needed in Lemma 2.6, shows
that in fact b is orthogonal to e(g) where g is an arbitrary element of P'(U").

Lemma 2.1. Let P be a contractive projection on a JB*-triple U, let feP'(U")
and let v=e(f) and b=P"v—v. Then for any geP'(U’) we have beFy(g) U".

Proof. Let u=e(g). Set ¢=P"u—u. Then blv and c¢Llu. We calculate 4:
=g{P"v, P"v, P"u} in two ways. First, by (2.1) applied to P,

A=g(P"{P"v, P"v, P"u})=g(P"{P"v,v, P"u})
=g({v+b,v, P"ul)=g({vvP"u}).

Second, A=g({v+b,v+b,P"u})=g{vvP" u}+g{bbP’u}. Therefore g{bbP"u}
=0, i.e, g{bbu}+g{bbc}=0.

Let b=b,+b, +b, be the Peirce decomposition of b with respect to u. Then
by the “Peirce rules for multiplication” and the fact that g=PB,(u)g, we have
g{bbc}=0 (so that g({bbu})=0), and g{bbu}=g{b,b,u}+g{b,b,u}. Since
{b,b,u} and {b,b,u} belong to (P,(u) U")* and g is positive we have g{b,b,u}
=g{b,b,u}=0. Moreover g is faithful on B,(4) U”, so that {b, b, u}={b,b,u}
=0. Finally by [11: p. 73] we have b; =b,=0. [

It follows from (2.2) that M:=P"(U") is a JBW*-triple with predual M,
=P'(U’). The next proposition gives the connection between the polar decom-
positions of an element feP'(U’) with respect to M and U”". Together with
Lemma 2.1 it will clarify the relationship between orthogonality in M and in
U
Proposition 2.2. Let P be a contractive projection on a JB*-triple U, let

JeP(U"), and let v=e(f)cU". Then D:=P"v is the tripotent occurring in the
polar decomposition of f with respect to the JBW*-triple M :=P"(U").

Proof. We show first that § is a tripotent in P”(U”). By (0.2), we have i=v+b
where beR)(v) U”. By (2.1) applied to P,

(508}, =P {50} =P"{B, 0,5} =P"{v+b,v,0+b} =P " {vvv} =P v="0.

Therefore ¥ is a tripotent.

We show next that if u is a tripotent in P”(U”) with f{u)=f||, then u=? in
M. Since f(u)=|f|, we have u=v+c with ceR(v) U” (by (0.3)). Thus u=P"u
=34+ P’c and Z:=P"ceB(v) U’ by Theorem l. It remains to show that b is
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orthogonal to ¢ in M. By (2.1), we have
{588}, =P {0} =P "{Dvi}=P"{v+b,0,C}=P"{v,0,C}=P"0=0. O

To obtain the connection between orthogonality in M and U” we need the
following

Lemma 2.3, Let f and g be normal functionals on a JBW*-triple U. Then f 1 g if
and only if |fxgl=1f]-+lgl.

Proof. We may assume || f|| =|gll=1. Let u=e(g), v=e(f).

Suppose first that f1g. Then e, :=u+v has norm one and {f+g,e,>=2.
Therefore 2< || f gl = /] + llgl =2
Suppose now that | f+gll=|f]+llgll, and set w:=e(f+g). Then

2=f+gwr={fw)+{gw) =KL wil+Kg, wil =[S+ lighh=2.

Thus (f,w)={g,w)=1 and so f,geB(w)U, by [11: Prop. 1]. By the Jordan
decomposition in JBW-algebras [13: Appendix] f and g are orthogonal states
on the JBW*-algebra U,(w), and hence f1lg. [

Corollary 2.4. For a contractive projection P on a JB*-triple U and f,geP'(U’),
let v=e(f), u=e(g), 5=P"'v, t=P"'u. Then ulv in U" if and only if 4 L0 in M
=P//(U/I).

Proof. For any heP'(U)< U, | k|, = |hly. By Proposition 2.2 and Lemma
2.3, :

ulv in U |ftgly=11lv+lgle <=1 Eelhy,
=Sl +lglae, =8 L% in M. [

To extend this corollary to arbitrary tripotents we need:

Lemma 2.5, Let v be a tripotent in a JBW*-triple U. Then there is a family of
mutually orthogonal functionals (f,) S U, with v=Y e(f,} (w*-convergence).

a

Proof. Let A=U,(v) which is a JBW#*-algebra with unit ». Since the normal
states of A are separating [13], v=sup{e,: ¢cA} where ¢, is the support
projection of ¢ in A. By Zorn there is an orthogonal family {e, } such that v
=Y"e, in A. Then (e, ) are pairwise orthogonal tripotents in U and e, =e(f,)
where f,=¢,F(v). O

The following lemma gives a correspondence between tripotents in M and
in U” which is needed in order to describe the fine structure of the range of a
contractive projection. We first establish some notation.

If P is a contractive projection on a JB*-triple U, we let

@ :=the w*-closure of span{e(f): feP'(U)}=U",
0:= () B@U"

gsP(U")

It is obvious that @ is a JB*-subtriple of U” and that & 1 ¢. Therefore the sum
%+ 0O is direct and the projection Q of €+ @ onto % is contractive.
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Lemma 2.6. Let P be a contractive projection on a JB*-triple U and let w be a
tripotent of the JBW*-triple M =P"(U"). Then Qw is a tripotent of U". More-
over, if w, and w, and orthogonal tripotents of M, then Qw, and Qw, are
orthogonal in U",

Proof. Let us apply Lemma 2.5 to a tripotent w of the JBW*-triple M:
=P"(U"). We obtain orthogonal elements (f,)<P'(U’) and by Proposition 2.2
w=) (e(f,)+b,) (w¥-convergence in M) where, by Lemma 2.1, b,e0. By Corol-

lary 2.4 the e(f,) are orthogonal in U” so w=) e(f)+> b, > e(f) w*
converges to a tripotent Qwe®% of U” and b:=) b,e@ exists in U” as a w*-

limit. The second statement follows from Corollary 2.4 and the formula Qw

=Ye(f). O

By Lemma 2.6 each tripotent of M =P"'(U") lies in ¥+ 0. By the spectral
theorem [11: Rk. 1.9] M=%+ 0, and Q is a homomorphism of M into U”, ie.,
Q({abcly)={QaQb0c}. On the other hand, for xeP(U)c M, and feP'(U’),
J(x)=/f(Qx), and

Ixl|=sup{Kf, @x>|: feP(U), |fI<1}S1Qx|=x].
Thus, by restricting Q to P(U), we have:

Theorem 2. Let P be a contractive projection on a JB*-triple U. Then the JB*-
triple P(U) is isometrically isomorphic to a closed subtriple of U".

Since it is elementary that the second dual of a J*-algebra is a J*-algebra,
we obtain as a consequence of (2.2) and Theorem 2, the main result of [10]:

Corollary 2.7. Let P be a contractive projection on a J*-algebra. Then the range
of P is a JB*-triple which is isometrically isomorphic to a J*-algebra.

Our next result is a conditional expectation formula analogous to (2.1).
Recall that the triple product {abc} is symmetric and linear in a and ¢ and
conjugate linear in b. The formula (2.1) was proved in [15] using holomorphic
methods. Holomorphic methods are unavailable for the proof of Theorem 3
because of the conjugate linearity in b. Both formulas had been proved in [9]
for J*-algebras.

Theorem 3. Let P be a contractive projection on a JB*-triple U. Then
(2.3) P{PaPbc}=P{PaPbPc} for a,b,cel.

Proof. There is no loss of generality in assuming that a=>b. By approximating
Pa by finite linear combinations of orthogonal tripotents of M =P"(U"), it
suffices to prove that

(2.4) P {w, w,x}=P"{w, w, P"x}

whenever w,, w, are tripotents of M and xeU"”. We only neced to consider two
cases, namely w, =w, and w, Lw,.
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Note first that by the Peirce rules, for any a,, a,€0,
zeU” and geP'(U’), we have (g, {a,a,z}>=0.

Therefore P"{a, a, z} =0.
If w, Lw,, then writing w,=Qw;+b,=v,+b, as in Lemma 2.6 implies

{wywy x}={v, v, x}+{b, b, x} ={b, b, x}.

Therefore P"{w, w, x}=0=P"{w, w, P"x}.

If w, =w,=w say, write w=Qw-+b=v+b as in Lemma 2.6. Then P"{wwx}
=P"{vvx}+P"{bbx}=P"'D(v,v)x and since D(v,v)=P,(v)+%+B(v), Theorem 1
implies

P {wwx}=P"(B)+3 ) x=P"(B©)+3A@) P x=P"{wwP"x}. [

3. Structure of a Bicontractive Projection

In the previous section, we showed that the JB*-triple P(U) is isomorphic to a
subtriple of U”. Here of course P is any contractive projection on a JB*-triple
U. In this section we make the assumption that P is bicontractive, ie., I —P is
also contractive.

It turns out that in this case, the isomorphism Q of P(U) into U” is the
identity, which results in:

Proposition 3.1. Let P be a bicontractive projection on a JB*-triple U. Then
P(U) is a JB*-subtriple of U.

Proof. Since M:=P"(U") is a JBW*-triple, it suffices to prove that Qw=w for
each tripotent w in M. By Lemma 2.5 and Lemma 2.6 it suffices to prove that
P"v=v whenever v=e(f) for some feP'(U).

Let b=P"v—u. Then, by (2.1),

P"{bbb}=P"{v+b,b,v+b}=P"{P"v,b, P" v} =P"{P"v, P"b, P" v} =0.

By induction P”(B)=0 where B is the JB*-triple generated by b. It follows that
I—P" restricts to a bicontractive projection on Cv@B with range B. Then, for
any zeB with |z| £1, we have |v+z[|£1 so that |[{—P")(v+2)| L1, ie, |—b
+z||£1. This forces b=0. []

By Proposition 3.1, if P is bicontractive, the conditional expectation for-
mulas (2.1) and (2.3) take on a neater form:

Plabx}={abPx} and P{axb}={aPxb}

for a,beP(U) and xeU.

Finally, let P be a bicontractive projection on a JB*-triple U, and set 0
=2P—1. By the argument in [9: p.355], the two conditional expectation
formulae (2.1), (2.3) and Proposition 3.1 imply that 6 is a homomorphism of U.



236 Y. Friedman and B. Russo

Since a homomorphism is always contractive (as follows from l[{zzz}||=z|?)
we obtain

Theorem 4. Let P be a bicontractive projection on a JB*-triple U. Then there is
a surjective isometry 6 on U of order 2 such that P=%(1+0). Thus all JB*-
triples, their duals, and all pre-duals of JBW *-triples belong to the class %
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