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ABSTRACT

The main result of this paper is a geometric characterization of the unit ball of the dual of a
complex spin factor.

THEOREM. A strongly facially symmetric space of type I2 in which every proper norm closed face in
the unit ball is norm exposed, and which satisfies 'symmetry of transition probabilities', is linearly
isometric to the dual of a complex spin factor.

This result is an important step in the authors' program of showing that the class of all strongly
facially symmetric spaces satisfying certain natural and physically significant axioms is equivalent
isometrically to the class of all predual spaces of JBW*-triples.

The result can be interpreted as a characterization of the non-ordered state space of 'two state'
physical systems.

A new tool for working with concrete spin factors, the so-called facial decomposition, is also
developed.

Facially symmetric spaces were introduced and studied in [6] and [7] as a
geometrical model for quantum mechanics. They provide an appropriate frame-
work in which to study the problem of characterizing the unit ball of the predual
of a JBW*-triple (cf. [5]) in terms of geometric and physically significant
properties of a convex set. In this paper we will restrict ourselves to atomic spaces
(Definition 2.5). The rank-1 case, together with the axiom (STP) (symmetry of
transition probabilities, Definition 2.8) leads easily to a Hilbert space, as will be
shown in §2 (Corollary 2.11). The next significant case, that of rank 2, will be
treated in detail in §§ 3 and 4. This case occurs already as the model for the state
space of a spin-\ particle. More generally, this model can occur for any physical
system in which each measurement results in at most two distinct outcomes ('two
state systems').

A standard algebraic model in this context is the (real or complex) spin factor.
Since this is a Jordan algebra (JB-algebra in the real case, and JB*-algebra in the
complex case), its state space has been extensively studied. Less well known is the
structure of the entire dual ball. In the real case, as will be shown below (see
Proposition 1.8), this is the intersection of two cylinders based on real Hilbert
balls. These two Hilbert balls are either of the same dimension, or their
dimensions differ by 1. In the complex case, the geometry of the spin factor has a
much richer structure, an analysis of which is carried out in this paper.

The main result of this paper is a geometric characterization of the predual ball
of a complex spin factor. This is the same as the unit ball of the dual since the
spin factor is a reflexive Banach space. We show (in Theorem 4.16) that any
facially symmetric space of type 72 (Definition 3.10) satisfying some physically
significant geometric axioms ((STP) and (FE), Definition 3.3) is linearly isometric
to the predual of a complex spin factor. This result is an important step in the
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program whose objective is to show that the dual of any facially symmetric space
which satisfies certain natural geometric axioms supports the structure of a
JB*-triple. Conversely, it is known that the predual of every JBW*-triple is a
neutral strongly facially symmetric space [8, Theorem 3.1] which satisfies (STP)
[5, Lemma 2.2] and (FE) [4, Corollary 4.5].

The organization of this paper is as follows. In § 1 we describe the facial
structure of the dual ball of the concrete spin factor, using the basis called a spin
grid in [3] and [10]. This facial structure was revealed from the study of facially
symmetric spaces of type I2 carried out in §§ 3 and 4. The first named author
wishes to thank Professor Itamar Pitowsky of the Hebrew University for
discussions of the connections of this facial structure to models in quantum
mechanics. These discussions were instrumental in the formulation of the material
of § 1. Although the results of § 1 are presented here primarily to illustrate in a
concrete form the abstract results of §§ 3 and 4, nevertheless, some of these
results are used to simplify the proof of our main theorem. Moreover, the
(facial) decomposition introduced here (Proposition 1.11) may provide a new
tool for working with spin factors.

In § 2 the definition and some properties of facially symmetric spaces are re-
called and some supplementary results from the global theory of facially sym-
metric spaces are proved. The definition and some properties of atomic spaces
are given and the principal geometric axioms are introduced. It is shown that an
atomic facially symmetric space satisfying these axioms admits a symmetric
sesquilinear form, which leads to a Hilbert space structure in the rank-1 case.

In §3 we show that a rank-2 face in an atomic neutral strongly facially
symmetric space satisfying the axioms (FE) and (STP) is affinely isometrically
isomorphic to the unit ball of a real Hilbert space, and moreover that the unit ball
of the real linear span of this face is a cylinder with the Hilbert ball as its base.
This provides a fundamental computational tool for the main result in § 4.

In § 4 we study the complex span of a rank-2 face, which by definition is dense
in a facially symmetric space of type I2. Starting from an arbitrary orthonormal
basis in the real Hilbert space whose unit ball is affinely isomorphic to the given
rank-2 face, we construct a total subset (called a dual spin grid) which resembles
the 'dual' of a spin grid in a concrete spin factor. In this construction, the
imaginary unit enters naturally from geometric considerations. After a reduction
to finite dimensions, it is shown by a induction argument that the linear extension
of the natural map between the two dual spin grids (abstract and concrete) is
isometric, and therefore extends to an isometry of the dual of the spin factor onto
the norm closure of the complex span of the rank-2 face. The induction proceeds
by two dimensions at a time, so it is necessary to analyse in complete detail the
cases in which the Hilbert spaces arising from the rank-2 face are of dimensions 2
and 3. This leads to characterizations of the spin factors of dimensions 3 and 4,
namely, the JBW*-triples S^C) of 2 by 2 symmetric complex matrices and A/2(C)
of all 2 by 2 complex matrices.

The following symbols will be used in this paper: the closed unit ball of a
normed space X will be denoted by XlfU denotes the set of real numbers, C
denotes the set of complex numbers, and T denotes the unit circle in C.

The duality between a normed space X and its dual X* will be denoted by
(cp, x) or by (x, q>) for (q>, x)eX* x X. The real and imaginary parts of a
complex number z will be denoted by dlz and £sz.
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For a convex set AT in a normed space Z, ext K denotes the set of extreme
points of K. An element/ e K is said to be norm exposed in K if {/} = K C\ H for
a suitable hyperplane H. The set of norm exposed points of K will be denoted by
exp AT. More generally, FaK is a norm exposed face of K if F = KC\H. In
general, exp K <= ext K, with equality holding, for example, in the case that
K= U*fl is the unit ball of the predual U* of a JBW*-triple U [5, Proposition 4].
The equality 'exp Zx = ext Z / for a normed space Z is a physically meaningful
assumption and is analogous to one of the pure state properties of Alfsen and
Shultz [1] (cf. Definition 2.8 below).

1. Facial structure of the dual ball of the spin factor

The spin factor, or 'spinors', occur naturally in different areas of mathematics
and physics. Several (equivalent) definitions exist and are used. In this paper, the
definition of spin factor will be based on algebraic properties of a natural basis
called a spin grid, which is shown in [3] and [10] to generate the spin factor
linearly and topologically. It is known (cf. for example [9]) that the complex spin
factor can be represented as a norm closed subspace of the bounded operators on
a complex Hilbert space which is stable under the operation a*-^aa*a and which
generates the Clifford algebra (CAR algebra) as a C*-algebra. The spin factor has
the structure of a complex Banach Jordan *-algebra (JB*-algebra) and is thus an
example of a JB*-triple (cf. [5]). It is the complexification of the real spin factor,
which is a JB-algebra.

We begin by recalling the recent description (see [3]) of the algebraic structure
of a spin factor or so-called Cartan factor of type 4, which we shall refer to as a
concrete spin factor. Although the concrete spin factor can be realized as a norm
closed subspace of #($?), our approach will be via spin grids. This approach
simplifies our calculations and makes possible an elementary description of the
facial structure of the unit ball of the dual space.

DEFINITION 1.1. A Banach space U over C is said to be a JB*-triple if it is
equipped with a continuous triple product (a, b, c)*-* {abc} mapping U x U x U
to U such that

(i) {abc} is linear in a and c and conjugate linear in b;
(ii) {abc} is symmetric in the outer variables, that is, {abc} = {cba};
(iii) for any x e U, the operator 6(x) from U to U defined by d(x)y = {xxy},

y eU, is hermitian (that is, exp it6 is an isometry for all real t) with
non-negative spectrum;

(iv) the triple product satisfies the following identity, called the 'main identity':

d(x){abc} = {6(x)a, b, c} - {a, d{x)b, c} + {a, b, d(x)c}; (1)

(v) the following norm condition holds:

| = P||3. (2)

A non-zero element a in a JB*-triple is called a tripotent if a = {aaa}, and we
say that a is a minimal tripotent if it cannot be written as a sum of two
orthogonal tripotents, where elements a and b are said to be orthogonal if
{abx} =0 for every x e U. For example, in the above-mentioned representation



GEOMETRY OF THE SPIN FACTOR 145

of a spin factor as bounded operators on a Hilbert space $?, the triple product is
given by {xyz} = \{xy*z + zy*x) for x, y, z eB(%€), so the tripotents are pre-
cisely the partial isometries, and orthogonality of tripotents corresponds to
orthogonality of operators. We shall not make use of this representation
anywhere in this paper.

We are now going to construct the triple product and norm in a concrete spin
factor in an elementary way by using properties of a spin grid. The assumptions
that we make in the following definition are known to hold for a spin grid in a
spin factor [3].

DEFINITION 1.2. Let / be an index set of arbitrary cardinality. A basis, or spin
grid is a collection ^of linearly independent elements {ui} M/}ie/ or {u0> uh u,}/ e / .
Define a triple product {uvw} for elements of the basis by

1. {uuu} = u for all M 6 ̂  (the basis will consist of tripotents);
2. for distinct non-zero i, j ,

{UiUiUj} = {UiUiUj} = \llj, {UjUjUi} = {UjUjUi} = \uh

{UiUiUj} = \ujf and {«,«,£,} = \ui

(iij will be colinear with u, and with ujt and u, will be colinear with w;), and

(the quadruple («,, w,, uif Hj) will be an odd quadrangle);

3. in the case where u0 exists, for each i =£ 0,

{UiUiU0} = {M/M/MQ} = hu0, {UQUOUJ} = Uh {u0U0Ui} = Ui

(M0 governs M, and «,), and

{ / U O } = -ui} {uoUiUo} = -u,;

4. {uvw} = {wvu} for all u, v, w e %

5. all other products {uvw} where u, v, w are from the basis, are zero; in
particular, for each i ¥= 0,

{ufiiu} = 0 = {HiUjU} for all u e ^

(uh ^ will be orthogonal).
It follows from these properties that the set of all scalar multiples of basis

elements is closed under the triple product {•,-,•}. Hence, the triple product
{•,-,•} can be extended to the real or complex span of the basis elements to be
linear in the outer variables and (in the complex case) conjugate linear in the
middle variable.

Define an inner product on sp ̂  by

(a | b > = 2 Oibi + 2 aft + 2aobo, (3)

where a = £ fl,M, + £ a,w, + aouo and b = £ 6,u, + £ 6/M, + bouo are two elements
of sp <£
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DEFINITION 1.3. The completion of sp ^ with respect to the norm | | | | 2

determined by the inner product (3) is called a (concrete) spin factor, and will be
denoted by %.

If / is finite with n elements, the dimension of % is In or In + 1. Otherwise, %
is infinite-dimensional, and (3) is then a convergent sum. The norm on the spin
factor ^ which will make it into a JB*-triple is not the Hilbert space norm used in
the definition, since that norm does not satisfy (2). In order to define the correct
norm, which will be equivalent to the Hilbert norm, we introduce the following
concepts.

Define a conjugation # on basis elements by uf = uit uf = uh and u$ = u0,
and extend this to the linear span in a conjugate linear way.

The connection between the triple product, inner product, and conjugation is
given by

2{abc} = (a \ b)c + (c \ b)a - (a \ c*)b*. (4)

For each element a of <#, the notion of determinant is defined by

^Jaiai + al = 1
2{a\a*). (5)

PROPOSITION 1.4 [3, Proposition 3.3, Lemma 3.4]. Let <€ be a spin factor.
1. If a £*€, then a is a scalar multiple of a minimal tripotent if and only if

det a = 0 and in this case, from (2) and (4), the norm must be defined by
\\a\\ = (a | a)^ = \\a\\2for such a.

2. Elements a and b in % with det a = det b = 0 are scalar multiples of
orthogonal tripotents if and only if there is A e C such that b = Xan.

PROPOSITION 1.5 [3, Proposition 3.6]. For any element a in a spin factor c€, with
det a ¥=0, there is a unique set of non-negative numbers {s^, s2} determined by

s\ + s\= {a\a), 5152=|deta|. (6)

Also, if sx T^52, two orthogonal minimal tripotents e,f are determined uniquely by
a such that

a=sxe + s2f (7)

Let A = det a/|det a\. The coordinates of the tripotents e and f with respect to the
spin grid are given by

i k J )i 2 j i i i J i ) ,

et = -2 1 (-Xs2at + sxai), (8)
s x — s 2

( A)2 2

s x — s 2
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and

fi = 2 2 (-^fli + ^1«,)>

1 2
s1 — s2

2 2

COROLLARY 1.6 [3, Corollary 3.7]. / / a has decomposition (7), then from (2)
and [5, Lemma 1.3(a)], ||a || must be defined as max {ft, s2}- From (6) it follows
that this norm is equivalent to the Hilbert norm \\-\\2, and therefore <€ is complete
and reflexive in this norm.

Hence every element a e *€ has unique coordinates {ah dh a0} with

a = 2 OfUi + 2 «/«i + «o«o, (10)

where convergence is in ||-|| (M0
 m ay not exist).

The space % will now be denoted by U. The Banach space dual U* (which is
the same as the predual U* since U is reflexive) can be identified with U via the
conjugate linear (Riesz) map JZ: U* s q>*-*a<p = Ji{(p) e U, where

(cp>x) = (x\a(p) (xeU,<peU*). (11)

In the rest of this section, by abuse of notation, we shall sometimes use the
same notation for <p e U* and av e U. Thus (b, x) = (x \ b) forbe U*, x eU,
and if a is given by (10), then

n~\a) = 2 aiJt~\ui) + 2 fli^"1^.-) + aojt~
l(uo),

deta = det(jr 1(a)), and the inner product (3) transferred to ^ satisfies

\ \ \ (b\a). (12)

Since the spin factor U is a JBW*-triple, we have from [5, Propositions 4 and 8]
a one-to-one correspondence between tripotents and norm exposed faces in the
unit ball of the predual U*, in which minimal tripotents correspond to minimal
faces, that is, extreme points of the unit ball. We also have the following
corollary.

COROLLARY 1.7 [8, Theorem 3.1; 3, Corollary 3.8]. The space Z:=U* is a
neutral strongly facially symmetric space (see § 2 for the definition) with the norm
given for any a with Ji(a) decomposed as in (7) by

(13)

We now use (13) to describe the dual ball of the real spin factor.
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PROPOSITION 1.8. / / U is a spin factor over U, then the unit ball U*tl of the
predual £/* is the intersection of two cylinders with base a real Hilbert ball. The
dimensions of these Hilbert spaces differ by at most one. More precisely, U*xis the
unit ball of the l°°-sum of these two Hilbert spaces.

Proof By (13) and (5),

| | a | | z ^ l <=> {a | f l )+2 |de t f l | ^ l <=> (a | a ± a # ) ^ l .

Thus, if a has (real) coordinates ah d{ and possibly a0, we have, by (3), ||a||z
if and only if

or equivalently, with b] := \{at + a,-) and ft := 2(0, - a,),

S (2 î)2 + 4<ig, S (2ft)2) ^ 1.
1 i '

max

Since by Proposition 1.5 any tripotent v in U is either minimal or a sum of two
orthogonal minimal tripotents, each non-trivial norm exposed face of Z, is either
a single point (an extremal point of Zx, corresponding to a minimal tripotent) or
a (so-called) face of rank 2. For any rank-2 face

Fv = {aeZ: \\a\\z = (a, v) = 1}

defined by a tripotent v, define an element of Fv called the centre of Fv by
% = \JZ~1{V). Note that by our convention, we could write % = \v and still have
v e U and § e iv> c= Z. We shall usually write F^ for Fv, since § also determines the
face. Later in this section we shall show that F? is affinely isomorphic to the unit
ball of a real Hilbert space in such a way that the centre § corresponds to the
origin. This should now be compared with Theorem 3.8.

DEFINITION 1.9. Let Z be the predual of a concrete spin factor. An element
£ 6 Z is said to be unitary if | |£||z = 1 and § # = A£ for some A e T. For O ^ a e Z
define the phase £(a) of a to be

detfl/|deta| i fdeta^O,
1 if det a = 0.

Note that for any unitary element £, ||£||! = 2 and that in the spectral
decomposition (7) of §, sx =s2

 = \- Indeed, |det f| = ^ ( l | A§)| = 2 ll£lll a nd so

and by Proposition 1.5, (sx — s2)
2= (£ | I ) - 2 |det £| =0. Hence, any scalar

multiple r] of a unitary satisfies ||r?||2 = (1/V2)

PROPOSITION 1.10. Lef a be any norm-1 element of Z and let A = £(a). 77ien f/ie
centre ̂  of a rank-2 face Fv containing a is given by

§ = 2*(a + Aa#). (14)

Moreover, £ is unitary and £(§) = A.
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Proof. If det a = 0, that is, a is extremal, then a and a# are orthogonal extreme
points, so that (a, Ji{a) + Jr(fl)#) = 1, that is, a e F§. Also £# = f and det £ =
£(£ | £) which implies £(!) = 1.

If deta=£0, applying (7) to n(a), we have a e FV C\Fe+f which is therefore a
rank-2 face contained in each of Fv and Fe+f. Therefore Fv and Fe+f both equal
this intersection, and hence are equal and v = e+f. Now, using (8) and (9)
applied to Jt(a), we obtain

Similarly,

v,- = et +fi = at + Aa, and v0 = e0 + f0 = d0 + Xa0,

which yields v = jr(a) + k{n{a))u. Hence, £ = 2^-1(w) = 2(0 + Aa#).

The following proposition is the facial decomposition of an arbitrary element
of the predual of a spin factor.

PROPOSITION 1.11 (facial decomposition). Let Z be the predual of a spin factor.
For each non-zero a e Z, there are unique elements £, h € Z such that

(i) §, /i are scalar multiples of unitaries and a = % + h;

(ii) £(!
Moreover,

(iii) <

(iv) ||fl||z=
(v) |deta| = i ( | | ! | | i -p | | | ) , anrftoce |||||2 = ||A||Z i/and on/y ifdcta = 0.

Proo/. Let A = £(a) and set £ = \{a + ka*) and h = \{a- Xa*). Then § # = A£
and hu = —Xh. This proves (i).

Since det£ = K £ | £ # > = ^ ( « ) l l £ l l i * 0 , 5( |) = C(«). Similarly, det/i =
-2?(«) IÎ Hi and €:(/») = -tifl). This proves (ii).

Suppose that £' and /i' satisfy (i) and (ii). Then with A:=£(|;') we have
(£')# = A|; and (/^')# = -A/i'. Thus, a = %'+ h' implies that a* = A|' - A/i; and
ka* = %'-h' so that £' = ^(a + Aa#) and h' = \{a-Xa*). This proves the
uniqueness.

Let A = ^(a). Then

(!=\h)=li((a\a)+k(a*\a)-X(a\a*)-(a*\a*))

= \(X{a* I a) - X(a \ a # » = -iJS(A<«# | o »

= -i3(A det a) = - i 3 |det a\ = 0.

This proves (iii).
By Proposition 1.10, £/||a||z is the centre of the face containing a/||a||2.

Therefore ||£||2 = ||a||z. Now

111111= <§ | Z) = 12[\\a\\l
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and therefore | |§ | | | = N i l + 2 |deta|. Similarly, ||/i|||= | |a| | |-2|deta| and so
11^ 111111= NIL proving (iv) and (v).

In Proposition 1.11, if ||a||z = 1, then a and £ belong to the face F§ containing a
whereas h = a — £ is 'parallel' to F. Moreover, by this proposition, the face F% is a
real Hilbert ball defined by

heZ, \\h\\2^l, <£ | h) = 0, h* = -Kim

Note that since (h \ h') = {h'n \ hn) = (h' | h), the inner product

is real.

2. Atomic facially symmetric spaces

In this section we shall recall some basic facts about facially symmetric spaces
from [7] and prove several new results which supplement those in [7] and are
needed in the present paper. We then establish some properties of atomic facially
symmetric spaces, including a Hilbert space structure on those atomic facially
symmetric spaces which satisfy two geometric axioms.

In this and the next section, Z will be a weakly or strongly facially symmetric
space over the real or complex field. In § 4 we shall restrict our study to complex
spaces.

Let Z be a real or complex normed space. Elements f, g eZ are orthogonal,
notation /<>£> if II/ + &II = ll/~£ll = 11/11 + II&II- A norm exposed face of the
unit ball Zx of Z is a non-empty set (necessarily not equal to Zx) of the form
Fx = {/ e Zx: f(x) = 1}, where x e Z*, \\x\\ = 1. An element ueZ* is called a
projective unit if ||M|| = 1 and (u, F<j?)=0. We use 8F and °U to denote the
collections of norm exposed faces of Zx and projective units in Z*, respectively.

Motivated by measuring processes in quantum mechanics, we define a
symmetric face to be a norm exposed face F in Zx with the following property:
there is a linear isometry SF of Z onto Z, with SF= I, such that the fixed point set
of SF is (sp F) 0 F° (topological direct sum). A real or complex normed space Z
is said to be weakly facially symmetric (WFS) if every norm exposed face in Zj is
symmetric. For each symmetric face F we define contractive projections Pk{F),
with k = 0, 1, 2 on Z as follows. First PX(F) = \{I — SF) is the projection on the
— 1 eigenspace of SF. Next we define P2{F) and P0(F) as the projections of Z onto
sp F and F° respectively, so that P2(F) + P0(F) = | ( / + SF). These projections
were called generalized Peirce projections in [6] and [7]. A generalized tripotent is
a projective unit u e°U with the property that F: = Fu is a symmetric face and
SFu = u for some choice of symmetry SF corresponding to F. In this paper we
shall call such u geometric tripotents, and the projections Pk(u) will be called
geometric Peirce projections.

We use ^ST and SfSF to denote the collections of geometric tripotents and
symmetric faces respectively, and the map ^ 9 « ^ F u e ^ is a bijection [7,
Proposition 1.6]. For each geometric tripotent u in the dual of a WFS space Z, we
shall denote the geometric Peirce projections by Pk(u) = Pk(Fu), for k = 0, 1, 2.
Also we let U:= Z*, Zk(u) = Zk(Fu):= Pk{u)Z and Uk(u) = Uk(Fu):= Pk(u)*(U),
so that Z = Z2(w) + Zx(u) + Z0(u) and U = U2(u) + Ux{u) + U0(u). A symmetry
corresponding to the symmetric face Fu will sometimes be denoted by Su.
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Elements a and b of U are orthogonal if one of them belongs to U2(u) and the
other to U0(u) for some geometric tripotent u. Two geometric tripotents u and v
are said to be compatible if their associated geometric Peirce projections
commute, that is [Pk(u), Pj(v)] = 0 for k, j e {0, 1, 2}.

A contractive projection Q on a normed space X is said to be neutral if for each
%eX, \\Q%\\ = ||£|| implies Q£ = £. A normed space Z is neutral if for every
symmetric face F, the projection /^(F) corresponding to some choice of
symmetry SF, is neutral.

If Y is a closed subspace of a normed space Z, the collections of norm exposed
faces and symmetric faces in dYu will be denoted by 9>Y and SfSFy respectively. We
define %y, <33V similarly.

A WFS space Z is strongly facially symmetric (SFS) if for every norm exposed
face F in Zx and every y e Z* with || v|| = 1 and F c:Fy, we have S£y =y, where
5/7 denotes a symmetry associated with F. Let Z be a strongly facially symmetric
space and suppose that u, v e '^S'z- If Fu cFv, we write u^v.

In a neutral strongly facially symmetric space Z, every non-zero element has a
polar decomposition [7, Theorem 4.3]: for 0=£/eZ there exists a unique
geometric tripotent v = v(f) with f(v) = \\f\\ and <v, {/}°> =0. If /, g e Z, then
/ O # if and only if v(f)<$>v(g), as follows from [6, Corollary 1.3(b) and Lemma
2.1]. Recall that the geometric tripotent v = v(f) has the following additional
properties if / i s a unit vector. First,

Fv is the smallest norm exposed face containing/; (15)

and second,/is positive and faithful on U2(v) in the following sense:

for any M , ) V 6 ^ with u =£ w and / e F^, /(w) = ||P2(M)/II (^0); (16)

for any ue^ZT with w ^ t>, f{u) = ||P2(")/II > 0. (17)

Another property of the polar decomposition is that if / e Zk(w) for some
w e <3&', then v(f) e Uk(w). This follows from the uniqueness of the polar
decomposition as we now show.

PROPOSITION 2.1. Let Z be a neutral SFS space and let v e ^ST. Then for
k e {0,1,2},

Proof Let u 6 ^^"z fl Uk(v). By [7, Theorem 3.6, Proposition 4.1], Zk(v) is
neutral and SFS. Hence to prove that u e ̂ ^^^ we need only show that

(u,(Funzk(v))Onzk(v))=o.
By [7, Lemma 3.5], this reduces to (u, F^fl Zk(v)) =0, which is obvious
since (u, F<>) = 0 . Thus <§3~Zk(v)^-<33'n Uk(v).

Conversely, let we^&z^v) so that we have ||w|| = l, weUk(y), and
(w,(FwDZk(v))<>nZk(v))=0. We must prove that (w, F<>>=0. Again, by
[7, Lemma 3.5], (w, F^D Zk(v)) =0. Now let peF%. Then (w, p) =
(Pk(v)*w, p) = (w, Pk{w)p) and Pk{v)p e F^fl Zk(v), since by compatibility
of w and v, Pk(v)p = Pk(v)P0(w)p = P0(w)Pk(v)p. Therefore (w, p) =
(w, Pk(v)p) = 0, that is, <w, F2) = 0. Thus <33TZt(u) cz <SSTn £/*(«).

COROLLARY 2.2. / / / e Zk(v), then v(f) e Uk(v).
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Proof. Since Zk(v) is a neutral SFS space and f eZk(v), there is a unique
we^Zk(v) with / M = ||/ | | and (w, {/}<>nZ*(u)) =0. Now v(f)e<3<Tz is
uniquely determined by the conditions f(v(f)) = \\f\\ and (v(f), {/}°) =0. By
the proposition, w e ^fz so it suffices to show that (w, 1/}°) =0 in order to
conclude that v(f) = w e Uk(v).

For k e {0,1,2}, we have Pk(v){f}° cz {/}<>. Indeed, for k = 1, P,(u) =
*( / -£ , ) and 5u{/}O = {5u/}O = {-/}O={/}<>; and since P2(u) + P0(u) =
i(/ + ̂ ) , we have (P2(v) + P0(v)){f}° c {/}<>. Then, by [7, Remarks 1.3 and
3.2], for A: = 0 or 2, P * ^ ) ! / } 0 <= {/}°. To complete the proof, note that

° )*", {/}<>) = (w, Pk(v){f}O) e (w, {f}OnZk(v))=0.

The following is part of a joint Peirce decomposition. We believe that in the
complex case, equality holds in equations (18) and (19), but we have been unable
to prove it (equality does not hold in the real case). The inclusions proved in
Lemma 2.3 are sufficient for the results proved in the present paper.

LEMMA 2.3. Let Z be a neutral WFS space, and let w and u be a pair of
orthogonal geometric tripotents. Then

Fw+U c Z2(w) + Z2(u) + Zx{w) fl Z,(a), (18)

and therefore

U2(w + u)cz U2(w) + U2(u) + U^w) H (/,(«). (19)

Proof. Since 5* fixes U2(w)+ U0(w), we have S*(« + w) = u + w. Thus
SW(FU+W) c Fu+W, and therefore (P2(w) + P0(w))Fu+w = \(I + SW)FU+W c Fu+W.

For (peFu+w,

1 = (P2(w)<p + P0(w)(p, u + w) = (P2(w)(p, w) + (P0(w)q>, u)

V, w>| + \(P0(w)cp, u)\^ \\P2(w)<p\\ + \\P0(w)<p\\

Thus, \\P2(u)Po(w)<p\\ = \\Po(w)<p\\, so by neutrality, P2(u)P0(w)<p = P0(w)<p.
Therefore, P2(u)(p = P2(u)P0(w)q) = P0(w)(p, and by symmetry P2(w)(p = PQ(u)<p.
Since

we have ^ (w)^ = Pt(u)(p. Therefore, (p eZ2(w) +Zl(co)nZl(u) +Z2(u). This
proves (18), and (19) follows by duality: with

P = P2{w + u),Q = P2(w) + P2(u) + P1(w)Pl(u)t

we have PQ = QP = P, so P*Q* = Q*P* = P*.

Let M denote the collection of minimal geometric tripotents of U, that is,
M = {v e CS3'\ U2(v) is one-dimensional}. In the setting of a JBW*-triple and its
predual, there is a one-to-one correspondence between minimal tripotents and
extreme points of the unit ball of the predual. Moreover, these extreme points
are all norm exposed (cf. [5, Proposition 4]). The following proposition is a
generalization of this correspondence.
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PROPOSITION 2.4. If Z is WFS, then there is a bijection 77 of exp Zx onto M. If Z
is neutral and SFS, then rj(f) = v(f), the geometric tripotent occurring in the polar
decomposition off. For v = rj(f) e M, with f e exp Zx,

P2(v)*x=f(x)v forxeU, and P2(v)g = g(v)f for g e Z.

Proof. If / e exp Zx, then {/} = Fv for some unique v e (§S', which we denote
by rj(f). Since spiv, is one-dimensional, U2(v) = (spFv)* is one-dimensional, so
that v eM.

Conversely, let veM. Then spFv is one-dimensional, so that Fv is a point.
Hence, rj is surjective.

If v = r)(f) = rj(g), with /, g e exp Zx, then {/} = Fv = {g}, and rj is one-to-
one.

To prove the last statement, note that since P2(v)*x = k(x)v and P2(v)g = p(g)f
for some scalars k(x), fi(g), we have

X(x)g(v) = (P2(v)*x, g) = (x, P2(v)g) = (x,f)p(g).

Put x = v to get g(v) = ju(g) and X(x) =f(x).

DEFINITION 2.5. A normed space Z is said to be atomic if every symmetric face
of Zx has an extreme point.

Let 3> denote the collection of indecomposable geometric tripotents of U, that
is,

$ = {v e ^ZT: u e

In general, M <=.$>, and we shall show in Proposition 2.9 below that under a mild
assumption, equality holds.

DEFINITION 2.6. A neutral SFS space Z is said to satisfy the axiom (PE) (for
'point exposed') if exp Zx = ext Zx.

It is easy to see that being atomic is equivalent, in SFS spaces satisfying (PE),
to the assertion that every u e WST is greater than or equal to some v in M.

PROPOSITION 2.7. If Z is an atomic SFS space satisfying (PE), then
(a) U = sp M (weak*-closure);
(b) Zx = co ext Zx (norm closure).

Proof Observe first that if Z is an atomic SFS space, then the set

{x eU: (x,f) = \\x\\ * 0 for some / e ext Zx)

is norm dense in U. Indeed, by the Bishop-Phelps theorem for the bounded
closed convex set Zx [2, p. 45], the set of elements xe U := Z* which assume
their norm on some element/ e Zl7 that is, (x,f) = \\x\\, is norm dense in U. But
for all such x, Fx,nxn =£ 0 so there exists cp e ext Zx H Fx/iixn with (x, op) = ||JC||.

Let / e Z, and suppose f(M) = 0. Then v(f) e ^ST so there exists ueJt with
u «£ v(f). By (17), f(u) > 0, a contradiction. This proves (a).

Let K denote coextZj. If K=tZx, let / eZx,f $K. Choose y € U and real



154 Y. FRIEDMAN AND B. RUSSO

numbers c,c + e, such that

W(y> y) <c<c + e^${(y,f)

for all xjfeK.
By the above observation, there are xeU, cpeextZx such that \\x — y\\<S

and (x, q)) = \\x\\. Thus for sufficiently small <5,

\\x\\=3{(x,(p)^c + U<c + h^dt(x,f)^\\x\\,

a contradiction. This proves (b).

We now introduce the principal axioms, which are geometric and physically
significant properties of the state space of a physical system.

DEFINITION 2.8. Let / and g be extreme points of the unit ball of a neutral SFS
space Z. The transition probability of/and g is the number

tf I «>:=/("(*))•
A neutral SFS space Z is said to satisfy 'symmetry of transition probabilities'
(STP) if for every pair of extreme points/, g e ext Zl5 we have

VTgJ=(g\f),
where in the case of complex scalars, the bar denotes conjugation.

For example, in a concrete spin factor, the transition probability coincides with
the restriction of the inner product (12) to extremal elements.

PROPOSITION 2.9. Let Z be an atomic neutral SFS space satisfying (PE). Then
M = $. If furthermore Z satisfies (STP), then the map n\ sp ext Zx-+ sp M defined
by

is well-defined and a conjugate-linear bijection.
Denoting this extension also by JZ, we find that the scalar-valued map

(•|->: (f,g)eZxZ~(f,ji(g)) (20)

is a continuous symmetric sesquilinear form.

Proof. Let u e i and let q> be an extreme point of Fv. Then <p is an extreme
point of Zx and so {q?} = Fu for some ueM, by Proposition 2.4. Since cpeFv>

Fu c= Fv so u =£ v and therefore u = v, that is, sp Fv is one-dimensional, and v e M.
Thus 3 = M.

By (STP), for all ip, q>x, ..., cpn eextZ, and scalars z,, ..., zn,

Therefore

2 zjcpj = 0 <» (V, 2 zM<Pj)) = ° f o r a11 V e e x t z i ^> 2 S/v(Vy) = °-
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Finally, by (STP), the map (• | •) is symmetric, that is, (f \g) = (g\f), on the
linear span of extreme points, and since it is obviously sesquilinear and
continuous, the last statement follows.

As a consequence of the sesquilinear form just introduced, we are now able to
handle the rank-1 case.

DEFINITION 2.10. A normed space Z is said to be of rank 1 if no two non-zero
elements of Z are orthogonal.

In an atomic neutral SFS space of rank 1, satisfying (PE), every geometric
tripotent is indecomposable, and hence minimal. Thus, every element/in such a
space is a multiple of an extreme point of Z\. It follows that the sesquilinear form
(• | •) is positive definite and moreover, if / e Z is non-zero, then f/\\f\\z is an
extreme point and so has norm 1 in the inner product space determined by < • | •).
Therefore, | | / | | z= H/H2 and Z is a Hilbert space. Furthermore, for | |/ | | = 1, by
Proposition 2.4, P2(f) is the orthogonal projection onto the span of / in this
Hilbert space.

Two geometric tripotents u, w are said to be colinear if each of them belongs to
the geometric Peirce 1-space of the other, that is, u e U^w) and w e Ux(u). Thus,
in a rank-1 space, since all geometric Peirce O-projections are zero, colinearity of
v(f) and v(g) is equivalent to P2(f)g = 0, that is, orthogonality in the Hilbert
space structure. Therefore orthonormal bases in the Hilbert space structure
correspond to maximal families of mutually colinear geometric tripotents. Hence
we have:

COROLLARY 2.11. Let Z be an atomic neutral SFS space satisfying (PE) and
(STP). Assume that Z is of rank 1. Then Z is linearly isometric with a real or
complex Hilbert space. Moreover, there is a one-to-one correspondence between
orthonormal bases in this Hilbert space and maximal families of mutually colinear
geometric tripotents.

3. Rank-two faces in facially symmetric spaces

We now begin the study of rank-2 faces, culminating in Theorem 3.8 (the
Hilbert ball property). This property will be a basic tool in the following section.

DEFINITION 3.1. Let v and v be orthogonal minimal geometric tripotents in a
neutral strongly facially symmetric space Z. The norm exposed face F0 + c

determined by the geometric tripotent v + v will be called a face of rank 2. Let
v = v(f) and v = v(f) for orthogonal extreme points /, / of Zx. Then £: =
\(f +f) is called the centre of Fv+ij and we shall write Fu+C = F§.

It will be shown in Theorem 3.8 that Fu + 0 is a Hilbert ball with centre £.
The following proposition justifies the terminology 'rank 2', that is, meaning

that there are no more than two orthogonal extreme points in such a face. If the
face represents the state space of a quantum mechanical system, the proposition
implies that for such systems no observable can assume more than two distinct
values.
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PROPOSITION 3.2. Let v and v be orthogonal minimal geometric tripotents in an
atomic neutral strongly facially symmetric space Z, and assume the axioms (PE)
and (STP). Let v = v(f) and v = v(f) for orthogonal extreme points f,f of Zx. If
p and o are orthogonal elements of Fu+0, then v(p) + v(o) = v + v, p and o are
extreme points, and p+o=f+f Moreover, each norm exposed face of Zx,
which is properly contained in Fv+d, is a point, and if p is an extreme point of
Fu+C, then v + v — v(p) is a minimal geometric tripotent.

Proof We show first that if p and o are orthogonal extreme points of the
rank-2 face Fw+5, then v(p) + v(o) = v + v. Since p e Fu+C, we have by Lemma
2.3,

for some h eZx{v) C\ Zx(v). Moreover, by (16), a:= p(u)s=0. By Lemma 2.3,
since v(p) e U2(v + v),

v(p) = av + bv + vx,

for some vx e Ux{v) n Ux(v), and scalars a, b.
By (STP), a = p(v) =f(v(p)) = a and 1 - a = b, so that

v(p) = oru + (1 — a)v + vx.

Similarly

and

v(o) = yv + (1 - y)v + v[,

forsomeh'eZx(v)DZx(v), v[eUx(v)n(Jx(v), andy^O.
Since p<C>o, v(p) + v(o) e ^^" and therefore has norm 1. Since

v(p) + v(o) = (a + y)v + vx + v[ + (2 — a — y)v,

and since p2(v)* is contractive, we have tt+y^sl and similarly 2— a — y s l .
Hence ^ + 7 = 1 and

v(p) + v(o) — v + (yx + v'x) + v.

With x := v + (vx + v[) + v, we have f eFx, so that Fv = {/} c Fx. Therefore, by
strong facial symmetry, Px(v)*x = 0, that is, vx + v[ = O. This proves that
v(p) + v(o) = v + v.

We can now easily complete the proof of the proposition. Since Z is atomic,
there exist extreme points g and g such that Fvig) c Fu(p) and Fvii) c Fu(a). By the
previous paragraph, v + v = v(g) + v(g) ^ v(p) + v(o) ^ v + v, and p and o are
extreme points.

If FwcFv+v is not a point, then it contains an extreme point <p, which by
assumption is norm exposed. Since v(q))^w, we have Fw_v(<p)<£>Fviv). Thus by
the previous paragraph, Fw = Fv+Ti.

Finally, v + v — v(p) is the unique minimal geometric tripotent orthogonal to
v(p). Therefore, JZ~\V + v— v(p))=f+f — p is the unique extreme point
orthogonal to p, where n is defined in Proposition 2.9.
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To proceed further, we need to replace the property (PE) by an apparently
stronger property (FE). It is very likely that (PE) is equivalent to (FE) in facially
symmetric spaces, since (FE) holds in the case of the predual of a JBW*-triple
[4], but we have been unable to prove this.

DEFINITION 3.3. A neutral SFS space Z is said to satisfy property (FE) if every
norm closed face of Zx different from Z, is a norm exposed face.

An important consequence of this axiom is the following Krein-Milman type
result.

PROPOSITION 3.4. Let Z be an atomic neutral WFS space which satisfies the
axiom (FE), and let u be a geometric tripotent. Then

Fu = co ext Fu (norm closure).

Proof. Let K:= Fu and Kx :=co ext Fu czK. If Kx =£ K then there is an x e U2(u)
and ceU such that

s\ip3i(x,Kl)<c<supm(x,K). (21)

By the Bishop-Phelps Theorem for the convex set K [2, p. 45], we have, for any
£>0, a peK and y e U2(u) such that | | * - - y | |<£ and r :=sup9^(_y, K) =
di{y, p). By taking e small enough, we may assume that (21) holds with y in
place of x.

The set G := Fu fl {(p e Z2(u): $l(y, cp) = r} is a non-empty norm closed face
in Fu, and is therefore norm exposed and symmetric by our assumptions on Z.
Since Z is atomic, G has an extreme point, which is then automatically an
extreme point of Fu. Because (21) holds with y in place of*, this extreme point is
not in Kx, a contradiction.

COROLLARY 3.5. Let Z be an atomic neutral strongly facially symmetric space
satisfying (FE) and (STP), and let F^ be a rank-2 face. Then F% — § is a symmetric
convex set.

Proof. For any g e F%, define S(g - §) = —(g - §). From Proposition 3.2, for
any extreme point p e F%, there exists an extreme point pe F%, orthogonal to p
such that S(p — £) = p — £. By the proposition, S is a symmetry of F% — £.

The following theorem is the main result of this section. It gives the structure of
rank-2 faces. We shall use the following lemma in its proof.

LEMMA 3.6. Let v and v be orthogonal minimal geometric tripotents in an
atomic neutral strongly facially symmetric space Z, and assume the properties
(FE), and (STP). Let v = v(f) and v(f) for orthogonal extreme points f, f of Zx.
If [£, p] denotes the line segment from £• to p, then

Fv+z = U {[£, P\- P e ext Fu + 0}. (22)

Proof. By Corollary 3.5, F% — % is the closed unit ball Yx of a real space Y c Z
with respect to the norm ||-||y given by the Minkowski functional of Fg — | . Let <p
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be an arbitrary point of F§, and let p be the point where the ray containing q> and
emanating from £ leaves Fg, that is, with q>, = tcp + (1 —1)% for t ^ 0, p = <p,0 for
some f0 (necessarily greater than or equal to 1) with q>, e F| if and only if f =s t0. By
the definition of the Minkowski functional, ||p — £||y = 1. Let <I> be a continuous
linear functional on Y such that, with Yo equal to the open unit ball of Y,

<J>(Y0)<c:=<D(p-£), (23)

and let / be the hyperplane in Y determined by c, that is, J = {oeY: <J>(CT) = c}.
Then p - £ e G : = / D (F§ - £) and G is a closed face of F? - §. Thus p e G + §
and G + § is a closed face of F§. Therefore, G + § is a closed face of Zt , which by
our assumption, is norm exposed. By Proposition 3.2, either G + § = {p} so p is
an extreme point, or G + £ = F§. In the latter case, Fg - £ = G = / D (F§ - £) c= / ,
contradicting (23). Thus p is an extreme point, and q> e [£, p].

In the following corollary, we obtain an abstract analogue of the facial
decomposition ((i), (iii) and (iv) of Proposition 1.11). In the abstract setting of
Lemma 3.6 a centre of any rank-2 face F will be called a unitary element of Z.
For example, \{f + / ) is a unitary if / and / are any two orthogonal extreme
points of F.

C O R O L L A R Y 3.7. Let ( p e F u + c . Then there exists an element heZ which is a
multiple of a unitary element such that (p = % + h , ( £ | / i ) = 0 , and | | / i | | z = £ l .
Moreover, \\q) — § | | ^ 1, and cp e ext F u + 0 if and only if \\q> — £ | | = 1-

Proof Let F = Fu + 0 and write, by (22), cp = I + t{p - §). Then \\h\\ =te[0, 1],
£ and p — § = \{p ~ P) a re unitary elements, and (£ | h) = \{p + p | p — p) =0.
Also, \\cp- ^|| = f *£l. If q? is an extreme point, then \\(p - §|| = IlKfl5" ^)ll = 1.
Finally, if <p € F and ||qp — £|| = 1 , we have l = | | (p-§| |=f and <p = p is extreme.

THEOREM 3.8 (Hilbert ball property). Let v and v be orthogonal minimal
geometric tripotents in an atomic neutral strongly facially symmetric space Z, and
assume the properties (FE), and (STP). Let v = v(f) and v = v(f) for orthogonal
extreme points f,f of Zx. Then F§ — § is the unit ball of a real subspace Y of Z on
which the sesquilinear form (20) is a real inner product whose associated Hilbertian
norm is a multiple (1/V2) of the norm of Z. Precisely,

and if (• | •) denotes 2(- \ • ) , then

(f(p-!) | s(T-S)) = tt[2<T|p>-l] (24)

for x, p e ext Fu+C, and t, s 2= 0, where ( r | p) denotes the transition probability.

Proof. Let Y be the real normed space in Z whose unit ball is F? — §. We first
show that the sesquilinear form < • | • > is positive definite on Y.

If (p 6 F§ and ||qp — £||y = 1, then as shown in the proof of Lemma 3.6, (p is an
extreme point, and by Corollary 3.7, ||<p — §||2 = 1. Therefore, if h e Y is
non-zero, then /i/||/i||yeF§ — £ and, as just shown, ||/i/| |/i| |y| |z = 1, that is,
W'WY = W'Wz o n Y. Moreover, for h € Y, with h/\\h\\Y= <p — § for some extreme
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point <peF|, we have {h\h)-\\\h\\2
Y{(p-q)\q)-q>) =\\\h\\\. Thus, on

Y, {- | •) is positive definite, and therefore an inner product with ||/i||2 =
(l/V2)P||y = (l/V2)P||z.

We complete the proof by computing the inner product, thereby showing it to
be real and to satisfy (24). For hl,h2eY, with hj/\\hj\\Y = <pj — % for extreme
points xpj eF?) we have

(<Pi - ! I <P2 ~ £) = 2((?i - £, ^(2(^2 - &>))} = (<Pi I <P2> ~ 2 + 2 - 2,

and therefore

{hx I /i2) = \M\Y \\h2\\y{q>i - l | q>2 - I ) = P i l l v P2II v P< V, I <P2> - 1].

This proves (24) and by (15) and (16), the inner product is real. Finally, for
| |

COROLLARY 3.9. The unit ball (in Z) of the real span of Fu+C is a cylinder with
base the Hilbert ball Y. Precisely,

(spR /wo), = {orf + j8/i: a, p e U, \a\, |j8| ̂  1, £ ± A e ext Fu+C (if /S ^ 0)}.

Proof. Let F denote Fu+C. Then <p e spR F if and only if for some a, b^O and
a, r e F,

(p = at - bo = [a(r - | ) - b(o - £)] + (a - fc)§ = fih + a£,

where, with 1/; = a(x- ^) - 6 ( a - £), we have set /i = V/II'V'II* j8 = ||Vll» and
a = a — b. Moreover, with p± = %±h,

so

\\cp\\ = ||(or + j3)| + |J(« - j8)| = max(k|,

The following notation will be used in the sequel. The real Hilbert space Y
determined in Theorem 3.8 by the face Fu + 0 will be denoted by ̂ fu+i5 or by $?§,
since it is uniquely determined by £ or by v + v. The Hilbert ball Fu + 0 — £, which
is the unit ball of this Hilbert space, will be denoted by Bv+i or B%. An
orthonormal set in $?§ will be denoted by {ea} or {ex, e2,...}.

DEFINITION 3.10. A neutral strongly facially symmetric space is said to be of
type I2 if it is of the form Z2(F), where F is a face of rank 2 (cf. Definition 3.1).

Our main theorem, Theorem 4.16 below, states that an atomic neutral strongly
facially symmetric space over C of type I2 which satisfies (FE) and (STP) is
linearly isometric to the predual of a spin factor.

The following remark follows from the fact that the inner product above is
determined globally by use of the mapping n.

REMARK 3.11. Let F% and Fv be faces of rank 2 so that $?§ and 2£, are defined.
If a, b € Sfcg D S^rj, then the inner product (a | b) is the same whether computed in
%$ or in $£,.
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REMARK 3.12. Formula (24) has the following physical interpretation. Consider
the state space of a spin-* particle, where we are concerned only with the
directions of spin, which are unit vectors in IR3. Identify the Hilbert space 2i? with
U3. If spin is measured in the direction p — £ and is positive, then the pure state p
represents the state of the particle after the measurement. In this case, by (24),
the transition probability between states p and T is given by

<p | T> = p(v(x)) = i(l + (P " 11 T - §)) = i(l + cos 6) = cos2 id,

where 6 is the angle between the two directions.

This is consistent with the known behaviour of spin-! particles in quantum
mechanics.

REMARK 3.13. For rank-2 faces F the Jordan decomposition holds: for each
<p e spR F, there exist o, r eU+F such that

<p = o-r and ||<p|| = ||a|| + ||T||.

(This implies also that a O r and that the decomposition is unique.) Hence
ext(spR F)x = F U -F.

Proof. Let cp e spR F, where F denotes Fu+{3. As shown in the proof of
Corollary 3.9, <pespK{p+, p"} , say q> = ap+ + bp~, where p± := £ ± i/>/||Vll are
two orthogonal extreme points of F. Then ||<p|| = |«| + |&| = ||«P+|| + l|6p~||.

4. The complex span of a rank-2 face

In order to describe the complex span of a rank-2 face F%, we shall construct,
from an orthonormal basis of $?§ and the centre £, a natural basis analogous to
the dual of a spin grid in a concrete spin factor. This construction is entirely
similar to the method of obtaining the spin grid in a concrete spin factor. The
main difficulty here, however, is to show that the natural correspondence between
the concrete and the constructed grids extends to an isometry. This task, which
requires most of this section to carry out, is accomplished by a reduction to the
finite-dimensional case. Since the odd and even dimensional spinors behave
differently, the cases of dimension 2 and 3 both need to be treated first. This is
done in Theorems 4.6 and 4.8.

We assume in the remainder of this paper that Z is a linear space over the
complex field C. We shall make use of the main result of § 3, namely Theorem
3.8. We therefore make the following standing assumption:

Z is an atomic neutral SFS space satisfying (FE) and (STP). (25)

We begin by considering an arbitrary pair of orthogonal unit vectors {ex, e2} in
the Hilbert space 2i?§ defined by a rank-2 face F§, and describe the real span

yo:= spR {eu e2, £} c Z (26)

of these two vectors and the centre £ of the face.
By using the main result of § 3, in the following proposition we construct a part

of the dual spin grid and show that the extreme points of F§ lying in Y have the
same description as their analogues in the dual of a concrete spin factor.
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PROPOSITION 4.1. Let Z satisfy (25). Let {elf e2} be an orthonormal set in the
Hilbert space 2t% defined by a rank-2 face Fg. Define fx = ex + £, fx = %-ex and
h =e2. Then fx,fx are orthogonal extreme points of i | and h e
Moreover,

h + i(l-a)f1: a, b eU, a2 + b2^l}, (27)

y o = { ^ : *e[0 , 1]}, (28)

where
g>* = a£ + (1 - a)fx ± 2V(*(1 - or)) h, oc e [0, 1]. (29)

Also

<P«OvT-a for oc €[0,1], (30)

h = i(vl/2 ~ Vm) = i((* + §) + ( * - §)), v(h) = ufafc) ~ v{<pTn), (31)
and

v{cpt) = av{fi) + (1 " ctMfi) ± V(a(l - or)) w(A) /or or € [0, 1]. (32)

Proof. By Corollary 3.7, /x and ft are extreme points of the face FM. Since their
average is the centre, by Proposition 3.2 there is an element \j> of the face F% such
that ^ O / i a nd /i + ^ =/i +/i- Therefore ip^fi, which proves that /i and /j are
orthogonal.

From Theorem 3.8, we have

F ? ny 0 ={^ + aex + be2: a, b eU, a2 + b2^!}

This proves (27), and (28) follows by putting a = 2(1 + fl) and recalling that unit
vectors in a Hilbert space are extreme points.

Note next that q>+ 4- q>T-a=fi+f\- As above, by Proposition 3.2 there is an
element ip of the face F% such that ip<O><p% and <p£ + ip =/j +/i. Therefore
1// = (pi~-<*> which proves (30).

By the definition (29),

h = K^i/2 ~ Vf/2), (33)

and (30) implies that (ptnO <Pm- Therefore, v(h) = v{cpxr2) -v{cpxr2), and by
Proposition 2.9, v(h) = 2jz(h). Thus we have

v(q>t) = 7t{cpt) = ocv(fx) + (1 - arM/0 ± 2V(or(l - or)) \v{h)

= ca){fx) + (1 - a)v(fx) ± V(or(l - a)) v(h).

Finally,

2P2(fx)h = 2P2(/1)G(<Plh/2 " (Pm)) = (Vm |/i>/i - {<Pm |/i>/i = i/i - l/i = 0.

Similarly, P2(fx)h=0. Thus by Lemma 2.3, Px(fx)Px(fx)h = h.

Since the unit ball of any normed space is built up from its faces, to show that a
map is an isometry, it is necessary to obtain information about faces different
from the original one. A natural face to consider first is the one with centre h
arising in the previous proposition. Note that by (33), h is unitary and hence is
the centre of a face. The next lemma gives a partial result about this face. The full
description of this face will be given in Proposition 4.4.
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LEMMA 4.2. With the assumption (25) and the notation and assumption of
Proposition 4.1, let u = v(h), v = v(fx) and vx = v(fx). Then

Z2(vx + vx) = Z2{u).

Proof. Since fx +fx = <pm + q>x/2e spR Fh, we have vx + vx e U2(u) and there-
fore, by [7, Theorem 2.3], U2(vx +vx) c= U2(u) and FUl+Ol c= Z2(w) so that
Z2(vx + vx) c Z2(u). Similarly, since h = \{(pti2 - <pm) e spR FUl+Ol c Z2(vx + v^,
we have u e U2(vx + t^) and Fu a Z2(vx + vx), so that Z2(u) c Z2(ui + D^.

The following lemma is needed in the proof of Proposition 4.4.

LEMMA 4.3. With the assumption (25) and the notation and assumption of
Proposition 4.1, let u = v(h), vx = v(fl) and vx = v{fx). Then for each cp e Fu, we
have di((p, vx- vx) =0.

Proof. With a:=2 + t and t real and small in absolute value, we have, from
(32),

1 = \\v(<pt) - v((pT-a)\\ = \\2t(vx - vx) + V(l - At2) u\\.

Therefore,

and for cpeFu,

that is,

|1 4-

The lemma follows by taking real parts and letting t—»0.

To describe a face, it suffices to obtain orthonormal sets {ex, e2} 'parallel' to it.
In order to predict what these orthonormal sets should be, we examine the
corresponding situation in the concrete spin factor. The 'phase' of the face F^ is 1
and thus the conditions of Proposition 1.11 yield

r = £, ef = -ex, e? = -e2. (34)

Moreover, £, ex, e2 form an orthonormal set. The face Fe2 with centre e2 may
contain multiples of ex and § since the orthogonality condition is not changed.
Since e2 = -e2, the 'phase' of Fei is —1 and the orthonormal set must consist of
self-adjoint elements. The element £ is self-adjoint, but the element ex must be
multiplied by / to become self-adjoint (cf. (35)).

The difficulty in proving Proposition 4.4 is due to the fact that a complex
phenomenon is being obtained from a real (that is, facial) structure.

PROPOSITION 4.4. Let Z satisfy (25). As in Proposition 4.1, let {ex, e2} be an
orthonormal set in the Hilbert space $?§ defined by a rank-2 face F%, and define
fx = ex + £, fx = § — ex, and h = e2. Let u = v(h), vx = v(fx) and vx = v(fx). Then
Fhis a rank-2 face,

{£, iex} is an orthonormal set in %€h (35)
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and

h: AeC, |A|=sl}, (36)
where Y = spc{ei, e2, £}. In particular,

(extFh)HY = {\{Xfx + Xfx) + h: A eT} . (37)

Proof. Let <p e FU and set, in accordance with Lemma 4.3, <p(vi) = a + i/S,
(i)i) = a + ijS, with or, jS, j3 G R, From Lemmas 2.3 and 4.2, we have

<p = (a + ifi)fx + (a + 0)fx + h' with h' e Zx(vx) n Z1(u1). (38)

Note that h'(u) = 1 and \\h'\\ = | |Pi(ui)^|| «s \\<p\\ = 1 so that h'eFu as well.
By (31), u = v{h) = viwta) - v((pxl2) :=w + w, say. Then by (15) and (16), we

have w =s u and

Thus P = -p and (38) becomes

(a-*/?)/•+/*'. (39)

On the other hand, the fact that \<p{]ivx + }ivx)\ ^ 1, with // = exp[/ arg(o' + //?)],
leads immediately to |2(ar+ i"/8)| *sl. Assuming further that q> lies in Y (the
complex span off1)fl,h),'we have h' = h so that c holds in (36).

To prove the reverse inclusion, note first that P2(w)f\ =f\(w)q>m = 2<Pi/2- Also

+ w)U = P0(w)P2(u)fl

= -2<Pm',

and thus 5,/a = [2(P2(w) + P0(w)) - / ] / , = 2(<p1
+/2 - <pr/2)/2 - / , = / , .

Since w ^ u, SW(FU) = Fs> = Fu. Therefore, for any cp e Fu D Y, by (39),

Swq> = (a- iPft + (a + i$)fx + h e Fu,
and thus

<p-Swq> = !&&-&). (40)

We shall show below that

there exists some q> e Fu C\ spc{/j, fXi h) with /3 ^ 0 in (40). (41)

Assuming (41), we can rewrite (40) as

w , 2s_<p-Sw<p_(q)-h)- (Sw<p - h)
2«(/i / i ) - ^ - ^ ,

which shows that iex = \i(fx -fx) eVth. By direct calculation,

( | | i e 1 ) = 2 < | + A|«r1 + A > « l

| ^'(/i - / i ) + k(<Pm-<Pm)) ~ 1
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proving (35). Therefore the unit ball Bh of the real Hilbert space 3Ch contains the
orthonormal set {\i{f\ - / i ) , J(/i +/i)}> afld it follows that

and

that is,

This proves equality in (36). Since in a Hilbert space all unit vectors are extreme,
(37) follows.

It remains to prove (41). We first show that there is some q> e Fu with /3 # 0. By
(39),

with h' e Zx(u) D Z^O) D Fu. Now suppose that /3 = 0 for all (p e FM. Then for all
such cp,

and Sw(p = aUr +/i) + Swh', so that <p - Sw(p = h' -Swh'.
But 5^/1' €Z^Vx), since S^/i' G F U C Z 2 ( ^ I + V\) implies

Swh' = (Swh', vl)fl + (Swh't O / t + PiO

and, for example, (Swh', fi) = (/i', 5*ut) = (h', vx) =0.
Therefore, Px{w)h' = PI(UI)PI(W)/I', and we have

Since <J5 e Fu is arbitrary, this implies Pl(w)P2(u) = Px(vl)Px(w)P2(u). Now/, €
Z2(«) by Lemma 4.2, so that .Pi(w)/i = P\(vx)Pl(w)fu and thus

fx-fx = (I- Sw)fx = 2Px(w)fx = 2Px(vx)Px(w)fx = P,(Wl)(/i - / i ) = 0,

a contradiction. Thus (41) is true for some q> eFu.
We can now complete the proof of (41). We start with a cpeFu, with /J^O.

Writing (again)

cp = (a + iP)fx + (a- iP)fx + h' with h'e Fu>

we have h' — h € Fu — h = Bh. Therefore, h — h' = —(h' — h)eBh = Fu — h so
that 2h-h' e Fu. If we now set <p' = \{cp + (2h - h')) € Fu, then

/i + {{oc - itf)fx + heFunY

and 2)3 = 0̂ as required.

The following corollary reduces to Proposition 4.1 in the case where ju = 1. For
arbitrary \i, the 'phase' of F(M/I+^I) /2 remains equal to 1. The centre h{\if\ + p-fx)
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remains in the span of £ and ex, and so is orthogonal to e2. Since 2(ju/, — Pfi) is
anti-self-adjoint and orthogonal to e2, it provides a natural candidate for the
second vector (cf. (34)).

COROLLARY 4.5. With the notation and assumptions of Proposition 4.4, for each
p e l ,

{5( /̂1 - ju/i), e2) is an orthonormal set in 2e(fifi+M)>2 (42)

and with §„ := £(JU/, + Jifx),

(ext Ffe) fl Y = {art + (1 - « )# , ± 2V(.or(l - or)) A: or € [0, 1]}. (43)

Proof The assertion (42) holds if and only if

/ !„ and
are extreme points in F^ with transition probability | . The first vector is ju/i which
is obviously in ext F^. The second vector is h + £(#/j + ju^) which is in ext Fh by
(37). Since F^ =/^Ul+Mc1, this vector lies in F^. Moreover,

We now apply Proposition 4.1 to the data in (42). By (28) we have (43).

The following theorem characterizes the spin factor of dimension 3.

THEOREM 4.6. Let Z be an atomic neutral SFS space satisfying the properties
(FE) and (STP). Let {et, e2] be an orthonormal set in the Hilbert space $?§
defined by a rank-2 face F%. Define ft = ex + f, f\ = % — ex, and let h = e2. Then
Y := spcl/x, fi, h) is linearly isometric with S2(C)*, the predual of the JBW*-triple
of two-by-two symmetic complex matrices. In particular, if Z = Z2{F^) and %£% has
dimension 2, then Z = S2(C)#.

Proof Let M = S^C) and define the map K: M*—>Z by

([y*([y
where a, (3, y e C. The map K is a linear isomorphism of M onto Y. We shall
show the following:

ttl)cextZu (44)

in extM*,! => K(R)O*(S). (45)

Suppose that we have proved (44) and (45). Every ReM* has the form
R = XXRX + k2R2 with /?! and R2 orthogonal extreme points in M* and Xlt k2e C.
Then K(R) = A^/?,) + X2K(R2) and by (44) and (45), \\K(R)\\ = |A,| + |A2| = \\R\\,
proving the theorem.

We proceed to the proofs of (44) and (45). Let R e ext Af*tl, say

.b cJ
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where without loss of generality, in order to prove (44), we may assume that
a=£0 and ac^Q. Let k = a/\a\ so that c = A|c|. Since 6etR = 0, we have
\b\2= \a\ \c\. Moreover,

1 = tr(R*R) = \a\2 + 2 \b\2 + \c\2 = (\a\ + \c\)2.

Thus c = A |c| = (1 — |a|)A. Once more from det R = 0 we have

b = ±y/{\a\(l-\a\))

and K(R) = \a\Xfx + (l-\a\)Xfx±2V(\a\(l-\a\))h, with |a|e[0, 1]. Thus (44)
follows from (43).

To prove (45), note first that since M0(R) (the Peirce 0-space of R) is of
dimension 1, 5 is a multiple of

-b \a\k

which is obviously orthogonal to R (that is, R{S)* = (S)*R = 0). Now from (43)
and (30), it follows that K(S) = (1 - \a\)kfx + \a\ kfx - 2bh is orthogonal to K(R),
proving (45).

We next characterize the spin factor of dimension 4. For this we need to add a
second pair /2,/2 of orthogonal extreme points to the vectors fx,fx already
obtained in such a way that the four vectors correspond to the standard basis in
the predual of the JBW*-triple A/2(C). The construction of these extreme points is
provided by the following proposition. In a concrete spin factor, elements of the
orthonormal set {ea} all have the same 'phase'. The elements of the grid are
obtained from Proposition 1.11 by adding two orthogonal elements of opposite
'phase'. Since multiplication by i changes the 'phase' to its opposite, elements of
the form e, ± iek will be extremal (cf. (49)).

PROPOSITION 4.7. Let Z be an atomic neutral SFS space satisfying the properties
(FE) and (STP). Let {elt ez, e3} be an orthonormal set in the Hilbert space $f5
defined by a rank-2 face Fg. Then with h = e2,

{iex, %, ie3} is an orthonormal set in %th (46)

and there exist orthogonal extreme points f2, —f2 e Fh such that

With f\ = ex + Z-, fx = t- — ex as before, we have

i, e3, §} = spc{/i, / i , h , f2}. (48)

Proof. Apply Proposition 4.4 to the orthonormal pairs {ex, e2} and {e3, e2}
in $?g to obtain orthonormal pairs {§, iex} and {§, ie3} in the Hilbert space $?C2.
Now iex, ie3 are orthogonal in this Hilbert space if and only if iex + h and ie3 + h
are extreme points of Fh with transition probability 2. That these are extreme
points follows by setting A = / in Proposition 4.4. The transition probability can be
computed using the easily verified formula

This proves (46).
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Now apply Proposition 4.1 to the orthonormal set {£, ie3} in the Hilbert space
df€e2. Then, with

f2:=ie3 + e2 and f2:=-ie3-e2, (49)

f2 and —ji are orthogonal extreme points of Fe2, and (47) is satisfied. From this
(48) is immediate.

The following example illustrates Proposition 4.7 and will be used in Lemma
4.9. The —1 in the definition of f2 is due to the fact that spin grids contain odd
quadrangles [3, Corollary, p. 313].

EXAMPLE. Let Z = M2(C)*, let £,-,- be the standard matrix unit in A/2(C)*, and
let

Then F% is the state space ff of the C*-algebra M2(C). We claim that {e,, e2, e3}
is an orthonormal set in $?g, where gj = \{jx —fx), e2 = h, e3 = \i(f2 +/2). For this
it is required to show that ex + | , e2 + %, e3 + % all belong to F^ and each pair in
this family has transition probability \. Now

and

Therefore each of these vectors belongs to F^, and moreover,

.0 oJU i J J " 2 '
and similarly for the others.

We now recall the description of the state space 5̂  of the C*-algebra A/2(C).
Let C denote the centre £ of the face Sf. Since A/^C)* is the predual of a
JBW*-triple, it is an atomic neutral strongly facially symmetric space satisfying
(FE) and (STP), so by Proposition 4.7,

$f-C = {\r{En - E22) + \s{Ex2 + E2i) + ift'(E,2 - E2l):

r2 + s2 + t2^l,r,s,teU},

and therefore

Sf= {C + \r(Eu - E22) + is(El2 + E2l) + \ti(E\2 - E2l):

r2 + s2 + t2^l,r,s,teM},

which, with A = s + it and

Px.r = 1(1 + r)En + |(1 - r)E22 + £AE12 + \XE2X (50)
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implies

Sf={pA,r: r e (R ,AeC, r 2 + |A | 2 ^ l} , (51)

and

ext^={pA>r: reU, AeC, r2+|A|2 = l}. (52)

Finally, since Px,r + P-^-r= C, we have

PA.OP-A,-, (53)

We now obtain the characterization of the complex spin factor of dimension 4.

THEOREM 4.8. Let Z be an atomic neutral SFS space satisfying (FE) and (STP).
Let {ex, e2, e3} be an orthonormal set in the Hilbert space $?§ defined by a rank-2
face Fg. Then with fx = ex + £, fx = £ - ex, h = e2, and f2, f2 given by Proposition
4.7, we have that Y' '• = spc{ fX)fx,f2,f2} is linearly isometric with M2(C)*, the
predual of the JBW*-triple of two-by-two complex matrices. More precisely, letting
Eij denote the canonical matrix units in A/2(C)*, we see that the map

Eu^'fi) E22>-+fx, Ex2^f2, E2x*-+-f2,

extends linearly to an isometry v o/M2(C)* onto Y', and

v(ext Af2(C)»tl) c ext Z,.

In particular, if' Z = Z2(F%) and $?§ has dimension 3, then Z = M2(C)*.

Proof The map v is obviously a linear isomorphism of M2(C)* onto Y'. As in
the proof of Theorem 4.6, we shall show the following:

v(extM2(C)».,)cextZ1; (54)

ROS in extM2(C),tl >̂ v(J*)<>v(S). (55)

Suppose that we have proved (54) and (55). Every R e A/2(C)* has the form
R = XXRX + k2R2 with Rx and R2 orthogonal extreme points in M2(C)* and
At, A2 e C. Then v(R) = X^RJ + A2v(fl2) and by (54) and (55),

| |v(K)|| H A J + I A ^ 11*11,
proving that v is an isometry.

The statements (54) and (55) follow from the next two lemmas, as shown below
after the proofs of the two lemmas. In Lemma 4.9, the notation is that of
Theorem 4.8. The mapping nz is defined in Proposition 2.9 above.

LEMMA 4.9. For any two orthogonal non-zero projections P, Q e M2(C),
p := JTZ° v°^r^(C)<(P) and q := nz°V°JT^C^(Q) are orthogonal minimal geo-
metric tripotents of Z. Moreover, for any jU 6 T, v maps F^p+^Q onto F^+j^ D Y',
where Y' = spc{/i, fx, f2, f2),

and v maps orthogonal elements of FM/>+^Q into orthogonal elements of Z.
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Proof. By the above example, the state space Sf of the C*-algebra M2(C) is a
norm exposed face Fc with centre C = 2(En + £22) and &— C is a Hilbert ball
with orthonormal basis

\{En-E22), k(En + E2x), \i{EX2-E2x).

The map v sends the centre C into 2{fx +/i) and the orthonormal basis into

which is an orthonormal set, say {ex, e2, e3} in the Hilbert space $C% determined
by the given rank-2 face F§, with centre § = 2(/i + /i). Therefore (using Theorem
3.8) we have

v(y) = F e n r , (56)

v(ext Sf) c ext F% and (by Theorem 3.8 and Proposition 4.1) v maps orthogonal
elements of £f into orthogonal elements of Z. Thus p, q are orthogonal minimal
geometric tripotents.

Let P = JIM1
2(C)AP)> Q = JI:MI(C)XQ) be the extreme points in M2(C)*tl co-

rresponding to the elements P, Q respectively. Then j(P + Q) is the centre of the
norm exposed face FP+Q = S/> and the Hilbert ball FP+Q - \{P + Q) = & - C
contains an orthonormal basis of the form

{\{P-Q),E'2>E',},

where E2, E'3 are elements of fflc. By (56), the map v takes this centre and basis
into the centre 2(p + q) of F§ and an orthonormal set in ffl% of the form

{\{p-q),e'2,e'3},

where e2, e'2 are elements of 3i?g. For any ju eT, by Corollary 4.5 and Remark
3.11, v takes the orthonormal basis

{\{liP - JiQ), E2, E'Ji in

into the orthonormal set

- Jlq), e'2> e'3} in

Therefore, as above, v maps F^+JXQ onto F^+j^ n Y' in such a way that
extremality and orthogonality are preserved.

A special case of the following lemma, which concerns a concrete spin factor, is
needed in the proof of Theorem 4.8.

LEMMA 4.10. Let F^ be a rank-2 face with %* = % which spans the predual Z of a
concrete spin factor. For any extreme point q)eZx, there exist j t teT and
orthogonal extreme points f, f in Fg such that cp e

Proof. Since q) is an extreme point, r) := \{cp + <p#) is the centre of a rank-2
face containing q>. Now 77 and % are vectors in the Hilbert space Z and the vector
y:= rj-2(»7 I §)§ is orthogonal to | . If y = 0, then |2( r / |§) | = l. But
2(rj I §) =2di((p I £) and therefore 17 = ±§. By definition of face, <p e F±g, so
the lemma follows with ju = ±1.
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We may now assume that y^O, and therefore ||2(r71 £)£| |2< Illlb* t n a t is>
2 | < ! j | | ) | < l . Set fi = 9 t2<y |£ )+ i ( l - (9 t2<y |§» 2 )* . If 2 ^ = 0, then
(»? 11) = 2» a contradiction. Thus %fi =£ 0 and we can solve for the vector ex in the
equation

We find that ef =-eu (<?i|£>=0, and ||ci||i = ^ the latter since |= : | |y | | |
(9ty)2

2 + (Sju)2 Ikilll- Therefore, by Proposition 1.11, %±ex are extreme points
in Fg and r\ = J[p(§ + e^ + £(§ - ex)].

If we apply Lemma 4.10 to Z = Af2(C)# which is the span of the state space Sf
of the C*-algebra A/2(C), we obtain the following corollary.

COROLLARY 4.11. Every element A e ext M2(C)*il belongs to a face of the form
fiQ for some orthogonal non-zero projections P, Q e M2(C) and some fieJ.

We can now complete the proof of Theorem 4.8. To prove (54), note that by
Corollary 4.11, an extreme point A in A/2(C)* belongs to a face F^P+^Q and by
Lemma 4.9 this face is mapped by v onto Fw+VLq D Y' in such a way that v(A) is
an extreme point of Zx- Moreover, since the space orthogonal to A in A/2(C)* is
one-dimensional and there is an element A in F^+^Q orthogonal to A which is
mapped by v to an element v(A) in Fw^q orthogonal to v(A), v satisfies (55).
This completes the proof of Theorem 4.8.

In a JBW*-triple, the basic operator D(x, x): y^{xxy} is hermitian, that is,
expitD(x, x) is an isometry for all teU. If x = u is a tripotent, this says that
Sn(u):= fiP2(u) +Px(u) + jiP0(u), where Pk{u) denotes the Peirce projections
associated with u, is an isometry for each \i eT. It is an open question whether
the corresponding result holds in a facially symmetric space, that is, whether for
each geometric tripotent u in a facially symmetric space, the map S^(u): =
liP2{u) + P\(u) + p.P0(u), where Pk(u) denotes the geometric Peirce projections
associated with u, is an isometry for each jueT. However, we do have the
following corollary to Theorem 4.8, which answers this question affirmatively in
the case of a minimal geometric tripotent in a facially symmetric space of type I2.
This corollary is needed in the proof of Theorem 4.16. It is convenient to note the
following remark first.

REMARK 4.12. If Fg is a rank-2 face and if {e;}y6/ is an orthonormal basis for the
real Hilbert space $?§, then

spc{e>, £},<=/ <= spc F5 c spc F̂  = spc{ey, §},6/ = Z2(F^).

COROLLARY 4.13. Let f be an extreme point of a rank-2 face F% and assume that
the underlying SFS space is neutral and satisfies (FE) and (STP). For fieT,
define S^f) := ^P2(/) + Px{f) + &P0(f). Then S^f) is a bounded operator on Z
with inverse 5^(/), and 5M(/) is an isometry of Z2(F^) onto Z2(F%) (recall that Pk(f)
denotes Pk(v(f))).

Proof. Obviously | |5M(/)| |^3 and since 5^(/)5M(/) = /, 5M(/) is invertible.
Since / e F5, v(f) e U2(F^) and by [7, Theorem 3.3], 5M(/)(Z2(Fg)) =
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To show that 5M(/) is an isometry on Z2(Fg), let / be an extreme point of F%
orthogonal to / such that £ = 2 ( / + / ) , and pick an orthonormal basis {ej}jel for
$f§ containing ex = \{f - / ) . For <p e spc{ey, | } y e / we have

with z, w £ C and ajt ftelR.
Therefore <p e spc{/,/ , 62, e3} where e2, e'3 e $?§ are chosen so that {eu e'2, e3}

is an orthonormal set in $fg and

For notation's sake, set/i =/ , fx —f. By Proposition 4.7, there exist orthogonal
extreme points h,—fz^Fei

 s u c n that e2 = 2(/2~/2) a nd e'^ = iKfi+fz)- Thus
spcl^i, e2, e'3) §} =spc{/1 , / 1 , / 2 , / 2}, and since s p c ^ , §} =spc{/1,/1}, we have

via
{fl>fl> fit fz} *-* {^ll> -̂ 22> ̂ 12> —-^2l}

by Theorem 4.8. Now e2, e3, /2, /2 e Zx{f) since e2 and e3 are orthogonal in
to e^ Therefore if

<P = a 11/1 + 022/1 + a 12/2 + 021/2 with a,y e C,

we have

Sn(f)<P = /^11/i + ^22/1 + 012/2 + 021/2,

and

aX2

- 0 2 1

011 012
— fl21 fl22

We shall now construct a generating family for a space of type /2.

DEFINITION 4.14. A dual spin grid in a facially symmetric space Z = Z2(i^) of
type /2 is a family {fj, ^}>6/u{i}, or {fj, ̂ },6/u{i} U {/0}, where / is an index set not
containing 0 or 1, and for each j e I, fj, fj are a pair of orthogonal extreme points
of Zx such that £ = K/i+/i) , and with ex = \(fx-fx), e, = &}-$) and e) =
Hfj+fj) 0"e/), the collection {el,eJ, ej}Jeii or {fii, ey, <?;}y-6/U {/<>}, is an
orthonormal basis in the Hilbert space 2^.

Note that this definition is invariant under surjective isometries (the 'isomorph-
isms' in the category of facially symmetric spaces). Also, the dual basis of a spin
grid in a concrete spin factor (cf. [3]) is an example of a dual spin grid.
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The following simple lemma will be used several times in the main theorem
which follows it.

LEMMA 4.15. In a neutral SFS space Z of type I2, let {fi, fi}jelU{Xt2), or
{f;> fj}jeiu{i,2} U {fo}> be a dual spin grid, where 1 is an index set not containing
any of the elements 0, 1, 2. Let {f[, f[, f2, f2} be any dual spin grid in
sPc{fi>fi>f2>fz} (which exists by Theorem 4.8) and suppose that f[ +f[=fx+fx.
Then

or
{/;,/;,/2,/2}u«^}y6/

is also a dual spin grid for Z.

Proof. Let §' = \{f\ +/I). Then £' = | , ^ = %r and

{i(/i-/iU(/W3,fc(/W0}
is an orthonormal set which has the same real span as {ex, e2, e2}. Therefore,

{Wl - / I) , i(fi -fr), hM +/»} u {ej} e;}jel

is an orthonormal basis for $?§.

The following is the main result of this paper.

THEOREM 4.16. Let Z be an atomic neutral SFS space of type I2 over C and
assume the properties (FE) and (STP). Then Z is linearly isometric to the dual of a
concrete spin factor.

Proof. Let F? be a rank-2 face with Z = Z2(F?). Construct a dual spin grid for
Z by applying Proposition 4.7 as follows. First, let {e j U {eJf e'j}je, (if ^ is
infinite-dimensional or of odd finite dimension) or {ex} U {eJf ej}Je, U {e0} (if VC^
is of even finite dimension) be any orthonormal basis for $?§, where / is an index
set not containing either 0 or 1, and let fx = e, + £, /i = — | — ex. For each / e / , by
Proposition 4.7 applied to the orthonormal set {ex,ei,e'j), we obtain fjf —fie
ext Fe such that

and for each j e I,

spc{ex, ej, e], £} =spc{fx,fx,fj,fi}.

Moreover, by Theorem 4.8, spc{fi,fi,fj,Jj} = M2(C)+.
Let {gj,gj}jel, or {gj, gy}y6/U{g0}, be a dual spin grid for the dual of a

concrete spin factor % of the appropriate dimension corresponding to the index
set /. This means that {n^(g}), n<$(g,)}jei, or this set together with Jiy>{go), is a
spin grid for a Cartan factor of type 4 (complex spin factor), as described in [3,
Corollary, p. 313] and § 1. We shall assume in the rest of this proof, for
convenience, that $?| is either infinite-dimensional or of odd finite dimension.
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Trivial modifications complete the proof in the other case. Now

which is norm dense in Z = Z2(F%) by Remark 4.12. Therefore, the map T
defined by Tgj=fj, Tgj=fj extends linearly to a map from a dense subspace of
^ to a dense subspace of Z. We shall show that T is an isometry.

For notation's sake let % and %' denote the dual spin grids chosen above for Z
and <#* respectively. Let g e spc<§". We shall show that | |7g||z = \\g\\<e. which will
prove the theorem. First of all, if g is a linear combination of g} and gy for a fixed
/, then by orthogonality of gjt gy and of fjjj, it is clear that | |7g||2 = ||g||«.. To
handle the other cases, we shall prove, by induction on n, the following assertion:

If n 2=2 and if {gh |,},ey is any dual spin grid for <#, then T is an isometry
from spc{g!, gu ..., gn, gn} into Z.

For n = 2 this is proved in Theorem 4.8. Suppose that n > 2 and let g belong to
spc{gi>gi>~->gn>gn}' Write g = h + k where h = axgx + dxgx + a2g2 + a2g2 and
k = £j-3(ajgj + ajgj). Since spc{gi, gi, gi, gi} is isometric to A/2(C)*, /i has a
spectral decomposition (cf. Proposition 1.5) h = txpx + t2px where tu t2 e C and by
Lemma 4.9 (with Z = <#*) and Corollary 4.11, p, e ext F^P+fiQ for some or-
thogonal minimal partial isometries P, Q in ^ (corresponding to orthogonal
minimal projections in M2(C)) and some ^ e T.

In the following let % ={ / , , / „ / 2 , / 2 } U ?0U «„ where % = { / 3 , / 3 , ...,/„,/„}
and Si = «\($,U{/ , , / l f / 2 f / 2}) . Similarly, let «' = {glf g,, g2, g2} U ^ U »J,
where % = {g3, g3, ..., #„, gn} and g; = ^'\{%'o U {g,, g,', g2, g2}), and refer to
the diagram.

grid T grid
%' spc g' - ^ spc % %

I I
{A Q, hly h,} s p c r _L> s p c « {rA r e , 77,,,

spc »' - ^ spc » {J^^A A ^ , Thu Thx)
I I U

(Pi, Pi, p2, p2) r Jl^ y {rp,, 7p,, 7p2, Tp2)
U»iU»i c U

With y":=spc{gi, gi, g2,12} (<=^*), choose/iu ^Lsuch that {A Q, hu hx) is
a dual spin grid for Y". By Lemma 4.15, {A Q, hi, hi} U ^ U ?J is a dual spin
grid in ^ Since r | y - is an isometry (by Theorem 4.8), {TP, TQ, Thu Thx) is a
dual spin grid for TY" (cZ) . By Lemma 4.15, {TP, TQ, Thx, Thx) U %0U %x is a
dual spin grid for Z.

Now Sjj{P) and S^TP) are isometries by Corollary 4.13. Therefore a dual spin
grid in <## is given by {p,P, fiQ, hx, h^U^oU^ and one in Z is given by
{fiTP, JiTQ, Thx, Thx) U ^ U ^ . Next, it is easily checked that, on a dual spin
grid, Sli(TP)TSji= T, and hence the middle part of the diagram commutes.

Choose p2, p2 such that {px, px, p2, p2} form a dual spin grid of Y". Since
px, Pi € F^p+jiQ, by Lemma 4.15, {px, px, p2, p2} U %'Q U %\ is a dual spin grid of
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<#„,. As above, T maps this dual spin grid onto a dual spin grid of Z. Note that, by
induction, T\x is an isometry, where X :=spc({pu p,} U <£Q)- Since geX,
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