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ABSTRACT

The main result of this paper is a geometric characterization of the unit ball of the dual of a
complex spin factor.

THEOREM. A strongly facially symmetric space of type I, in which every proper norm closed face in
the unit ball is norm exposed, and which satisfies ‘symmetry of transition probabilities’, is linearly
isometric to the dual of a complex spin factor.

This result is an important step in the authors’ program of showing that the class of all strongly
facially symmetric spaces satisfying certain natural and physically significant axioms is equivalent
isometrically to the class of all predual spaces of JBW*-triples.

The result can be interpreted as a characterization of the non-ordered state space of ‘two state’
physical systems. '

A new tool for working with concrete spin factors, the so-called facial decomposition, is also
developed.

Facially symmetric spaces were introduced and studied in [6] and [7] as a
geometrical model for quantum mechanics. They provide an appropriate frame-
work in which to study the problem of characterizing the unit ball of the predual
of a JBW*-triple (cf. [5]) in terms of geometric and physically significant
properties of a convex set. In this paper we will restrict ourselves to atomic spaces
(Definition 2.5). The rank-1 case, together with the axiom (STP) (symmetry of
transition probabilities, Definition 2.8) leads easily to a Hilbert space, as will be
shown in § 2 (Corollary 2.11). The next significant case, that of rank 2, will be
treated in detail in §§ 3 and 4. This case occurs already as the model for the state
space of a spin-3 particle. More generally, this model can occur for any physical
system in which each measurement results in at most two distinct outcomes (‘two
state systems’).

A standard algebraic model in this context is the (real or complex) spin factor.
Since this is a Jordan algebra (JB-algebra in the real case, and JB*-algebra in the
complex case), its state space has been extensively studied. Less well known is the
structure of the entire dual ball. In the real case, as will be shown below (see
Proposition 1.8), this is the intersection of two cylinders based on real Hilbert
balls. These two Hilbert balls are either of the same dimension, or their
dimensions differ by 1. In the complex case, the geometry of the spin factor has a
much richer structure, an analysis of which is carried out in this paper.

The main result of this paper is a geometric characterization of the predual ball
of a complex spin factor. This is the same as the unit ball of the dual since the
spin factor is a reflexive Banach space. We show (in Theorem 4.16) that any
facially symmetric space of type L (Definition 3.10) satisfying some physically
significant geometric axioms ((STP) and (FE), Definition 3.3) is linearly isometric
to the predual of a complex spin factor. This result is an important step in the
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program whose objective is to show that the dual of any facially symmetric space
which satisfies certain natural geometric axioms supports the structure of a
JB*-triple. Conversely, it is known that the predual of every JBW*-triple is a
neutral strongly facially symmetric space [8, Theorem 3.1] which satisfies (STP)
[5, Lemma 2.2] and (FE) [4, Corollary 4.5].

The organization of this paper is as follows. In § 1 we describe the facial
structure of the dual ball of the concrete spin factor, using the basis called a spin
grid in [3] and [10]. This facial structure was revealed from the study of facially
symmetric spaces of type I, carried out in §§3 and 4. The first named author
wishes to thank Professor Itamar Pitowsky of the Hebrew University for
discussions of the connections of this facial structure to models in quantum
mechanics. These discussions were instrumental in the formulation of the material
of § 1. Although the results of § 1 are presented here primarily to illustrate in a
concrete form the abstract results of §§3 and 4, nevertheless, some of these
results are used to simplify the proof of our main theorem. Moreover, the
(facial) decomposition introduced here (Proposition 1.11) may provide a new
tool for working with spin factors.

In § 2 the definition and some properties of facially symmetric spaces are re-
called and some supplementary results from the global theory of facially sym-
metric spaces are proved. The definition and some properties of atomic spaces
are given and the principal geometric axioms are introduced. It is shown that an
atomic facially symmetric space satisfying these axioms admits a symmetric
sesquilinear form, which leads to a Hilbert space structure in the rank-1 case.

In §3 we show that a rank-2 face in an atomic neutral strongly facially
symmetric space satisfying the axioms (FE) and (STP) is affinely isometrically
isomorphic to the unit ball of a real Hilbert space, and moreover that the unit ball
of the real linear span of this face is a cylinder with the Hilbert ball as its base.
This provides a fundamental computational tool for the main result in § 4.

-In § 4 we study the complex span of a rank-2 face, which by definition is dense
in a facially symmetric space of type L. Starting from an arbitrary orthonormal
basis in the real Hilbert space whose unit ball is affinely isomorphic to the given
rank-2 face, we construct a total subset (called a dual spin grid) which resembles
the ‘dual’ of a spin grid in a concrete spin factor. In this construction, the
imaginary unit enters naturally from geometric considerations. After a reduction
to finite dimensions, it is shown by a induction argument that the linear extension
of the natural map between the two dual spin grids (abstract and concrete) is
isometric, and therefore extends to an isometry of the dual of the spin factor onto
the norm closure of the complex span of the rank-2 face. The induction proceeds
by two dimensions at a time, so it is necessary to analyse in complete detail the
cases in which the Hilbert spaces arising from the rank-2 face are of dimensions 2
and 3. This leads to characterizations of the spin factors of dimensions 3 and 4,
namely, the JBW*-triples S,(C) of 2 by 2 symmetric complex matrices and M,(C)
of all 2 by 2 complex matrices.

The following symbols will be used in this paper: the closed unit ball of a
normed space X will be denoted by X;, R denotes the set of real numbers, C
denotes the set of complex numbers, and T denotes the unit circle in C.

The duality between a normed space X and its dual X™* will be denoted by
(@, x) or by (x, @) for (@, x) e X* x X. The real and imaginary parts of a
complex number z will be denoted by Rz and Jz.
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For a convex set K in a normed space Z, ext K denotes the set of extreme
points of K. An element f € K is said to be norm exposed in K if {f} = KN H for
a suitable hyperplane H. The set of norm exposed points of K will be denoted by
exp K. More generally, F c K is a norm exposed face of K if F=KNH. In
general, exp K cext K, with equality holding, for example, in the case that
K = U, , is the unit ball of the predual U, of a JBW*-triple U [5, Proposition 4].
The equality ‘exp Z, =ext Z," for a normed space Z is a physically meaningful
assumption and is analogous to one of the pure state properties of Alfsen and
Shultz [1] (cf. Definition 2.8 below).

1. Facial structure of the dual ball of the spin factor

The spin factor, or ‘spinors’, occur naturally in different areas of mathematics
and physics. Several (equivalent) definitions exist and are used. In this paper, the
definition of spin factor will be based on algebraic properties of a natural basis
called a spin grid, which is shown in [3] and [10] to generate the spin factor
linearly and topologically. It is known (cf. for example [9]) that the complex spin
factor can be represented as a norm closed subspace of the bounded operators on
a complex Hilbert space which is stable under the operation a— aa*a and which
generates the Clifford algebra (CAR algebra) as a C*-algebra. The spin factor has
the structure of a complex Banach Jordan *-algebra (JB*-algebra) and is thus an
example of a JB*-triple (cf. [5]). It is the complexification of the real spin factor,
which is a JB-algebra.

We begin by recalling the recent description (see [3]) of the algebraic structure
of a spin factor or so-called Cartan factor of type 4, which we shall refer to as a
concrete spin factor. Although the concrete spin factor can be realized as a norm
closed subspace of B(#), our approach will be via spin grids. This approach
simplifies our calculations and makes possible an elementary description of the
facial structure of the unit ball of the dual space. ’

DerFiniTiON 1.1. A Banach space U over C is said to be a JB*-triple if it is
equipped with a continuous triple product (a, b, ¢)— {abc} mapping U x U X U
to U such that

(i) {abc} is linear in a and ¢ and conjugate linear in b;
(ii) {abc} is symmetric in the outer variables, that is, {abc} = {cba};

(iii) for any x € U, the operator 6(x) from U to U defined by 6(x)y = {xxy},
y € U, is hermitian (that is, expitd is an isometry for all real ¢) with
non-negative spectrum;

(iv) the triple product satisfies the following identity, called the ‘main identity’:
S(x){abc} = {d(x)a, b, c} — {a, 6(x)b, c} + {a, b, d(x)c}; 1

(v) the following norm condition holds: A
Il {exx I = Il @

A non-zero element a in a JB*-triple is called a tripotent if a = {aaa}, and we
say that a is a minimal tripotent if it cannot be written as a sum of two
orthogonal tripotents, where elements a and b are said to be orthogonal if
{abx} =0 for every x € U. For example, in the above-mentioned representation
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of a spin factor as bounded operators on a Hilbert space #, the triple product is
given by {xyz} =3(xy*z +zy*x) for x, y, z € B(%), so the tripotents are pre-
cisely the partial isometries, and orthogonality of tripotents corresponds to
orthogonality of operators. We shall not make use of this representation
anywhere in this paper.

We are now going to construct the triple product and norm in a concrete spin
factor in an elementary way by using properties of a spin grid. The assumptions
that we make in the following definition are known to hold for a spin grid in a
spin factor [3].

DeriniTiON 1.2. Let I be an index set of arbitrary cardinality. A basis, or spin
grid is a collection % of linearly independent elements {u;, &I;};; or {uo, w;, @;};c;.
Define a triple product {uvw} for elements of the basis by

1. {uuu} = u for all u € ¢ (the basis will consist of tripotents);
2. for distinct non-zero i, j,

(w; will be colinear with u; and with &;, and & will be colinear with &;), and
{uujiz;} = =3, {wigi) = f%ui

.(the quadruple (u;, u;, &;, &;) will be an odd quadrangle);
3. in the case where u, exists, for each i #0,

{u"uiuo} = {ﬁ,-ﬁ,-uo} = %uo, {uouou,’} =Uu,, {uouoa,’} = 17,-
(uo governs u; and #;), and
{uguig} = —it;, {upilug} = —u;;

4. {uvw}={wuu} forall u, v, we §;

5. all other products {uvw} where u, v, w are from the basis, are zero; in
particular, for each i #0,

{ugu} =0={Guu} forallue%

(u;, ui; will be orthogonal).

It follows from these properties that the set of all scalar multiples of basis
elements is closed under the triple product {-,-, }. Hence, the triple product
{-,+,} can be extended to the real or complex span of the basis elements to be
linear in the outer variables and (in the complex case) conjugate linear in the
middle variable.

Define an inner product on sp ¢ by

(a |b> =Ea,-5,~+25,-5_,_-+2a050, (3)

where a = ¥ qu; + ¥, a;ii; + aguy and b = ¥ bu; + ¥, b;ii; + bou, are two elements
of sp 4.
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DeriNrmioN  1.3. The completion of sp ¢ with respect to the norm |||,
determined by the inner product (3) is called a (concrete) spin factor, and will be
denoted by 4.

If I is finite with n elements, the dimension of € is 2n or 2n + 1. Otherwise, €
is infinite-dimensional, and (3) is then a convergent sum. The norm on the spin
factor € which will make it into a JB*-triple is not the Hilbert space norm used in
the definition, since that norm does not satisfy (2). In order to define the correct
norm, which will be equivalent to the Hilbert norm, we introduce the following
concepts.

Define a conjugation * on basis elements by uf =i;, af =u;, and uf = u,,
and extend this to the linear span in a conjugate linear way.

The connection between the triple product, inner product, and conjugation is
given by

#

2{abc} =(a|b)c+ (c|b)a—(a]|c*)b". @)

For each element a of €, the notion of determinant is defined by

deta:= D, a,a; + a3 =1(a | a®). %)

ProrosiTiON 1.4 [3, Proposition 3.3, Lemma 3.4]. Let € be a spin factor.

1. If ae 6, then a is a scalar multiple of a minimal tripotent if and only if
deta=0 and in this case, from (2) and (4), the norm must be defined by
lall = (a | a)t = |la|l, for such a.

2. Elements a and b in € with deta=detb=0 are scalar multiples of
orthogonal tripotents if and only if there is A € C such that b = Aa*.

ProposITION 1.5 [3, Proposition 3.6]. For any element a in a spin factor €, with
deta #0, there is a unique set of non-negative numbers {s,, s,} determined by

si+s3=(ala), s;5,=|detal. (6)

Also, if s,#5,, two orthogonal minimal tripotents e, f are determined uniquely by
a such that

‘a=s,e+Ss,f. @)

Let A =deta/|deta|. The coordinates of the tripotents e and f with respect to the
spin grid are given by

e; = (sla,» - AS2a=,'),

s2—s3

- 1 = -

& =—5——(—Asa; +5,4), (8)
S1— 82

1 _
€= 73 2 (5100 — As2d,),
§1—3952



GEOMETRY OF THE SPIN FACTOR 147
and
1 =
f;‘ = 2 - 2 (‘—Sza,- + Mla,-),
§i1—S>

ﬁ.:

(Asqa; — s.a;), )

51— 53
1 -
fo= 2 2 (As1a@o — s2a0).
S1—952

CoroLLARY 1.6 [3, Corollary 3.7). If a has decomposition (7), then from (2)
and [S, Lemma 1.3(a)), ||a|| must be defined as max{s,, s,}. From (6) it follows
that this norm is equivalent to the Hilbert norm ||-||,, and therefore € is complete
and reflexive in this norm.

Hence every element a € € has unique coordinates {a;, @;, ap} with
a=>, au;+ Y, @i; + aglg, _ (10)

where convergence is in ||-|| (o may not exist).

The space € will now be denoted by U. The Banach space dual U* (which is
the same as the predual U, since U is reflexive) can be identified with U via the
conjugate linear (Riesz) map n: U* 5 ¢ —a, = n(@) € U, where

(p,x)=(x|a,) (xeU, peU*). (11)

In the rest of this section, by abuse of notation, we shall sometimes use the
same notation for ¢ € U* and a, € U. Thus (b, x) = (x |b) for be U*, x e U,
and if a is given by (10), then

xYa) =D, am () + D (@) + agn(uo),

det a = det(t~'(a)), and the inner product (3) transferred to €, satisfies

(m7!@) | x7'(b)) = (b]a). (12)

Since the spin factor U is a JBW*-triple, we have from [5, Propositions 4 and 8]
a one-to-one correspondence between tripotents and norm exposed faces in the
unit ball of the predual U,, in which minimal tripotents correspond to minimal
faces, that is, extreme points of the unit ball. We also have the following
corollary.

CoroLLARrY 1.7 (8, Theorem 3.1; 3, Corollary 3.8]. The space Z:=U, is a
neutral strongly facially symmetric space (see § 2 for the definition) with the norm
given for any a with st(a) decomposed as in (7) by

lallz=s,+s:=V({a|a) +2|detal). (13)

We now use (13) to describe the dual ball of the real spin factor.
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ProrosiTioN 1.8. If U is a spin factor over R, then the unit ball U, ; of the
predual U, is the intersection of two cylinders with base a real Hilbert ball. The
dimensions of these Hilbert spaces differ by at most one. More precisely, U, , is the
unit ball of the I”-sum of these two Hilbert spaces.

Proof. By (13) and (5),
lallz<1 & (a|a) +2|deta]<1 & (a|ata®)<1.
Thus, if a has (real) coordinates a;, 4; and possibly a,, we have, by (3), |ja||z <1

if and only if

Daata)+ Y aa ta)+ 2a0(ap t ap) <1,

1]

i))

max(z (b + 40}, 3 (25,.)2) <1

or equivalently, with b; := 3(a; + ;) and b;:=%(a; -

Since by Proposition 1.5 any tripotent v in U is either minimal or a sum of two
orthogonal minimal tripotents, each non-trivial norm exposed face of Z, is either
a single point (an extremal point of Z,, corresponding to a minimal tripotent) or
a (so-called) face of rank 2. For any rank-2 face

F,={acZ: |lallz=(a v)=1)

defined by a tripotent v, define an element of F, called the centre of F, by
&=3n"'(v). Note that by our convention, we could write £ =4v and still have
v e Uand § € F, =« Z. We shall usually write F; for F,, since § also determines the
face. Later in this section we shall show that F; is affinely isomorphic to the unit
ball of a real Hilbert space in such a way that the centre & corresponds to the
origin. This should now be compared with Theorem 3.8.

DeriniTION 1.9. Let Z be the predual of a concrete spin factor. An element
£ € Z is said to be unitary if ||E||; =1 and £* = A& for some A€ T. For 0#¥aeZ

define the phase £(a) of a to be

deta/|deta| if deta+#0,

C(“)={1 if deta =0.

Note that for any unitary element &, ||§||2=3% and that in the spectral
decomposition (7) of &, s, =s,=3. Indeed, |det &| = |3(& | AE)| =14 ||€||3 and so

1=Ellz = 1113 + 2 |det &| =2 ||&]I3,
and by Proposition 1.5, (s, —s,)*>= (& | &) —2|det &|=0. Hence, any scalar
multiple 7 of a unitary satisfies ||n]l,= (1/V2) [|9]|2.

ProrosiTion 1.10. Let a be any norm-1 element of Z and let A = {(a). Then the
centre & of a rank-2 face F, containing a is given by

E=4(a+ Aa®). (14)
Moreover, & is unitary and (&)= A.
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Proof. If deta =0, that is, a is extremal, then a and a* are orthogonal extreme
points, so that (a, #(a) + x(a)*) =1, that is, ae F;. Also £* =& and det £ =
3(& | &) which implies £(&) =1.

If deta #0, applying (7) to m(a), we have a € F, N F,,,; which is therefore a
rank-2 face contained in each of F, and F,,;. Therefore F, and F,,, both equal
this intersection, and hence are equal and v=e +f. Now, using (8) and (9)
applied to m(a), we obtain :

1 1
U,-=€.~+f;=m(sla Asza)+ 2(—s2a + As,d;)
1 2
1 Ao
= a,'+ a,-=a,-+)\a,~.
S]+Sz S]+S2

Similarly,

U +f=5,+ia, and U()=e()+ﬁ)=d0+xao,

which yields v = 7(a) + A((a))*. Hence, & = 37~ '(v) = 3(a + Aa®).

The following proposition is the facial decomposition of an arbitrary element
of the predual of a spin factor.

ProrposiTiON 1.11 (facial decomposition). Let Z be the predual of a spin factor.
For each non-zero a € Z, there are unique elements &, h € Z such that

(i) &, h are scalar multiples of unitaries and a = § + h;
(ii) &(8)=—E&(h) = L(a).
Moreover, :
(iii) (§|h) =0, and hence ||ali3=||§113 + l|Al13;
(iv) llallz=I&liz = llAllz;
(v) |deta]=3(IEIIZ — lIk1|%), and hence ||E|lz = l|k||z if and only if deta =0.

Proof. Let A= {(a) and set & =4(a + Aa®) and h = i(a — Aa®). Then £* = £
and h* = —Ah. This proves (i).

Since det E=13(&| &) =1L(a) |ENIZ#0, &(E)=E(a). Similarly, deth=
—1&(a) ||h|13 and &(h) = ~&(a). This proves (ii).

Suppose that &' and h’ satisfy (i) and (ii). Then with A:= §(&') we have
(EY* =2 and (h')* = —ih'. Thus, a =E' + h’ implies that a® = A&’ — Ak’ and
Aa®* =& —h' so that & =3(a+Aa*) and h’'=3(a—Aa®). This proves the
uniqueness.

Let A= {(a). Then

(&|h)=1%((a|a) + A(a® | a) — X{a|a®) — (a* | a®))
=i(A(a*|a) - Aa|a®))= —tz%(l(a” la))
= —iQ(Adeta) = —i3 |deta| =
This proves (iii).

By Proposition 1.10, &/||a|lz is the centre of the face containing a/||a||.
Therefore ||§]|z = ||lallz- Now

IEI5=(&| &) =3lllall + R(Aa® |a)] =1 ||a|i} + |det al,
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and therefore ||&||% = ||a||5+ 2 |deta]. Similarly, ||4||%=]la|}—2|deta| and so
Nz =<11ElI% = llallZ, proving (iv) and (v).

In Proposition 1.11, if ||a||z =1, then a and & belong to the face F; containing a
whereas & = a — & is ‘parallel’ to F. Moreover, by this proposition, the face F; is a
real Hilbert ball defined by

Fo={(E+h: heZ ||hll,<1, (E|h) =0, h* =—-{(5)h).
Note that since (h |h') = (h'® | h*) = (h' | h), the inner product
(E+h|E+h)=(E|&)+(h]|h")

is real.

2. Atomic facially symmetric spaces

In this section we shall recall some basic facts about facially symmetric spaces
from [7] and prove several new results which supplement those in [7] and are
needed in the present paper. We then establish some properties of atomic facially
symmetric spaces, including a Hilbert space structure on those atomic facially
symmetric spaces which satisfy two geometric axioms.

In this and the next section, Z will be a weakly or strongly facially symmetric
space over the real or complex field. In § 4 we shall restrict our study to complex
spaces. :

Let Z be a real or complex normed space. Elements f, g € Z are orthogonal,
notation fOg, if [|[f+gll=If —gll=Ifll +igll. A norm exposed face of the
unit ball Z, of Z is a non-empty set (necessarily not equal to Z,) of the form
E={feZ: f(x)=1}, where xe Z*, ||x||=1. An element ue Z* is called a
projective unit if [|u]|=1 and (u, F)=0. We use ¥ and % to denote the
collections of norm exposed faces of Z, and projective units in Z*, respectively.

Motivated by measuring processes in quantum mechanics, we define a
symmetric face to be a norm exposed face F in Z, with the following property:
there is a linear isometry Sy of Z onto Z, with §%2= I, such that the fixed point set
of Sris (5p F) @ F© (topological direct sum). A real or complex normed space Z
is said to be weakly facially symmetric (WFS) if every norm exposed face in Z, is
symmetric. For each symmetric face F we define contractive projections P, (F),
with k=0, 1,2 on Z as follows. First P,(F)=4(I — Sr) is the projection on the
—1 eigenspace of Sr. Next we define P,(F) and Py(F) as the projections of Z onto
sp F and F© respectively, so that Py(F)+ Py(F)=3(I + Sr). These projections
were called generalized Peirce projections in [6] and [7]. A generalized tripotent is
a projective unit u € % with the property that F:=F, is a symmetric face and
SFu =u for some choice of symmetry Sg corresponding to F. In this paper we
shall call such u geometric tripotents, and the projections P,(u) will be called
geometric Peirce projections.

We use 99 and PF to denote the collections of geometric tripotents and
symmetric faces respectively, and the map 49 su—F, € ¥% is a bijection [7,
Proposition 1.6]. For each geometric tripotent u in the dual of a WFS space Z, we
shall denote the geometric Peirce projections by P.(u) = P.(F,), for k=0, 1, 2.
Also we let U:=Z*, Z,(u) = Z;(F,) := P.(u)Z and U,(u) = U, (F,) := P(u)*(U),
so that Z = Z,(u) + Z,(u) + Zo(u) and U = U,(u) + U,(u) + Up(u). A symmetry
corresponding to the symmetric face F, will sometimes be denoted by §,.
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Elements a and b of U are orthogonal if one of them belongs to U,(u) and the
other to Uy(u) for some geometric tripotent u. Two geometric tripotents u and v
are said to be compatible if their associated geometric Peirce projections
commute, that is [P.(u), P(v)] =0 for k, j € {0, 1, 2}.

A contractive projection Q on a normed space X is said to be neutral if for each
EeX, ||Q&] =& implies Q& =&. A normed space Z is neutral if for every
symmetric face F, the projection P,(F) corresponding to some choice of
symmetry Sg, is neutral.

If Y is a closed subspace of a normed space Z, the collections of norm exposed
faces and symmetric faces in 3Y;, will be denoted by %, and %, respectively. We
define Uy, 9Ty similarly.

A WFS space Z is strongly facially symmetric (SFS) if for every norm exposed
face Fin Z, and every y € Z* with ||y||=1 and F c F,, we have Siy =y, where
Sr denotes a symmetry associated with F. Let Z be a strongly facially symmetric
space and suppose that u, ve 9J;. If F, c F,, we write u <v.

In a neutral strongly facially symmetric space Z, every non-zero element has a
polar decomposition [7, Theorem 4.3]: for 0#f € Z there exists a unique

geometric tripotent v = v(f) with f(v) = ||f|| and (v, {f}®) =0. If f, g € Z, then
f<g if and only if v(f)>v(g), as follows from [6, Corollary 1.3(b) and Lemma

2.1]. Recall that the geometric tripotent v = v(f) has the following additional
properties if fis a unit vector. First,

F, is the smallest norm exposed face containing f’; (15)

and second, f is positive and faithful on U,(v) in the following sense:
for any u, w e 97 with u<w and f € F,, f(u) = || P,(u)f || (=0); (16)
for any u € 97 with u <v, f(u) = || B(w)f| > 0. 17

Another property of the polar decomposition is that if f € Z,(w) for some
we 97, then v(f)e Uy (w). This follows from the uniqueness of the polar
decomposition as we now show.

ProposITION 2.1. Let Z be a neutral SFS space and let ve §J. Then for
ke{0,1,2},

(gg.zk(u) =49 N Uk('U).

Proof. Let ue 99, N Uy(v). By [7, Theorem 3.6, Proposition 4.1], Z,(v) is
neutral and SFS. Hence to prove that u € 47, (,, we need only show that

(u, (F,NZ,(v))° N Z,(v)) =0.

By [7, Lemma 3.5], this reduces to (u, F® N Z,(v)) =0, which is obvious
since (u, FY) =0. Thus 99 z,) 297 N Ui (v).

. Conversely, let we 99, so that we have |w| =1, weU(v), and
(w, (F, N Z,(v))° N Z,(v)) =0. We must prove that (w, FS)=0. Again, by
[7, Lemma 3.5], (w, FSNZ,(v))=0. Now let peFS. Then (w,p)=
(Pe(v)*w, p) =(w, P(w)p) and P (v)p e FY N Z,(v), since by compatibility
of w and v, P(v)p=P(v)P(w)p=P(w)P.(v)p. Therefore (w,p)=
(w, P.(v)p) =0, that is, (w, F) =0. Thus $7,(,, < 47 N U, (v).

CoroLLARY 2.2. If f € Z,(v), then v(f) € U(v).



152 Y. FRIEDMAN AND B. RUSSO

Proof. Since Z,(v) is a neutral SFS space and f € Z,(v), there is a unique
w e 9T 2,y With f(w)=|f|l and (w, {f}*NZ,(v)) =0. Now v(f)e 47 is
uniquely determined by the conditions f(v(f)) = ||f]| and (v(f), {f}) =0. By
the proposition, w € 97 so it suffices to show that (w, {f}*) =0 in order to
conclude that v(f) = w € U,(v).

For ke{0,1,2}, we have P.(v){f}°c{f}°. Indeed, for k=1, P,(v)=
Y1-8,) and S,{f}°={S,f}°={-f}C={f}°; and since Py(v)+Py(v)=
U +S,), we have (Py(v) + Py (v)){f}° < {f}°. Then, by [7, Remarks 1.3 and
3.2], for k=0 or 2, P(v){f}°c{f}°. To complete the proof, note that
(w, {}°) = (P(v)*w, {f}°) = (w, P(u){f}®) =(w, {f}° N Z:(v)) =0.

~ The following is part of a joint Peirce decomposition. We believe that in the
complex case, equality holds in equations (18) and (19), but we have been unable
to prove it (equality does not hold in the real case). The inclusions proved in
Lemma 2.3 are sufficient for the results proved in the present paper.

LemMA 2.3. Let Z be a neutral WFS space, and let w and u be a pair of
orthogonal geometric tripotents. Then

Foric Zy(w) + Zy(u) + Z (W) N Z,(u), (18)
and therefore

U,(w + u) = Uy(w) + Uy(u) + U(w) N U (u). (19)

Proof. Since S;, fixes U,(w)+ Uy(w), we have Si(u+w)=u+w. Thus
S, (F.+w) < F,.., and therefore (Po(w) + Py(W))F, ..., =3I +S,)E, .., cF,...
For p e F,..,

1= (P (W)@ + Po(w)p, u+w) = (P(w)p, w) + (Po(w)p, u)
SKRW)e, w)| +|[(P(W), u)| < | (w)oll + || Po(w)el|
= [(P(w) + B(w))ell < llll =1. '
Thus, ||Py(u)Py(w)@ll = ||Po(w)®ll, so by neutrality, Py(u)FPo(w)@ = Fo(w)e.
Therefore, Py(u)@ = Py(u)Py(w)@ = Po(w)@, and by symmetry P,(w)gp = Py(u)@.
Since
@ =P(w)p + P(w)p + Po(w)@ = Py(u)® + Pi(u)p + Po(u) g,

we have P(w)@ = P,(u)@. Therefore, @ € Z,(w) + Z,(w) N Z,(u) + Z,(u). This
proves (18), and (19) follows by duality: with

P=P(w+u), Q =P(w)+ Py(u) + P(w)P,(u),
we have PQ = QP =P, so P*Q* = Q*P* = P*.

Let 4 denote the collection of minimal geometric tripotents of U, that is,
M={ve¥bT: Uyv) is one-dimensional}. In the setting of a JBW*-triple and its
predual, there is a one-to-one correspondence between minimal tripotents and
extreme points of the unit ball of the predual. Moreover, these extreme points
are all norm exposed (cf. [S, Proposition 4]). The following proposition is a
generalization of this correspondence.
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ProrosiTiON 2.4. If Z is WFS, then there is a bijection 1) of exp Z, onto M. If Z
is neutral and SFS, then n(f) = v(f), the geometric tripotent occurring in the polar
decomposition of f. For v=n(f)e M, with f eexp Z,,

P(v)*x=f(x)v forxe U, and Py(v)g=g(v)f forgeZ.

Proof. If f eexp Z,, then {f} = F, for some unique v € 47, which we denote
by n(f). Since sp F, is one-dimensional, U,(v)=(sp F,)* is one-dimensional, so
that v e M.

Conversely, let ve #. Then sp F, is one-dimensional, so that F, is a point.
Hence, 7 is surjective.

If v=n(f)=n(g), with f,geexp Z,, then {f}=F, = {g}, and n is one-to-
one.

To prove the last statement, note that since P,(v)*x = A(x)v and Py(v)g = u(g)f
for some scalars A(x), u(g), we have

A(x)g(v) = (Py(v)*x, g) = (x, Px(v)g) = (x, f) u(g).
Put x = v to get g(v) = u(g) and A(x) = f(x).

DeriniTION 2.5. A normed space Z is said to be atomic if every symmetric face
of Z, has an extreme point.

Let # denote the collection of indecomposable geometric tripotents of U, that
is,
F={ve¥T: ue9g, usvdu=v}.

In general, /M c ¥, and we shall show in Proposition 2.9 below that under a mild
assumption, equality holds.

DEFINITION 2.6. A neutral SFS space Z is said to satisfy the axiom (PE) (for
‘point exposed’) if exp Z, =ext Z,.

It is easy to see that being atomic is equivalent, in SFS spaces satisfying (PE),
to the assertion that every u € 47 is greater than or equal to some v in /.

Prorosition 2.7. If Z is an atomic SFS space satisfying (PE), then
(a) U =sp M (weak*-closure);
(b) Z,=coext Z, (norm closure).

Proof. Observe first that if Z is an atomic SFS space, then the set
{xeU: (x,f)=|x| #0 for some f eext Z,}

is norm dense in U. Indeed, by the Bishop—Phelps theorem for the bounded
closed convex set Z, [2, p. 45], the set of elements x € U :=Z* which assume
their norm on some element f € Z,, that is, (x, f) = ||x||, is norm dense in U. But
for all such x, F,;,,, #J so there exists ¢ € ext Z, N F,;,,, with (x, @) = ||x||.

Let f € Z, and suppose f(#) =0. Then v(f) € ¥ so there exists u € 4 with
u<u(f). By (17), f(u) >0, a contradiction. This proves (a).

Let K denote coextZ,. If K#Z,, let feZ,,f ¢ K. Choose y € U and real
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numbers c, ¢ + €, such that
Ry, y)<c<c+es<sR(y, f)

for all y e K.
By the above observation, there are x € U, @ e ext Z, such that ||[x —y|| <8
and (x, @) = ||x||. Thus for sufficiently small 6,
llxll = R(x, @) <sc +ie<c+ie<R(x, f)=<|lx||,

a contradiction. This proves (b).

We now introduce the principal axioms, which are geometric and physically
significant properties of the state space of a physical system.

DeriniTION 2.8. Let f and g be extreme points of the unit ball of a neutral SFS
space Z. The transition probability of f and g is the number

(f |g):=f(v(®)

A neutral SFS space Z is said to satisfy ‘symmetry of transition probabilities’
(STP) if for every pair of extreme points f, g € ext Z,, we have

Fley={(glf),

where in the case of complex scalars, the bar denotes conjugation.

For example, in a concrete spin factor, the transition probability coincides with
the restriction of the inner product (12) to extremal elements.

ProposITION 2.9. Let Z be an atomic neutral SFS space satisfying (PE). Then
M= $. If furthermore Z satisfies (STP), then the map m: sp ext Z,— sp M defined

by

j=1

is well-defined and a conjugate-linear bijection.
Denoting this extension also by m, we find that the scalar-valued map

(|): (f.8)eZxZ—(f, n(g)) (20)
\

is a continuous symmetric sesquilinear form.

Proof. Let v e $ and let @ be an extreme point of F,. Then ¢ is an extreme
point of Z; and so {¢@} =F, for some u € #, by Proposition 2.4. Since @ € F,,
E, c F, so u <v and therefore u = v, that is, sp F, is one-dimensional, and v € /.

Thus ¥ = M.
By (STP), for all ¥, ¢, ..., @, €ext Z, and scalars z,, ..., z,,

(S 50, v(w) = Z 0@ = 2 290@) = ¥(3 29(5)).
Therefore

> z;p;=0 & <1p, > i,-v((p,-)> =0 forall yeext Z, & 2, Zu(g;) =0.
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Finally, by (STP), the map (- | -) is symmetric, that is, (f [g) = (g |f), on the
linear span of extreme points, and since it is obviously sesquilinear and
continuous, the last statement follows.

As a consequence of the sesquilinear form just introduced, we are now able to
handle the rank-1 case.

DeriniTiON 2.10. A normed space Z is said to be of rank 1 if no two non-zero
elements of Z are orthogonal.

In an atomic neutral SFS space of rank 1, satisfying (PE), every geometric
tripotent is indecomposable, and hence minimal. Thus, every element f in such a
space is a multiple of an extreme point of Z,. It follows that the sesquilinear form
(-]} is positive definite and moreover, if f € Z is non-zero, then f/||f|| is an
extreme point and so has norm 1 in the inner product space determined by (- | -).
Therefore, ||f|lz=||fll- and Z is a Hilbert space. Furthermore, for ||f|| =1, by
Proposition 2.4, P(f) is the orthogonal projection onto the span of f in this
Hilbert space. -

Two geometric tripotents u, w are said to be colinear if each of them belongs to
the geometric Peirce 1-space of the other, that is, u € Uj(w) and w € U,(u). Thus,
in a rank-1 space, since all geometric Peirce 0-projections are zero, colinearity of
v(f) and v(g) is equivalent to P(f)g =0, that is, orthogonality in the Hilbert
space structure. Therefore orthonormal bases in the Hilbert space structure
correspond to maximal families of mutually colinear geometric tripotents. Hence
we have:

CoROLLARY 2.11. Let Z be an atomic neutral SFS space satisfying (PE) and
(STP). Assume that Z is of rank 1. Then Z is linearly isometric with a real or
complex Hilbert space. Moreover, there is a one-to-one correspondence between
orthonormal bases in this Hilbert space and maximal families of mutually colinear
geomeltric tripotents.

3. Rank-two faces in facially symmetric spaces

We now begin the study of rank-2 faces, culminating in Theorem 3.8 (the
Hilbert ball property). This property will be a basic tool in the following section.

DerNITION 3.1. Let v and © be orthogonal minimal geometric tripotents in a
neutral strongly facially symmetric space Z. The norm exposed face F,,;
determined by the geometric tripotent v + ¥ will be called a face of rank 2. Let
v=v(f) and ¥ =v(f) for orthogonal extreme points f, f of Z,. Then &:=
(f +f) is called the centre of F,,; and we shall write F,,; = F.

It will be shown in Theorem 3.8 that F, . ; is a Hilbert ball with centre &.

The following proposition justifies the terminology ‘rank 2’, that is, meaning
that there are no more than two orthogonal extreme points in such a face. If the
face represents the state space of a quantum mechanical system, the proposition
implies that for such systems no observable can assume more than two distinct
values.
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ProposITION 3.2. Let v and U be orthogonal minimal geometric tripotents in an
atomic neutral strongly facially symmetric space Z, and assume the axioms (PE)
and (STP). Let v =v(f) and ¥ = v(f) for orthogonal extreme points f, f of Z,. If
p and o are orthogonal elements of F,.;, then v(p)+v(o)=v+ U, p and o are
extreme points, and p+ o=f +f. Moreover, each norm exposed face of Z,,
which is properly contained in F, 5, is a point, and if p is an extreme point of
F, .5, then v+ U —v(p) is a minimal geometric tripotent.

Proof. We show first that if p and o are orthogonal extreme points of the
rank-2 face F,,3 then v(p)+ v(o) =v + ©. Since p € F,, 5, we have by Lemma
2.3,

p=p)f+(1-p)f+h

for some h € Z,(v) N Z,(T). Moreover, by (16), «:= p(v)=0. By Lemma 2.3,
since v(p) € U(v + v),

v(p) =av + bt +v,,

for some v, € U;(v) N Uy(7), and scalars a, b.
By (STP), @ = p(v) =f(v(p)) =a and 1 — @ = b, so that

v(p)=av+(1-a)t+v,.
Similarly
o=yf +(1-p)f +h’
and
v(o)=yv+(1-7y)0+vy,

for some h' € Z,(v) N Z,(D), v, € U,(v) N U,(¥), and y =0.
Since p o, v(p) + v(0o) € YT and therefore has norm 1. Since

v(p)+v(o)=(a+y)v+uv,+vi+(2—a—-y)7,

and since Py(v)* is contractive, we have o+ y=<1 and similarly 2 —a—y=<1.
Hence o +y =1 and

v(p)tuv(o)=v+ (v, +v))+ 0.

With x :=v + (v, + v;) + U, we have f € E,, so that F, = {f} c F,. Therefore, by
strong facial symmetry, Pj(v)*x =0, that is, v, +v;=0. This proves that
v(p)+v(o)=v+ 0.

We can now easily complete the proof of the proposition. Since Z is atomic,
there exist extreme points g and g such that F, ) < F,(,y and F,; < F, . By the
previous paragraph, v+ o =v(g) + v(g) sv(p) + v(o)<v + ¥, and p and o are
extreme points.

If F,cF,,; is not a point, then it contains an extreme point ¢, which by
assumption is norm exposed. Since v(@)<w, we have F, _, )< Fy). Thus by
the previous paragraph, F, = F, ;. '

Finally, v + ¥ — v(p) is the unique minimal geometric tripotent orthogonal to
v(p). Therefore, 7~ '(v+ 0 —v(p))=f+f—p is the unique extreme point
orthogonal to p, where & is defined in Proposition 2.9.
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To proceed further, we need to replace the property (PE) by an apparently
stronger property‘(FE) It is very likely that (PE) is equivalent to (FE) in facially
symmetric spaces, since (FE) holds in the case of the predual of a JBW*-triple
[4], but we have been unable to prove this.

DeriniTION 3.3. A neutral SFS space Z is said to satisfy property (FE) if every
norm closed face of Z, different from Z, is a norm exposed face.

An important consequence of this axiom is the following Krein—Milman type
result.

ProposiTION 3.4. Let Z be an atomic neutral WFS space which satisfies the
axiom (FE), and let u be a geometric tripotent. Then

FE,=coextF, (norm closure).

Proof. Let K :=F, and K,:=coext F, = K. If K, # K then there is an x € U,(u)
and ¢ € R such that

sup R{x, K;) <c<supR(x, K). (21)

By the Bishop—Phelps Theorem for the convex set K [2, p. 45], we have, for any
£>0, a peK and y e Uy(u) such that ||x —y||<e and r:=sup R(y, K) =
R(y, p). By taking ¢ small enough, we may assume that (21) holds with y in
place of x.

The set G:=F,N{@ e Z,(u): R(y, ¢) =r} is a non-empty norm closed face
in F,, and is therefore norm exposed and symmetric by our assumptions on Z.
Since Z is atomic, G has an extreme point, which is then automatically an
extreme point of F,. Because (21) holds with y in place of x, this extreme point is
not in K,, a contradiction.

CoROLLARY 3.5. Let Z be an atomic neutral strongly facially symmetric space
satisfying (FE) and (STP), and let F; be a rank-2 face. Then F; — & is a symmetric
convex set.

Proof. For any g € F;, define S(g — &) = —(g — ). From Proposition 3.2, for
any extreme point p € F;, there exists an extreme point p € Fg, orthogonal to p
such that S(p — §) = p — §. By the proposition, § is a symmetry of F; — &.

The 'following theorem is the main result of this section. It gives the structure of
rank-2 faces. We shall use the following lemma in its proof.

LemMMA 3.6. Let v and U be orthogonal minimal geometric tripotents in an
atomic neutral strongly facially symmetric space Z, and assume the properties
(FE), and (STP). Let v = v(f) and v(f) for orthogonal extreme points f, f of Z,.
If [&, p] denotes the line segment from & to p, then

u+v"'U{[§ p] pECXt Fv+u} (22)

Proof. By Corollary 3.5, F; — £ is the closed unit ball Y, of a real space Y = Z
with respect to the norm |||y given by the Minkowski functional of F; — &. Let ¢
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be an arbitrary point of F, and let p be the point where the ray containing ¢ and
emanating from & leaves F;, that is, with ¢, =t@ + (1 —1)& for t=0, p = g, for
some ¢, (necessarily greater than or equal to 1) with @, € F; if and only if # <t¢,. By
the definition of the Minkowski functional, ||p — &||,, = 1. Let ® be a continuous
linear functional on Y such that, with Y; equal to the open unit ball of Y,

b(Yo)<c:=P(p-§), (23)

and let J be the hyperplane in Y determined by c, thatis, J={ce Y: ®(0)=c}.
Then p—Ee€G:=JN(F—&) and G is a closed face of F; —&. Thus pe G + &
and G + § is a closed face of F;. Therefore, G + & is a closed face of Z,, which by
our assumption, is norm exposed. By Proposition 3.2, either G + §={p} so p is
an extreme point, or G + § = F;. In the latter case, ; —§=G=JN(F—-&)cJ,
contradicting (23). Thus p is an extreme point, and @ € [§, p].

In the following corollary, we obtain an abstract analogue of the facial
decomposition ((i), (iii) and (iv) of Proposition 1.11). In the abstract setting of
Lemma 3.6 a centre of any rank-2 face F will be called a unitary element of Z.
For example, 3(f +f) is a unitary if f and f are any two orthogonal extreme
points of F.

CoroLLARY 3.7. Let @ € F, 5. Then there exists an element h € Z which is a
multiple of a unitary element such that @ =§+h, (§|h) =0, and |h|z<1.
Moreover, ||@ — E||<1, and @ eext F,; if and only if ||@ — &|| = 1.

Proof. Let F = F,,; and write, by (22), ¢ = & +t(p — &). Then ||h|| =1 €[0, 1],
& and p — £ =3(p — p) are unitary elements, and (§|h)=4(p+p|p—p)=0.
Also, ||@ — E|| =t <1. If @ is an extreme point, then ||@ — &|| = ||3(¢ — §)|| = 1.
Finally, if @ € F and ||@¢ — §|| =1, we have 1= ||@¢—§| = and @ = p is extreme.

THeoREM 3.8 (Hilbert ball property). Let v and © be orthogonal minimal
geometric tripotents in an atomic neutral strongly facially symmetric space Z, and
assume the properties (FE), and (STP). Let v =v(f) and © = v( f) for orthogonal
extreme points f, f of Z,. Then F. — § is the unit ball of a real subspace Y of Z on
which the sesquilinear form (20) is a real inner product whose associated Hilbertian
norm is a multiple (1/V2) of the norm of Z. Precisely,

Y={t(p—8): t=0,peextF,, g}
and if (- | -) denotes 2(- | -), then
(tp = &) | s(z= &) =1s[2(z| p) — 1] (24)

for v, peextF,,; andt,s =0, where (t|p) denotes the transition probability.

Proof. Let Y be the real normed space in Z whose unit ball is F; — §. We first
show that the sesquilinear form (- | -) is positive definite on Y.

If p e F; and |@ — §||y =1, then as shown in the proof of Lemma 3.6, @ is an
extreme point, and by Corollary 3.7, ||¢ — §l|z=1. Therefore, if heY is

non-zero, then h/||h|ly € F; — & and, as just shown, ||k/||k|lyllz=1, that is,
lI'lly = I-llz on Y. Moreover, for h € Y, with h/||h|ly = @ — £ for some extreme
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point @eF, we have (h|h)=%|hl3(¢—@|@—@)=3IAl} Thus, on
Y, (-|-) is positive definite, and therefore an inner product with |||, =
A/V2) [lAlly = (1/V2) [2]l.

We complete the proof by computing the inner product, thereby showing it to
be real and to satisfy (24). For hy, h, €Y, with h;/|hj||y = ¢; — § for extreme
points @; € F;, we have

(@1=E| 9= E) =21 =& 7((92— ) = (@ | @2) =3 +3 -4,

and therefore

(hy | ho) = llhslly lAallv(@y — & | @2 — &) = ||mlly lhally [2{ @ ' @2) — 1].

This proves (24) and by (15) and (16), the inner product is real. Finally, for
heY, (h|h)=2(h|h) =2|hI3=|IAII5.

CoROLLARY 3.9. The unit ball (in Z) of the real span of F,.; is a cylinder with
base the Hilbert ball Y. Precisely,

(spr Fosshh ={aE+ Ph: a, BeR, |a|, IBl<1,ExheextF, ; (if B+#0)}.

Proof. Let F denote F, ;. Then @ €spg F if and only if for some a, b =0 and
o, t€F,

p=at—bo=[a(t—&)—~b(oc—&)]+ (a—b)E=Ph + a§,

where, with ¢y =a(r—§)—b(o—§), we have set h=vy/||y|l, B=|v]|, and
a =a—b. Moreover, with p*=£ th,

@=3a+B)p" +i(a-B)p,

SO

i@l =13(er + B)] + 13(a — B)| = max(| ), |B).

The following notation will be used in the sequel. The real Hilbert space Y
determined in Theorem 3.8 by the face F,.; will be denoted by %, ; or by ¥,
since it is uniquely determined by & or by v + ©. The Hilbert ball F,, ; — €, which
is the unit ball of this Hilbert space, will be denoted by B,.; or Bs. An
orthonormal set in % will be denoted by {e,} or {e}, e,, ...}.

DerinrTioN 3.10. A neutral strongly facially symmetric space is said to be of
type L if it is of the form Z,(F), where F is a face of rank 2 (cf. Definition 3.1).

Our main theorem, Theorem 4.16 below, states that an atomic neutral strongly
facially symmetric space over C of type I, which satisfies (FE) and (STP) is
linearly isometric to the predual of a spin factor.

The following remark follows from the fact that the inner product above is
determined globally by use of the mapping .

ReMARK 3.11. Let F; and F, be faces of rank 2 so that 3 and 3, are defined.
If a, b € %; N ¥, then the inner product (a | b) is the same whether computed in
%5 or in %,'.
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ReMARK 3.12. Formula (24) has the following physical interpretation. Consider
the state space .of a spin-i particle, where we are concerned only with the
directions of spin, which are unit vectors in R>. Identify the Hilbert space % with
R>. If spin is measured in the direction p — & and is positive, then the pure state p
represents the state of the particle after the measurement. In this case, by (24),
the transition probability between states p and 7 is given by

(p|7) = p(u(x)) =41+ (p — & | T~ £)) = (1 + cos 6) = cos” 46,

where 0 is the angle between the two directions.

This is consistent with the known behaviour of spin-3 particles in quantum
mechanics.

Remark 3.13. For rank-2 faces F the Jordan decomposition holds: for each
@ € spg F, there exist 0, T € R™F such that

p=0-1 and |@|l= ol + |zl

(This implies also that 0t and that the decomposition is unique.) Hence
ext(spg F);=F U —F.

Proof. Let @ espr F, where F denotes F,,5. As shown in the proof of
Corollary 3.9, @ e spr{p™, p~}, say ¢ =ap* + bp~, where p* := E £ 9/||y| are
two orthogonal extreme points of F. Then ||| = |a| + |b| = |lap™|| + ||bp~||.

4. The complex span of a rank-2 face

In order to describe the complex span of a rank-2 face F;, we shall construct,
from an orthonormal basis of #; and the centre &, a natural basis analogous to
the dual of a spin grid in a concrete spin factor. This construction is entirely
similar to the method of obtaining the spin grid in a concrete spin factor. The
main difficulty here, however, is to show that the natural correspondence between
the concrete and the constructed grids extends to an isometry. This task, which
requires most of this section to carry out, is accomplished by a reduction to the
finite-dimensional case. Since the odd and even dimensional spinors behave
differently, the cases of dimension 2 and 3 both need to be treated first. This is
done in Theorems 4.6 and 4.8.

We assume in the remainder of this paper that Z is a linear space over the
complex field C. We shall make use of the main result of § 3, namely Theorem
3.8. We therefore make the following standing assumption:

Z is an atomic neutral SFS space satisfying (FE) and (STP). (25)

We begin by considering an arbitrary pair of orthogonal unit vectors {e,, e,} in
the Hilbert space #; defined by a rank-2 face F;, and describe the real span

YO:= S.p[R{el) €3, g} cZ (26)

of these two vectors and the centre & of the face.

By using the main result of § 3, in the following proposition we construct a part
of the dual spin grid and show that the extreme points of F; lying in Y have the
same description as their analogues in the dual of a concrete spin factor.
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ProrosiTiON 4.1. Let Z satisfy (25). Let {ey, e;} be an orthonormal set in the
Hilbert space #; defined by a rank-2 face F;. Define fy=e, +§, fi=E—e, and
h=e,. Then f,,f, are orthogonal extreme points of F. and h € Z\(f,) N Z\(f).
Moreover,

ENYy={3(1+a)+bh+3(1-a)fi: a,beR,a’*+b><1}, 27

(ext ;)N Yo={gz: ael0,1]}, (28)
where
=aof,+(1 - a)f, £2V(a(1-a)) h, «€|0,1]. (29)
Also -
PaO@ia for aef0, 1], (30)

h=3(pla— @) =3(h+E) +(h - §)), v(h)=v(pin)—v(pw), (31)
and
v(%) av(fy) + (1 - a)u(f) £ V(a(l - a)) v(h) for «€[0,1]. (32)

Proof. By Corollary 3.7, f; and f, are extreme points of the face F;. Since their
average is the centre, by Proposition 3.2 there is an element y of the face F; such
that y Of; and f, + y =f, + fi. Therefore y = f;, which proves that f; and f; are
orthogonal.

From Theorem 3.8, we have

ENYy={E+ae +bey a beR,a’*+b*<1}
={3(fi+f) +3a(fi—fi) +bh: a,beR, a®>+b><1}.
This proves (27), and (28) follows by putting & = 3(1 + a) and recalling that unit
vectors in a Hilbert space are extreme points.

Note next that ¢ + @7_,=f, +f;. As above, by Proposition 3.2 there is an
element y of the face F; such that y Oy and @f + ¢ =f, +f. Therefore
Y = @j_,, which proves (30).

By the definition (29),

h=3(9i.— o), (33)
and (30) implies that @i, @i, Therefore, v(h)=v(@{,) —v(®in), and by
Proposition 2.9, v(h) = 2x(h). Thus we have

u(@%) = 1(92) = av(f) + (1- Wv(f) £ 2V(a(1 - @) Ju (k)
= av(£) + (1 = )v(f) £ V(a(l - &) v(h).
Finally,

2P(f)h = 2P(f)(3(912 — 912)) = { @i |fl>f1 (o |f1>fl =3fi—31f1=0.
Similarly, P;(f,)h =0. Thus by Lemma 2.3, P,(f,)P,(f))h = h.

Since the unit ball of any normed space is built up from its faces, to show that a
map is an isometry, it is necessary to obtain information about faces different
from the original one. A natural face to consider first is the one with centre A
arising in the previous proposition. Note that by (33), 4 is unitary and hence is
the centre of a face. The next lemma gives a partial result about this face. The full
description of this face will be given in Proposition 4.4.
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Lemma 4.2. With the assumption (25) and the notation and assumption of
Proposition 4.1, let u = v(h), v =v(f}) and v, =v(f,). Then

Zy(vy + 0y) = Zy(u).

Proof. Since f, + fy = @i+ @i € spg F,, we have v, + 7, € Uy() and there-
fore, by [7, Theorem 2.3], Uy(v,+ ©,)c Uy(u) and F, .5 <Z,(u) so that
Zy(vy + ;) € Z,(u). Similarly, since h =3(@7, — @1.) € pr Fy,+5, < Z2(v, + 1)),
we have u € U,(v, + ;) and F, c Z,(v, + v,), so that Z,(u) c Z,(v, + ¥,).

The following lemma is needed in the proof of Proposition 4.4.

Lemma 4.3. With the assumption (25) and the notation and assumption of
Proposition 4.1, let u=v(h), v, =v(f,) and 0, =v(f;). Then for each @ € F,, we
have R{@, v, — 1,) =0.

Proof. With @:=34+1 and ¢ real and small in absolute value, we have, from
(32), .
1=lu(@2) — v(@i-ll = [|12¢(vy — Ty) + V(1 - 4£%) u]|.
Therefore,

I2t(v, = 0,) + (1 =22+ .. ul| =1,
and for p e F,,
@, 2t(vi — ;) +u + O(Pu)| <1,
that is,
1142, v, — ¥,) + O()| < 1.

The lemma follows by taking real parts and letting t— 0.

To describe a face, it suffices to obtain orthonormal sets {e,, e,} ‘parallel’ to it.
In order to predict what these orthonormal sets should be, we examine the
corresponding situation in the concrete spin factor. The ‘phase’ of the face F; is 1
and thus the conditions of Proposition 1.11 yield

§“=§, ef=—e,, ef=—ez. (34)

Moreover, &, e, e, form an orthonormal set. The face F,, with centre e, may
contain multiples of e, and & since the orthogonality condition is not changed.
Since e = —e,, the ‘phase’ of F,, is —1 and the orthonormal set must consist of
self-adjoint elements. The element & is self-adjoint, but the element e, must be
multiplied by i to become self-adjoint (cf. (35)).

The difficulty in proving Proposition 4.4 is due to the fact that a complex
phenomenon is being obtained from a real (that is, facial) structure.

ProrosiTioN 4.4. Let Z satisfy (25). As in Proposition 4.1, let {e,, e;} be an
orthonormal set in the Hilbert space ¥ defined by a rank-2 face F;, and define
fi=e,+E, fi=E—e,, and h=e,. Let u=v(h), v,=v(f,) and T, =v(f). Then
F, is a rank-2 face,

{&, ie,} is an orthonormal set in %, (35)
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and
ENY={0(Mf+A)+h: 1eC, A <1}, (36)
where Y = spc{e,, e;, §}. In particular, ,
(extB)NY ={3(AM+Af) +h: LeT). (37

Proof. Let _q)éE, and set, in accordance with Lemma 4.3, ¢(v,)=a +if,
o(¥,) = a+iB, with a, B, B € R, From Lemmas 2.3 and 4.2, we have

@ = (a+iB)f,+(a+iB)fi+h' with h' e Z,(v,) N Z,(D,). (38)
Note that A'(u) =1 and ||k’|| = ||P/(v))@l| < ||@l|| =1 so that k' € F, as well.
By (31), u = v(h) = v(@i,) — v(@ir) :=w + W, say. Then by (15) and (16), we
have w < u and
0<(@,w)={(a+if)fi+ (@ +iB)f, +h', 3(v, + U, +u))
= i(ar+if) +3(a+iB) +1
=a+3i(B+B)+1
Thus B = - and(38) becomes
p=(a+if)fi +(a—if)fi +h'. (39)

On the other hand, the fact that |@(f@v, + uv,)| <1, with u = exp[i arg(a + iB)],
leads immediately to |2(a +if)| <1. Assuming further that ¢ lies in Y (the
complex span of f,, f;, h), we have h’ = h so that < holds in (36).

To prove the reverse inclusion, note first that Py(w)f; = fi(w) @1, = 3@in. Also

Fo(w)fi = Fo(w)Po(w + w)fy = Po(w) Py(u)f
= Py(w)Py(v, + U))fy = B,(W)f;
= —%(Pl_n',

and thus S, fy = [2(P(w) + (W) — I1f = 2®in — @1)/2 = fi =fi.
Since w<u, S,(F,) = Fs;, = F,. Therefore, for any ¢ € F,NY, by (39),

Sep=(a—if)fi+(a+iB)i+heF,
and thus ‘

@ — S, =2Bi(fi — f). (40)
We shall show below that
there exists some @ € F, Nspe{f,, fi, #} with B#0 in (40). (41)
Assuming (41), we can rewrite (40) as |
¢=S.¢_(¢—h) - Sup—h)
- 4p 4B ’
which shows that ie, = 3i(f, — f,) € %,. By direct calculation,
(&|iey)=2(E+h|ie,+h)—1
=2(giz | 3i(fi — ) + Hpin— @in)) — 1
=2(0+4)—-1=0,

Yilth—-f) =
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proving (35). Therefore the unit ball B, of the real Hilbert space 3, contains the
orthonormal set {3i(f, — f,), 3(f; +£)}, and it follows that

E,—ho{si(fi—fi) +3t(fi+f): s, teR, s> +2<1)},
and
Foo{h+3si(fi—f)+3(fi+f): s, teR, s>+ <1}
=M+ Af)+h: AeC, |A<1},
that is,
E Ospelfo, fio b} o (3(Mfi+ Af) + h: AeC, |A|<1).

This proves equality in (36). Since in a Hilbert space all unit vectors are extreme,
(37) follows.

It remains to prove (41). We first show that there is some @ € F, with 8 #0. By
(39), ‘

@ =(a+ip)fi+(a—iB)fi+h’

with h' € Z,(v) N Z,(0) N E,. Now suppose that § =0 for all @ € F,. Then for all
such ¢,

o=a(f,+f)+h" withh' e Z,(v)NZ,(T)NE,

and S,p=a(f, +f)+ S, h',sothat p — S, p=h'—S.h'.
But S,h’ € Z,(v,), since S, h' € F, c Z,(v, + U,) implies

Soh' = (S,h', vi)fi + (S,h', Bi)fi + Pu(v))P(D )R’

and, for example, (S, k', v,) = (h', Siv,) = (h’, 1,) =0.
Therefore, P(w)h' = P,(v,)P(w)h’, and we have

P(w)p=3(I - S.)p=3(I—S,)h' = P(w)h'
= P\(v))P(w)h' = Pi(v,)P,(w) .

Since @ € F, is arbitrary, this implies P,(w)Py(u) = P,(v,)P(w)Ps(u). Now fi €
Z,(u) by Lemma 4.2, so that P(w)f, = P,(v,)P(w)f;, and thus

fi—fi=U =S =2P(w)fy = 2P,(v,)P(w)f, = P(v))(fy _fl) =0,
a contradiction. Thus (41) is true for some ¢ € F,.
We can now complete the proof of (41). We start with a @ € F,, with §+0.
Writing (again)
@=(a+if)fi+(a—iB)fi+h' withh'€F,,
we have h'—heF,—h=B,. Therefore, h—h'=—(h'—h)eB,=F,—h so
that 24 — h' € F,. If we now set @' =4(@ + (2h — h')) € F,, then
@' =3((a+if)fi + (a — if)fi + 2h)
=(Ga+ip)fi+Ga-isp)fi+theF,NY

and 38 #0 as required.

The following corollary reduces to Proposition 4.1 in the case where p = 1. For
arbitrary p, the ‘phase’ of Fi,. 7y, remains equal to 1. The centre 3(uf, + fif,)
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remains in the span of § and e,, and so is orthogonal to e,. Since i(uf, — iify) is
anti-self-adjoint and orthogonal to e,, it provides a natural candidate for the
second vector (cf. (34)).

CoroLLARY 4.5. With the notation and assumptions of Proposition 4.4, for each
peT,

Guf, - ﬁfl), e,} is an orthonormal set in ¥, . z7\n (42)
and with &, := 3(uf, + iify),
(extFe)NY = {apf, + (1 - a)if, £2V(a(l — a)) h: @el0, 1]}. (43)

Proof. The assertion (42) holds if and only if

%(ufl - ﬂ'fl) + &u and e+ gu

are extreme points in F;, with transition probability 3. The first vector is uf, which
is obviously in ext Fy . The second vector is h + 3(ufy + Bfy) which is in ext F, by
(37). Since F;, = Fyy 4 5,, this vector lies in F;,. Moreover,

(ufi | 3Qufy + BR) + h) = (ufi | 3(uf + BR) + 3(@in — 9in))
=3(1+0+zu—3pu) =1
We now apply Proposition 4.1 to the data in (42). By (28) we have (43).

The following theorem characterizes the spin factor of dimension 3.

THEOREM 4.6. Let Z be an atomic neutral SFS space satisfying the properties
(FE) and (STP). Let {e,, e;} be an orthonormal set in the Hilbert space ¥
defined by a rank-2 face F;. Define fi=e,+ &, fi=E—e,, and let h=e,. Then
Y :=spcifi, fi, h} is linearly isometric with Sy(C)., the predual of the JBW *-triple
of two-by-two symmetic complex matrices. In particular, if Z = Z,(F;) and ¥; has
dimension 2, then Z = S5,(C),.

Proof. Let M = §,(C) and define the map x: M,— Z by

x([: ;]) = af,+ Bf, + 2yh,

where a, B, y € C. The map «k is a linear isomorphism of M onto Y. We shall
show the following:

k(extM, ) cextZ;; (49)
ROS inextM, ; > k(R)OK(S). (45)

Suppose that we have proved (44) and (45). Every R e M, has the form
R = AR, + A,R, with R, and R, orthogonal extreme points in M, and A, A, e C.
Then k(R) = 4,x(R,) + A;k(R;) and by (44) and (43), [I(R)|| = [Ai] + |4, = |IR]I,
proving the theorem.

We proceed to the proofs of (44) and (45). Let R e ext M, ,, say

a b
R_[b c]’
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where without loss ‘of generality, in order to prove (44), we may assume that
a#0 and ac=0. Let A=a/|a|l so that ¢ =A4|c|. Since detR =0, we have
|62 = |a| |c|. Moreover,

1=tr(R*R) = [a]*+2|b)*+ |c|* = (la] + |c|)*
Thus ¢ = A |c| = (1 — |a])A. Once more from det R =0 we have
b=xV(la| (1-|al))

and k(R) = |a| Af, + (1 — |a])Af, £2V(|a](1 — |a])) k, with |a| [0, 1]. Thus (44)
follows from (43).

To prove (45), note first that since My(R) (the Peirce 0-space of R) is of
dimension 1, § is a multiple of

= )

which is obviously orthogonal to R (that is, R(5)* = (§)*R = 0). Now from (43)
and (30), it follows that x(S) = (1 — |a|)Af; + la| Af; — 2bh is orthogonal to k(R),
proving (45).

We next characterize the spin factor of dimension 4. For this we need to add a
second pair f, f, of orthogonal extreme points to the vectors f,, f; already
obtained in such a way that the four vectors correspond to the standard basis in
the predual of the JBW*-triple M,(C). The construction of these extreme points is
provided by the following proposition. In a concrete spin factor, elements of the
orthonormal set {e,} all have the same ‘phase’. The elements of the grid are
obtained from Proposition 1.11 by adding two orthogonal elements of opposite
‘phase’. Since multiplication by i changes the ‘phase’ to its opposite, elements of
the form ¢; + ie, will be extremal (cf. (49)).

ProposITION 4.7. Let Z be an atomic neutral SFS space satisfying the properties
(FE) and (STP). Let {e,, e,, es} be an orthonormal set in the Hilbert space %
defined by a rank-2 face F;. Then with h =e,,

{ie,, &, ie;} is an orthonormal set in %, (46)

and there exist orthogonal extreme points f,, —f, € F, such that

e=3h-f) e=ii(h+h) (47)
With f=e, + &, fi= E — e, as before, we have
spciei, €2, es, §} =spelfr, fi fos o} (48)

Proof. Apply Proposition 4.4 to the orthonormal pairs {e, e;} and {e;, e,}
in 3 to obtain orthonormal pairs {&, ie;} and {§, ie;} in the Hilbert space ,,.
Now ie,, ie; are orthogonal in this Hilbert space if and only if ie; + h and ie; + h
are extreme points of F, with transition probability 3. That these are extreme
points follows by setting A =i in Proposition 4.4. The transition probability can be
computed using the easily verified formula

(e;+E|e £ E) =13 fori#j.
This proves (46).
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Now apply Proposition 4.1 to the orthonormal set {&, ie;} in the Hilbert space
#.,- Then, with

f2:=l'e3+ez and fg:= —'ie3_e2) (49)

f, and —f, are orthogonal extreme points of F,, and (47) is satisfied. From this
(48) is immediate.

The following example illustrates Proposition 4.7 and will be used in Lemma
4.9. The —1 in the definition of f, is due to the fact that spin grids contain odd

quadrangles (3, Corollary, p. 313].

ExampLE. Let Z = M,(C),, let E; be the standard matrix unit in M,(C),, and
let

1 0 - 00 0 1
f1=E11=[0 0], f1=E22=|:0 1], h=%(El2+E21)=[ (;:I,

1
2

A .

Then F; is the state space ¥ of the C*-algebra M,(C). We claim that {e,, e,, €5}
is an orthonormal set in %, where e, = 3(f, — fi), e, =h, e;=3i(f, + f). For this
it is required to show that e, + &, e, + &, e; + & all belong to F; and each pair in
this family has transition probability 3. Now

10
00

Dl DI
N NI

evi=fi=|y o] erE=h+ii+i=]

and

. . B 1 'l‘i
et HG+H=] 5 7]
) 2l 2
Therefore each of these vectors belongs to F;, and moreover,
1 0113 1§
<el+§|ez+§>=Tr<[ ]I:f ?])=%,
0 0ll3 3

and similarly for the others.

We now recall the description of the state space & of the C*-algebra M,(C).
Let C denote the centre & of the face &. Since M,(C), is the predual of a
JBW*-triple, it is an atomic neutral strongly facially symmetric space satisfying
(FE) and (STP), so by Proposition 4.7,

F—=C={3r(E\, —Ex)+3s(Eiz+ Ep) + 3ti(E;, — Eyy):
rr+s’+<1,rs,teR},
and therefore
F={C+3r(E;, = Ep) +3s(Ex+ Ey) + 3i(Ey, — En):
' rr+s?+£<1,rs,teR)},
which, with A =s + it and
Pi,=3(1+r)Ey+3(1 —r)Ep +3AE, + 3AE,, (50)
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implies
F={pr,. reR,AeC, r*+|A*<1}, (51)
and
extxF={p,, reR,1eC, r*+|AP=1}. (52)
Finally, since p; ,+ p_, _,= C, we have

pl,rop—l.—r' ) (53)

We now obtain the characterization of the complex spin factor of dimension 4.

THEOREM 4.8. Let Z be an atomic neutral SFS space satisfying (FE) and (STP).
Let {e,, e3, e3} be an orthonormal set in the Hilbert space #; defined by a rank-2
face F.. Then with fi=e,+ &, fi=&—e,, h=e,, and f,, f, given by Proposition
4.7, we have that Y':=spc{fi, fi, b, fo} is linearly isometric with My(C),, the
predual of the JBW *-triple of two-by-two complex matrices. More precisely, letting
E,; denote the canonical matrix units in My(C)., we see that the map

Eu~f, Ep=fi, En—f, En—-f,
extends linearly to an isometry v of My(C), onto Y', and
v(ext My(C), ) cext Z,.
In particular, if Z = Z,(F;) and ¥; has dimension 3, then Z = M,(C),.

Proof. The map v is obviously a linear isomorphism of M,(C), onto Y’. As in
the proof of Theorem 4.6, we shall show the following:

v(ext My(C), ) cext Zy; (54)
ROS inext My(C)yy > v(R)OV(S). (595)

Suppose that we have proved (54) and (55). Every R € M,(C), has the form
R=AR;+ AR, with R, and R, orthogonal extreme points in M,(C), and
Ay, A, € C. Then v(R) = A,¥(R,) + A,v(R,) and by (54) and (55),

V(RN = |A:] + 122l = IR,

proving that v is an isometry.

The statements (54) and (55) follow from the next two lemmas, as shown below
after the proofs of the two lemmas. In Lemma 4.9, the notation is that of
Theorem 4.8. The mapping & is defined in Proposition 2.9 above.

LEMMA 4.9. For any two orthogonal non-zero projections P, Q € My(C),
pi=nzovempyc).(P) and q:=mzovenmyic).(Q) are orthogonal minimal geo-
metric tripotents of Z. Moreover, for any p €T, v maps F,p, 50 onto Fp 5, NY',
where Y’ =SpC{fll fl: f2’f2}» ’

v(ext Fypizp) cext Z,,

and v maps orthogonal elements of F,p. ;¢ into orthogonal elements of Z.
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Proof. By the above example, the state space & of the C*-algebra M,(C) is a
norm exposed face Fc with centre C=4(E,; + E») and ¥ — C is a Hilbert ball
with orthonormal basis

3(Evi— Ez), 3(Epn+ Ey), 3(E;,— Ey).
The map v sends the centre C into 3(f; + f;) and the orthonormal basis into
3h-F), 3R di(h+h),

which is an orthonormal set, say {e;, e, €3} in the Hilbert space #; determined
- by the given rank-2 face F, with centre & = 3(f; + fi). Therefore (using Theorem
3.8) we have :

W =FKNY, (56)

v(ext ) cext F; and (by Theorem 3.8 and Proposition 4.1) v maps orthogonal
elements of & into orthogonal elements of Z. Thus p, g are orthogonal minimal
geometric tripotents.

Let P =3, .(P), O =m3lc).(Q) be the extreme points in M,(C),,, co-
rresponding to the elements P, Q respectively. Then 3(P + Q) is the centre of the
norm exposed face Fp,o=% and the Hilbert ball Fp,o—3(P+Q)=%-C
contains an orthonormal basis of the form

YP-0), E;, E3},
where E;, E; are elements of #. By (56), the map v takes this centre and basis
into the centre 3(p + §) of F; and an orthonormal set in &; of the form

(2(p — 3), e3, €3},

where e, e; are elements of ;. For any u €T, by Corollary 4.5 and Remark
3.11, v takes the orthonormal basis

{%(.up - ﬁQ)’ Eé: EIIS} in %(M13+ﬁé)lz
into the orthonormal set
(3(up — 1q), €3, e3} in Hys.z5yn

Therefore, as above, v maps F,pizo onto F,,.z,NY’ in such a way that
extremality and orthogonality are preserved.

A special case of the following lemma, which concerns a concrete spin factor, is
needed in the proof of Theorem 4.8.

LemMA 4.10. Let F; be a rank-2 face with £ = E which spans the predual Z of a
concrete spin factor. For any extreme point @ € Z,, there exist ueT and
orthogonal extreme points f, f in F; such that @ € F,; . z7yn.

Proof. Since @ is an extreme point, n:=3(@ + @¥) is the centre of a rank-2
face containing ¢. Now 7 and & are vectors in the Hilbert space Z and the vector
y:=n—2(n|E)E is orthogonal to & If y=0, then [2(n]|&)|=1. But
2(n|&)=2R(@| &) and therefore n=+E&. By definition of face, @ € Fy¢, s0
the lemma follows with u = 1.
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We may now assume that y #0, and therefore [|2(n | .§).§||2< [1E]l2, that is,
2/(n|E)I<L Set u=R2(p|E)+il-(R2(p| ). I Su=0, then
(n| &) =4, a contradiction. Thus Sy # 0 and we can solve for the vector e, in the
equation

n=Ru)§+i(Sue,.

We find that ef = —e,, (e, | £) =0, and |le,||3=14, the latter since 3 =||n|3=
(Ru)*3 + (Su)? |le,||3. Therefore, by Proposition 1.11, & + e, are extreme points
in F; and 1 =3[u(§ +e,) + (& —ey)].

If we apply Lemma 4.10 to Z = M,(C), which is the span of the state space &
of the C*-algebra M,(C), we obtain the following corollary.

CoROLLARY 4.11. Every element A € ext My(C),, belongs to a face of the form
F,p.zp for some orthogonal non-zero projections P, Q € My(C) and some peT.

We can now complete the proof of Theorem 4.8. To prove (54), note that by
Corollary 4.11, an extreme point A in M,(C), belongs to a face F,p.zo and by
Lemma 4.9 this face is mapped by v onto F,, .z, N Y’ in such a way that v(A) is
an extreme point of Z,. Moreover, since the space orthogonal to A in M,(C), is
one-dimensional and there is an element A in F wp+o Orthogonal to A which is
mapped by v to an element v(4) in F,,, 5, orthogonal to v(A), v satisfies (55).
" This completes the proof of Theorem 4.8.

In a JBW*-triple, the basic operator D(x, x): y+—> {xxy} is hermitian, that is,
expitD(x, x) is an isometry for all teR. If x =u is a tripotent, this says that
S, (u):= uPy(u) + P,(u) + iiPy(u), where P, (u) denotes the Peirce projections
associated with u, is an isometry for each u € T. It is an open question whether
the corresponding result holds in a facially symmetric space, that is, whether for
each geometric tripotent « in a facially symmetric space, the map S,(u):=
uPy(u) + Py(u) + aPy(u), where P(u) denotes the geometric Peirce projections
associated with u, is an isometry for each u € T. However, we do have the
following corollary to Theorem 4.8, which answers this question affirmatively in
the case of a minimal geometric tripotent in a facially symmetric space of type L.
This corollary is needed in the proof of Theorem 4.16. It is convenient to note the
following remark first.

ReMARK 4.12. If F; is a rank-2 face and if {e;},., is an orthonormal basis for the
real Hilbert space , then

spcle;, §}jer = spe Fz < 5pc Fz =5pcle;, E}jer = Zo(F).

CoRroLLARY 4.13. Let f be an extreme point of a rank-2 face F; and assume that
the underlying SFS space is neutral and satisfies (FE) and (STP). For ueT,
define S,(f):= uPy(f) + Pi(f) + &Py(f). Then S,(f) is a bounded operator on Z
with inverse S5y, and S,(f) is an Lsometry of Zz(FE) onto Z,(F;) (recall that P,(f)
denotes P (u(f))).

Proof. Obviously [|S.(f)l<3 and since Sz(f)S.(f)=1, S.(f) is invertible.
Since f € F;, v(f) € Uy(F) and by [7, Theorem 3.3], S.(f)(Z:(F;)) = Z(F).
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To show that S,(f) is an 1sometry on Z,(F;), let f be an extreme point of F;
orthogonal to f such that £ = 3(f +f), and pick an orthonormal basis {e;}, for
; containing e, = 3(f — f). For @ e spc{e;, £}, We have

=zf +wf + 2 (o5 +iB))e;

=zf + wf + (2 a,-e,) + 1(2 ,Bjej),

with z, we C and o, B, e R.
Therefore @ €spc{f, f, €5, es} where ej, e; € %; are chosen so that {e,, e, e}
is an orthonormal set in ¥ and

spal S e, 3 B} < spaleh, et}

For notation’s sake, set f, =f, fi=f. By Propositign 4.7, there exist orthogonal
extreme points f,, —f,€ F,; such that e;=3(f,—f) and e;=3%i(f,+f). Thus

spc{er, €3, €3, £} =spcl{fi, fi, oo o}, and since spcies, &} =spc{fi, fi}, we have
@ €spcifi, fi, €3, €3}
=spcfer, § e, €3}
=spc{fi, fi. fo, fo} = My(C).
via
{fi, fi o fz} = {Ew, Exn, Exa, —Ey}

by Theorem 4.8. Now e}, €3, f», f, € Z,(f) since e5 and e3 are orthogonal in %;
to e,. Therefore if

p=a,fi+ azzfl +apfst+ anfz with g;; € C,

we have
S.(f)e=pa,fi+ faxf, + anfs + anfs,
and
Ha, Gy an 12
sanota=|(tn 2ol o=l o, = e
[ u(f)q’”z —ay iy o, —ay a3l llellz

We shall now construct a generating family for a space of type L.

DeFINITION 4.14. A dual spin grid in a facially symmetric space Z = Z,(F;) of
type L is a family {f, f;}jeruq), or {f,,ﬁ},e,um U {fo}, where I is an index set not
containing 0 or 1, and for each j € I, f,, f; are a pair of orthogonal extreme pomts
of Z, such that E=3(f,+£), and with e,=3(fi—f), ¢=3%(f—Ff) and ¢

3(f; +f) (jel), the collection {e;,e;, e/};c;, O {ey, €, €/};esU{fo}, is an
orthonormal basis in the Hilbert space %E.

Note that this definition is invariant under surjective isometries (the ‘isomorph-
isms’ in the category of facially symmetric spaces). Also, the dual basis of a spin
grid in a concrete spin factor (cf. [3]) is an example of a dual spin grid.



172 GEOMETRY OF THE SPIN FACTOR

The following simple lemma will be used several times in the main theorem
which follows it.

LemMA 4.15. In a neutral SFS space Z of type b, let {f,-,f-j}je,u(,,z), or
{f» f}ietu,23 VU {fo}, be a dual spin grid, where I is an index set not containing
any of the elements 0,1,2. Let {f},f1,f5fs} be any dual spin grid in
spcifis fi» oo fo} (which exists by Theorem 4.8) and suppose that fi + fi=f, +f,.
Then

{fi) fi» fé) fé} U {j}’ -f}}iel
or
{fi Fu Fo £} U {f, Fdser U {fo}

is also a dual spin grid for Z.

Proof. Let &' =3(f1+f1). Then &' =§, ¥, = ¥, and
B(F1 -, 3(f2 - F2), 3i(F2 + )}
is an orthonormal set which has the same real span as {e,, e,, e;}. Therefore,
(1=, 3(F2=F2), 3i(f2+F2)) U ey, €} e

is an orthonormal basis for ;.
The following is the main result of this paper.

THEOREM 4.16. Let Z be an atomic neutral SFS space of type L, over C and
assume the properties (FE) and (STP). Then Z is linearly isometric to the dual of a
concrete spin factor.

Proof. Let F; be a rank-2 face with Z = Z,(F;). Construct a dual spin grid for
Z by applying Proposition 4.7 as follows. First, let {e,} U {¢;, e;};c, (if ¥ is
infinite-dimensional or of odd finite dimension) or {e,} U {e;, €;};c, U {eo} (if 3
is of even finite dimension) be any orthonormal basis for #;, where I is an index
set not containing either 0 or 1, and let fy=e¢,+ &, fy=—& —e,. For eachje I, by
Proposition 4.7 applied to the orthonormal set {e,, ¢;, ¢/}, we obtain f, —f €
ext F, such that

€= %(f; _fi): e; = %l(f; +f—i)r
and for each je [,

spcler. €, €], £} =spelfi, fu. £, fi}-

Moreover, by Theorem 4.8, spc{fi, fi, f, fi} = Ma(C)..

Let {g;, &}jer» or {g;, &i}jer U {80}, be a dual spin grid for the dual of a
concrete spin factor € of the appropriate dimension corresponding to the index
set 1. This means that {7¢(g;), 7¢(§;)};er, oOr this set together with m4(go), is a
spin grid for a Cartan factor of type 4 (complex spin factor), as described in [3,
Corollary, p. 313] and §1. We shall assume in the rest of this proof, for
convenience, that #; is either infinite-dimensional or of odd finite dimension.
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Trivial modifications complete the proof in the other case. Now

spC{fl’ fh fj) f}}jsl = spC{el) ej: e;: E}jel:
which is norm dense in Z=Z,(F;) by Remark 4.12. Therefore, the map T
defined by Tg;=f, Tg; = f; extends linearly to a map from a dense subspace of
€, to a dense subspace of Z. We shall show that T is an isometry.

For notation’s sake let € and &' denote the dual spin grids chosen above for Z
and €, respectively. Let g € spc€’. We shall show that ||Tg||z = ||gl|«, which will
prove the theorem. First of all, if g is a linear combination of g; and g; for a fixed
j, then by orthogonality of g, & and of f;, f, it is clear that ||7g||z = |Igl|«.. To
handle the other cases, we shall prove, by induction on #n, the following assertion:

If n=2 and if {g;, §;}ics is any dual spin grid for €, then T is an isometry
from spe{gi, &1, ---» &n» £} INtO Z.

For n = 2 this is proved in Theorem 4.8. Suppose that n > 2 and let g belong to
spc{gi, &1 --» 8n» §n}- Write g =h +k where h=a,g, +a,§, + a,g, + a,g, and
k=Y7_3(a;g;+ag;). Since spci{gi, &1, &2, §2} is isometric to M,(C),, h has a
spectral decomposition (cf. Proposition 1.5) h = t,p, + t,p, where ¢,, t, € C and by
Lemma 4.9 (with Z=%€,) and Corollary 4.11, p, €ext F,p,;o for some or-
thogonal minimal partial isometries P, Q in 4 (corresponding to orthogonal
minimal projections in M,(C)) and some pu e T.

In the following let €= {f;, fi, fo, f} U &U &, where &= {f, f, ..., fu, f}
and & =98\(&YU{fi, fi, L f2}). Similarly, let € ={g,, g, g2, &} U% U %,
where &,={gs, &3, ..., &, &} and & =& \(%,U {g,, &1’ &2, §2}), and refer to
the diagram.

grid T grid
&' Spec &' — spc € &
11 l /

{P) Q; hl) h-]} Spc &’ _L SPe & {Tp, TQ, Thl, T’;l}

UgU g, . ) U%UE,

54P) | | s.cre)

{aP, uQ, h,, h,} spe & —> spc € {(uTP, aTO, Th,, Thy}

UgU €, 11 11 U%UE,
{p1, Pr, p2, P2} T {Tp,, Tp,y, Tpa, Tpa}

» > ?gi % 1 1> 2y 2
ugug  Pc *Pe U%UE,

With Y":=spc{g1, &1, 82, §2} (=%6.), choose h, hl such that {P O, h,h 1} s
a dual spin grid for Y”. By Lemma 4.15, {P, O, h,, h,} U €U €, is a dual spln
grid in €,. Since T|y is an isometry (by Theorem 4.8), { TP, TQ Th,, Th,} is a
dual spm grid for TY" (cZ). By Lemma 4.15, {TP, TQ, Th,, Th,} U % U %, is a
dual spin grid for Z.

Now S;(P) and § (TP) are isometries by Corollary 4.13. Therefore a dual spin
grid in €, is given by (AP, uQ, hy, h,} U B, U &, and one in Z is given by
{uTP, MTQ Th,, Th,} U ESOU &,. Next, it is easily checked that, on a dual spin
grid, S, (TP)TS— =T, and hence the middle part of the diagram commutes.

Choose P2, P2 such that {p,, p,, p,, p,} form a dual spin grid of Y”. Since
P1, P1 € Fupyzp, by Lemma 4.15, {p,, p1, p2, P2} U €, U & is a dual spin grid of
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€. As above, T maps this dual spin grid onto a dual spin grid of Z. Note that, by
induction, T|y is an isometry, where X :=spc({p;, P} U %;). Since geX,
I178llz = llglle..
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