SURJECTIVE ISOMETRIES OF REAL C*-ALGEBRAS

CHO-HO CHU, TRUONG DANG, BERNARD RUSSO
AND BELISARIO VENTURA

In contrast to the situation for JB*-algebras (and to some extent for C*-algebras),
Jordan triple systems over the reals have played no role in the analytic theory of JB*-
triples. This is due to the history of the area: JB*-triples were born of an investigation
into certain aspects of several complex variables [14]. However, a theory of real
Jordan triples and real bounded symmetric domains in finite dimensions was
developed by Loos [17]. This, together with the observation that many of the more
recent techniques in Jordan theory [8, 13, 1] rely on functional analysis and algebra
rather than holomorphy, suggests that it may be possible to develop a real theory and
to explore its relationship with the complex theory.

This paper arose from a desire to study infinite dimensional real JB*-triples via
functional analysis. Our first attempt to formulate a definition came from a
consideration of the range of a contractive projection on a real C*-algebra. Although
this can be analysed easily in the commutative case, see Section 7 below, the general
case poses serious obstacles, and it remains open as to whether this range is
isomorphic to a norm closed subspace of another real C*-algebra stable for the triple
product in that C*-algebra (see [9] for the case of a complex C*-algebra).

Upmeier [25, §20] has proposed a definition of a real JB*-triple. His spaces include
real C*-algebras, JB*-triples considered as vector spaces over the reals, the bounded
operators between real Hilbert spaces, and the bounded operators between
quaternionic Hilbert spaces. They also have the property that their open unit balls are
real bounded symmetric domains. Since a real C*-algebra is a real JB*-triple, and
hence essentially a geometric object, a natural test for its structure theory is whether
the surjective linear isometries preserve the triple product. This is the main problem
considered in this paper.

Our main result is the analog, for real C*-algebras, of Kadison’s celebrated
theorem [12], and is based, in outline, on the recent affine geometric proof of that
theorem [4]. Accordingly, the tools needed for that proof, which are standard results
in the theory of (complex) C*-algebras, need to be found for real C *-algebras. In our
initial search of the literature, we were warned that some of these results were not true
(see [6]), and that others were true (see [15]), but we found that the published proof
was sketchy at best. We therefore decided to develop the theory of real C*-algebras
and prove all the results that we needed for our main theorem. Although some of
these results were expected or could be predicted, some of the proofs contain new
ideas.

This paper is organized as follows. In §1 it is shown that the bidual of a real C*-
algebra is a real C*-algebra. In §2 we give a definition of a real W*-algebra. The main
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result of §2, which has many consequences, is that the complexification of a real W*-
algebra is a W*-algebra. In §3 the standard spectral theoretic type results are
formulated for a real W*-algebra. Using the results of §3, it is a simple matter to
establish the fundamental relation between partial isometries and norm exposed faces
which connects the algebraic structure of a real W*-algebra with the geometric
structure of the unit ball of its predual. This is done in §4 where it is used to prove
that an isometry preserves orthogonality and ‘cubes’, and sends partial isometries to
partial isometries. In § 5 we prove the special case of our main result in which the two
real C*-algebras are W*-factors of type I, that is, of the form B(H) for some real,
complex, or quaternionic Hilbert space H. Because of the lack of a polarization
formula, the preservation of cubes does not automatically imply the preservation of
the triple product, as it does in the complex linear case. Instead, we use the fact that
B(H) is generated by certain families of partial isometries, called grids, which occur
in the general theory of Jordan triple systems.

The main result, that an isometry preserves the triple product is proved in §6 by
a reduction to the special case worked out in §5. In the final section, §7, the structure
of an arbitrary contractive projection on a commutative real C*-algebra is given,
complementing the known result in the commutative complex case [7].

If X is a real normed space, we denote its conjugate space by X', whereas if X is
a complex normed space, its conjugate space will be denoted by X *. A similar remark
applies to the adjoints of operators on Banach spaces. We trust this will not cause any
confusion with the notation for the adjoint operation in the involutive algebras which
occur throughout the paper. Also, if X is a complex normed space, we denote its real
restriction by X,. The map fi— Rf is a real linear isometry of (X*), onto (X,)’, where
RS denotes the real part of fe X*. For any normed space X, real or complex, X, will
denote a normed space (when it exists) whose dual is X. We shall use the symbols R
and C to denote the real and complex fields, and H to denote the division algebra of
quaternions.

Part of this work was carried out during the first and fourth-named authors’ visits
to Irvine during the academic year 1988—89.

The authors wish to thank L. J. Bunce for pointing out the necessity of including
the quaternionic case in Theorem 5.1.

1. The bidual of a real C*-algebra

A real C*-algebra s a real Banach *-algebra A such that ||a*a| = |la||* and 1 +a*a
is invertible in 4 if 4 has a unit. If 4 is not unital we require that 1+ a*a be invertible
for all a in the unit extension 4 of 4.

We note that, by [22, 4.1.13], if 4 is a non-unital real C*-algebra, then the unit
extension 4 = A@ R is a real C *.algebra under the norm

IGe, DIl = sup{llxu+Aul|: ue 4, |ul| = 1}.

The following lemma summarizes some equivalent definitions of real C*-algebras.
Let A, ={aeA:a=a*}.
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LemMa 1.1.  For a real Banach *-algebra A, the following are equivalent :
(i) A is a real C*-algebra;
(i) |la|® < |la*a+b*b| for all a,be A,
(iil) A is isometrically *-isomorphic to a norm-closed self-adjoint algebra of bounded
operators on a real Hilbert space.

Proof. The equivalence of (i) and (iii) is given in [19, Theorem 1]. The
equivalence of (i) and (iii) is Ingelstam’s Theorem, given in [10, 8.2 and 15.3].

COROLLARY 1.2. A4 closed *-subalgebra of a real C*-algebra is a real C*-algebra.

COROLLARY 1.3. Let A be a real C*-algebra. Then |a*|| < |a®+b%| for all
a,be A,. Hence (A,,0) is a JB-algebra, where aob = j(ab+ba). (Note that this
Jordan algebra cannot be exceptional by the Gelfand-Naimark Theorem for real
C*-algebras [10, 15.3).)

Proof. The second statement follows by definition [11, 3.1.4]; the rest is clear.

A real Banach algebra A is Arens regular if the two Arens products on the second
dual A4” coincide. If A4 is a real Banach *-algebra which is Arens regular, then the
involution * on 4 extends naturally to 4”, and A” becomes a real Banach *-algebra.
Moreover, the extended involution is g(4”, A")-6(A”, A’)-continuous.

LemMA 1.4. For a real Banach algebra A, the following are equivalent:
(1) A is Arens regular,
(ii) multiplication (with either Arens product) in A” is separately a(A”,A’)-
continuous;
(iii) for any pair of bounded sequences {a,} and {b,} in A and fe A’,

lim limf(a, b,) = lim limf(a, b,,),

n m m n

provided both limits exist.

Proof. As 5, p. 312].

If A is a real C*-algebra, then its complexification o/ = 4+i4 éan be given a
norm so that it becomes a complex C*-algebra, and 4 embeds isometrically as a real
C*-subalgebra of & [10, 15.4].

COROLLARY 1.5. If B is a closed subalgebra of an Arens regular Banach algebra,
then B is Arens regular (and hence multiplication in B is separately
o(B", B)-continuous). In particular, a real C*-algebra is Arens regular.

Proof. By (iii) and the Hahn-Banach theorem, the first statement follows. If 4
is a real C*-algebra, the real restriction <7, of o/ is clearly Arens regular (since  is,
see [5]), so by the first statement, 4, as a subalgebra of «, is Arens regular.

By this corollary, there exists a natural g(4”, A")-6(A4”, A’)-continuous involution
* on A4” which extends the involution * on 4: for xe 4", x*(f) = {x,f*)> where
f*e A’ is defined by f*(a) :=fla*) for ac A.

42
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THEOREM 1.6. Let A be a real C*-algebra. Then its second dual A", equipped with
the Arens product and natural involution, is a real C*-algebra.

Proof. Let o be the complexification of 4 and let n: 4 — o/ be the canonical
real isometric *-isomorphism into. Let &/ *, o/ ** denote the complex dual spaces and
let o7, (&7 *), denote the real restrictions. The second dual map n”: A” — (&4)" is a real
linear isometry which is a(4”, 4")-0((£,)", (#,)")-continuous. By Arens regularity of 4
and &/, the multiplications in 4” and in ()" are separately weak*-continuous. It
follows that n” is a *-isomorphism into.

As real Banach spaces we have

(&) =((#)) = (&) = (L)),
so we have a real linear isometry v: (&) — &/ **. It remains to show that v is
a *-homomorphism with respect to the Arens products on (&)” and & **.
We can write v=go1’, where o:((&*),) » & ** and 7:(&*), > () are
defined by

o(F) = F(-)—iF(i-) for Fe((*),) and 1(f) = Rf for fe(s£*),.

Using these formulas and the definition of the Arens multiplication and involution,
a straightforward but tedious calculation shows that v is a *-homomorphism.

2. Real W*-algebras

DEerINITION 2.1. Let 4 be a real C*-algebra. We call 4 a real W*-algebra if A
is linearly isometric to the dual space E’ of a real Banach space E such that
multiplication in 4 is separately ¢(4, E)-continuous.

We may and shall assume that E = A’. Then E = {fe A’ fis d(A4, E)-continuous}.

We now consider the complexification of a real W*-algebra.

For any real linear space ¥V, we let M (V) be the real linear space of n by n matrices
over V (n=1,2,..). If A is a real C*-algebra, there is a unique norm on M,(A)
making it a real C*-algebra with the usual matrix multiplication as product and the
involution * defined by [a,]* = [a}]] [10, 15.5]. We identify M, (A") with M (A4) as real
linear spaces by the mapping

Uile M (4)— ¢lfyle M (4), M

where @[f,]([a,]) = Y.7,., f,(a,). It is easy to see that ¢ is a real linear isomorphism
onto. We now equip M,(4") with the norm of the dual space M,(4) of M,(A4),
thereby making M, (4") a Banach space.

If & is the complexification of a real C*-algebra, then its real restriction &7, is
isometrically (real) *-isomorphic to

(G e

which is a real *-subalgebra of M,(4) (to establish the isometry, use [10, 8.2]). Of
course, A identifies with the *-subalgebra

{(; g) xeA}. A3)
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PROPOSITION 2.2. Let A be a real W*-algebra with a predual E. Then there is a
norm on M (E) for which M (E) = M, (A).

Proof. Since E = A’, we have M, (E) c M, (4") =~ M,(4), so that we can give
M (E) the norm it inherits from M,(4)’. We have

M (EY = M, (A)' /M (E),
where
M,(E)° ={Ce M, (4)":{{.f)=0Vfe M (E)}.

Let g: M (4) - M (A)" /M, (E)° = M,(E) be the restriction to M, (4) = M,(A4)" of
the quotient map.

We first show that M, (F)° is a two-sided ideal in M, (4)". Let ne M(E)° and
te M (A)’. We shall show that &ne M ,(E)°. With ¢ = lim, a, in (6(M,(4)", M ,(A4)),
where a,e M, (4), we have, by Arens regularity of M, (4),&n =lim,a,n. Letting
JeM (E), say f=[f,] with f,;€ E, we shall prove that {({n,f) = 0.

Now <(a,n.f> = {n,fa,), where fa,e M (A) is defined by {fa,b) = fla,b) for
beM,(4). By (1), fa,=I[g,] for some g,eA’. From [f/la,]=[g,], where
a, =[a,Je M, (4), and the separate weak*-continuity of multiplication in 4,
it follows that g,eE, so that fa,e M (E). Hence, <{a,n.f) ={n,fa,») =0 and
&nf> =lima,n,f> =0, proving that {ne M (E)°, and that M, (E)° is a left
ideal. Similarly, M (E)° is a right ideal, and thus M,(A4)"/M,(E)° is a real
C*-algebra [10, Exercise 15C] and ¢ is *-homomorphism.

We next show that q is a bijection. If g([a,]) = 0 let fe M, (E), for fe E, denote the
matrix with f in the (i,j) entry and zeros elsewhere. Then 0 = {[a,], o= {ay.f>,
proving that [a,] = 0 and g is injective. Now let £+ M (E)°e M, (A)" /M, (E)°. For
fixed i,j, define a,,eA as follows: for fe E, let f be as above and set ay,f) = (¢, .
Since for any matrix b= [b,]e M, (4), max,,|b,|l < [|b], we have 1Al = /1,
implying that a,e E’ = 4. We now have ¢([a,)]) = [a,]+ M (E)° = {+ M (E)° so that
q is onto.

Since *-isomorphisms between real C*-algebras are isometric (consider the
complexifications), M,,(4) =~ M, (4)" /M (E)° = M (E).

COROLLARY 2.3. Let A be a real W*-algebra. Then M, (A) is a real W*-algebra.

Proof. We have 4 = E’, multiplication in 4 is separately o(A4, E)-continuous,
and M, (E) = M, (A). Let a* = [af}]e M ,(A) and suppose a* — 0 in a(M,(4), M (E)).
Then, for feE, again letting f denote the matrix whose i,/ entry is f and all other
entries are zero, we have <aj,f» — 0 for all i,j, that is, aj, - 0 in o(4, E).

Now, let b = [b,]e M, (4). We shall show that a*h — 0 in o(M,(4), M, (E)). Let
f=f,Je M (E). Then

@b fy = Ao = (| £ b Ud) = £ (5 aibuny )

1,7=1 \k=1

For each k,a b,, — 0 in 6(4, E), so <{a’b,f) — 0.

THEOREM 2.4. Let A be a real W*-algebra. Then its complexification o/ is a
W*-algebra. Moreover, A is o(A, o,)-closed in o, and for a,a,€ A,

d(A,E)lima,=a < o(,H,)lima,=a.
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Proof. Fix E such that 4 =E’ and multiplication in A is separately
o(A, E)-continuous. Let &/ be the complexification of 4 and consider the identifi-
cations (2) and (3). Let o denote the a(M,(A), M,(E))-topology on M,(A). Recall that

Qe Uiy = 3 fifay) for [a,)e My(A), Lfyle My(E).

i,i=1
7, =% by —z=( b ino
* e, d, “\c d

a,—a, b,—b, ¢,—c¢, d,——d ina(A,E).

Thus

if and only if

From this we see immediately that <7, and A are o-closed in M,(A4). Hence &, has a
predual F = M,(E)/</; and the topology a(, F) on &, is the same as ¢ on &. Also,
A is o(#,, F)-closed in &/, since it is o-closed in M,(A4).

We also note that

a,—ain A(a(A,E))c:»(((I)“ 3)—,(3 2)(a)¢aa—rain o, (o(s4, F)).

Similarly,

za=(_"“ yﬂ)—»z=(_;‘ i) in (o(Z, F))

Yo Xq

if and only if

i2¢=(—y" x“)—»(‘y _;‘)=z‘z in (o(s/, F),

—Xo TV —X

that is, multiplication by i on &, is o(%, F)-continuous.

We now find a complex predual for &/. Let @: (&) — (&/*), be the usual
identification: ®(f) = f-)—if(i-). Wehave Fc F" = () .Set F = O(F) c &/ *. We
shall show that #* = .

First of all, since multiplication by i is ¢(s,, F)-continuous, for fe F we have
fi-)eF. Therefore ®(f)eF implies i®(f) = O(f(i-))eF, showing that & is a
complex subspace of o/ *. Now define n: o/ - % * by

{n(a@), ®(f)) = ®(f)(a) = a.f)—ia,f) (aed,feF).
Then, since fla) = RO(S)(a),

Iz(a) | = sup{|®()(@|: PN < 1,feF} < |all
=sup{|fla)|: feF,|fll €1} (consider ae )

< sup{|®(N)(@)|: feF, | ] <1} = |In(@)|.

Thus = is an isometry.
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Let deF* Then (RI)oDPeF so there exists aes such that
{(RI)oD,f) =<a,f) for feF. Since

CRI(i-), ©(f)) = REO(D(S))) = R(PUT))) = (RI, O ))>
={(R)o®,fi*)) = {a.fli*))
and by definition {a,f{(i*)) = {ia,f), we have

0, 0(f) = (RH()— iR ), () = {a.f>—ia,fii*)) = {n(a), D(f))-

Thus = is onto and o7 is a complex W *-algebra.

To complete the proof in the theorem it suffices to observe that x,— x in
A (o(HL, F)) if and only if x, - x in K (0(, F)). To prove this, assume x, — x in
A (o(4,F)) and let fe F. Then

Sx) = iflixy) = {xo @(f)) — {x, D)) = fix) — iflix)

which implies that f{x,) — f{x), that is, x, - x in & (0(%,, F)). Conversely, if x, » x
in &, (o(,, F)), then ix, — ix in o(&, F), so for any ®(f)e F (with fe F),

(X R = flx,) — iflix,) — fix) — iflix),
so x, — x in A (o(A, F)).

COROLLARY 2.5. Let A be a real C*-algebra. Then A is a real W*-algebra if and
only if A can be faithfully represented as a weak-operator closed real *-subalgebra of
B(H), for some complex Hilbert space H.

Proof. 1If A is a real W*-algebra, its complexification &/ can be represented as a
weak*-closed *-subalgebra of B(H), H complex, so that o(&/, &,) = o(B(H), B(H),)
on &/.

Conversely, if A can be faithfully represented as a weak-operator closed real
*-subalgebra B of B(H), for some complex Hilbert space H, then multiplication is
separately o(B, B,)-continuous.

COROLLARY 2.6. Let A be a real W*-algebra. Then (A,,0) is a JBW-algebra.
More precisely, if A= E’, then A, =~ (E/A;) .

Proof. By Corollary 1.3 and [11, Theorem 4.4.16], we need only to show that 4,
is a dual space. This will follow if it is shown that A4, is a(4, E)-closed, for then it is
known that (E/A;) = (A4,), via the map f+ A5+ f] A,. Suppose a, — a (6(A4, E)) and
a¥ = a,. Then a, - a (6(#, &,)) so that a¥ — a* (o(, #,)). Therefore a = a*.

COROLLARY 2.7. Let A be a real W*-algebra with preduals E, and E,. Then
E ~E,

Proof. Since the topologies a(A4, E,) and o(4, E,) both agree with a(#, &,), we
have

E, ={feA’: fis o(A, E,)-continuous} = {fe 4": f is a(4, E,)-continuous} = F,.

COROLLARY 2.8. Every real W*-algebra A has an identity.
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Proof. The complexification & of A has an identity e = x+iy with x,ye 4.
Since e* = e, x* = x and y* = —y, so that x+iy = e = ¢* = x* +iyx +ixy—)°. But
x = xe = x*+iyx, s0 x+iy = x—y*+ixy implying y* = 0, y*y = —y* = 0,and y = 0.

COROLLARY 2.9. Every weak*-closed C*-subalgebra B of a real W*-algebra A is
a real W*-algebra.

Proof. With A = E’, we have B = (E/B°) and
x, = x (0(B,E/B°)) < x,—x(0(4,E)).

PropOSITION 2.10. Let L be a weak*-closed left ideal in a real W*-algebra A.
Then there is a (unique) projection pe A such that L= Ap. If L is a two sided
weak*-closed ideal, then p is a central projection.

Proof. Let N= LnL* where L* = {x*: xe L}. Then N is a real W*-algebra by
Corollary 2.9. Let p be the identity element of N. Then p is a projection in 4 and
L = Ap.

If Ap = Aq, then p = aq, p = p*p = qa*aq implies pg=p and p < q.

3. Spectral, polar and Jordan decompositions

For a W*-algebra &, s(«, &,) denotes the ultra-strong topology, that is, the
topology defined by the family of semi-norms x> ¢(x*x)*%, as ¢ varies over the
positive o(&, &, )-continuous linear functionals on /.

In this section and the next, we need to use the fact that the set of projections in
a real W*-algebra forms a complete lattice. This follows from Corollary 2.6 and {11,
Lemma 4.2.8]. Alternatively, avoiding Jordan algebras, by Theorem 2.4 the extremum
of a family of projections from A, calculated in the complexification &7, lies in A.

Given an element x in a real W*-algebra A, the smallest projection e with
ex = x is called the range projection or the left support of x, and is denoted by
5,(x). Similarly, the right support s,(x) is the smallest projection ¢ with xg = x.

If A is a real C*-algebra and ae 4, then by [10; 13.3, 13.4], |a| = (a*a)*/?*e A.

ProrosITION 3.1. Let A be a real W*-algebra, and let ae A. There is a unique
partial isometry ue A with the property a = ul|a| where |a| = (a*a)'’® and uu* is the range
projection of a.

Proof. Let of be the complexification of 4 and consider the polar decomposition
of a in /. According to [18], a = ula] where u = s(&/, «,)-lim,_+a(lal +&)~*, uu*
is the range projection of a and u*u is the right support of x. By [23, 1.8.9],
u = o(, L,)-lim,_+a(la|+¢€), so by Theorem 2.4, ue A. For the uniqueness, see
[20, 2.2.9].

PROPOSITION 3.2. Let A be a real W*-algebra. Then
(i) for each ac A, and ¢ > 0, there exist A,,...,A,€R and orthogonal projections
ey,....e, such that la— Y% Aell <é&;
(ii) for each acA and ¢ >0, there exist A,,...,A, >0 and orthogonal partial
isometries u,, ..., u, such that ||la—Y %, A ul <e.



SURJECTIVE ISOMETRIES OF REAL C*-ALGEBRAS 105

Proof. (i) Since (4,,0) is a JBW-algebra, the result follows from [11, 4.2.3].
(it) With a = uja|, we have, by (i),

lal =Y. 4se,

g1

<e,

so that

<¢and ue,eA.

n
a-=y. Aue,

7=1
Moreover u, = ue, are orthogonal partial isometries in 4.

Recall that for a real C*-algebra A4, fe A’ is said to be hermitian if fla*) = fla) for
all ae A. Let (4'), denote the set of hermitian functionals on 4. It is easy to see that
(4,) = (4", via fim f@® 0, where we are using the decomposition 4 = 4, @ 4,,, 4,,
denoting the set of skew-hermitian elements of 4. A functional fe A is positive if it
is hermitian and if f{x*x) > 0 for every xe A. We shall indicate this as usual by
f = 0. Obviously, f > 0 if and only if f| 4, is a positive functional on the JB-algebra
A,. From these remarks and the fact that En(4), = (4,), via fi=f],,, we obtain
the following proposition.

PROPOSITION 3.3. Let A be a real W*-algebra with predual E. For each
SEEN(A'),, we have f = f*—f~ where f* >0, f* € E, and | fI = | /*| + 1 /Il

Let A = E’ be a real W*-algebra and let fe E with f> 0. Then
L:={xeAd: fix*x)=0}

is a left ideal in 4. There exists fe o/, such that Rf|, =f, where & is the com-
plexification of A4 (see the proof of Theorem 2.4). Since L = An{ye o : f{y*y) = 0},
L is s(o/, o, )-closed and hence, by [23, 1.8.11), o(«, &, )-closed. By Theorem 2.4
L is o(A4, E)-closed. Hence, by Proposition 2.10, L = Ap for some projection pe A4,
and p is the greatest of all projections ¢ with f{g) = 0. Define s(f) = 1 —p to be the
support of f. Then f{(x) = flxs(f)) = As(f) x) = fs(f) xs(f)) for all xe A.

PROPOSITION 3.4. Let A be a real W*-algebra with a predual E. For f,ge E with
S20,g20,wehave || f—g|l = || fI| + gl if and only if f and g have orthogonal support
projections.

Proof. As above, (4,,0) is a JBW-algebra with (4,), = E N (4’),- Note that the
support projection of /> 0 in 4 is the same as that of f|, in A4,. Therefore
s(f) and s(g) are orthogonal in 4
<>s(fl,,) and s(gl,,) are orthogonal in 4,
< 1f 1, =&l = 111, 1+l |
<[ f—gl = 1/1+lgll
Since A is a real W*-algebra with a predual E, if fe E and if e is a projection in

A, then f.e denotes the functional x+ flex). The functional f.e belongs to E by the
separate o(4, E)-continuity of multiplication.
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PROPOSITION 3.5. Let A be a real W*-algebra with a predual E. Let fe E and let
e be a projection in A. Then || f| = | f.el if and only if f=f.e.

Proof. As [24, Lemma 4.1, p. 140].

LEMMA 3.6. Let A be a unital real C*-algebra, and let fe A’. Suppose there is
acA with0<a<1 and | f| =fla). Then f > 0. (Note that we do not assume that f
is hermitian.)

Proof. Consider the real number 4 = f{l —a). If 1 > 0, then

1/l =fla) < fa)+f(1-a) = ) < | /]l
and thus A = 0. If A <0, then

0<a<l=>-1<2a-1<1=>}2a-1|<1
and

I/l = fa) < fla)—f1 —a) = R2a—1) < | f]

so that again 4 =0.
Thus f{1) = fla) = | f|| so that by [10, 14.4], f/| f|| is a real state, that is, f > 0.

PrOPOSITION 3.7. Let A be a real W*-algebra with predual E. For fe E there
is a unique partial isometry ue A and an element ¢ € E with ¢ = 0 such that = ugp,

u*u = s(¢) and ||gll = I /1.
Proof. As [24, Theorem 4.2, p. 140], using Lemma 3.6.

Let A = E’ be a real W*-algebra and let ae 4,. Then L ={xeAd:xa=0}is a
a(A, E)-closed left ideal in A and so L = Ap for some projection pe 4. Let s(a) = 1 —p.
Then s(a) is the least of all projections with ga = a = aq. Call s(a) the support of a.

LeMMA 3.8. Let W(a) be the real W*-subalgebra generated by a€ A,, where A is
a real W*-algebra. Then s(a)e W(a).

Proof. As [23, Proposition 1.10.4].

Let 4 be a real W*-algebra. By [11, 3.2.4], each a€ 4, can be written a = a*—a”
for unique positive elements at € 4, such that a*a™ = 0. Now fix ae 4,. For 1eR,
define e(d) = s((A—a)*). Then e(4)e W(a) and e(1) < e(w) if A < p.

PROPOSITION 3.9. For any self adjoint element a in a real W*-algebra A, there
exists a family of projections {e(1): Ae R} such that

1. A< u=e(A) < e(w),

2. A, A=e(4,) — e(A) in the 6(A, E)-topology,

3. lim,_ e(d) =1 and lim,_,__ e(1) =0,

4. a= f :o/lde(l) = f _'::/lde(i), where the integral converges in the o(A, E)-
topology.

Proof. As [23, Theorem 1.11.3].
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4. Partial isometries and faces

Let v be a partial isometry in a real C*-algebra 4. Setting / = vv* (= the left
support projection of v) and r = v*v (= the right support projection of v), the
contractive projections B(v), j = 0,1,2 on 4 are defined by

P)x=Ixr, PO)x=(1-Dxr+Ix(1-r), B)x=1=Dx(1—r) (xeA).
Note that if w is a partial isometry belonging to B,(v) 4, then

F(w)A4 = B(v) A. )
The decomposition x = x,+x,+x, where x,= B(v)x, is called the Peirce
decomposition of x relative to v. Note that P(v) 4 is the j-eigenspace of the map
x—ov*x+xv*v, j=0,1,2. We have
1 P(v) x + Fy(v) x|| = max (|| B,(v) x], [ B,(w) x[)) (x€4), ()
and
1P+ @) Rl = |1 K@) el + I BRI (g,he ). (6)

The following five lemmas can now be proved exactly as in [4, §2], using the results
of Sections 2 and 3 on real C*-algebras and real W*-algebras. In Lemma 4.2 and
Lemma 4.4, we need the uniqueness of the polar decomposition in Proposition 3.7,
for Lemma 4.3 we need the integral form of the spectral theorem (that is, Proposition
3.9); in Lemma 4.4 we need the fact that the projections in a real W*-algebra form
a complete lattice.

LeEMMA 4.1. Let v be a partial isometry in a real C*-algebra A.

(a) A, =v*Ar, withr = v*v, is a real C*-subalgebra of A with unit r. If A is a real
W*-algebra, so is A,

(b) The map x—vx is a linear isometric bijection of A, onto P(v) A with inverse
ar—v*a. Thus Py(v) A becomes a real C*-algebra with unit v, multiplication
a*b = av*b and involution a* = va*v.

(€) The map fi= 1\, 4 is an affine isometry of {fe A": fv) = || f1|} onto (Py(v) A),.
If A is a real W*-algebra with predual A,, this map restricts to an affine
isometry of {fe Ay: f0) = If1} onto (B(v) A)y..

Proof. As (4, Lemma 1].

Partial isometries # and v are orthogonal if their left and right support projections
are orthogonal, that is, uu*vv* = u*uv*v = 0. More generally, elements x, y in a real
C*-algebra are orthogonal if xy* = y*x = 0. As in the complex case, this is equivalent
to D(x,y) =0, where D(x,y) is the operator z+— (xy*z+2zy*x)/2 on A. Note that
if u is a partial isometry in 4 and x€ A4, then x and u are orthogonal if and only if
x€ Pyu) A.

Note that if w, and w, are orthogonal partial isometries with w, + w, € P,(u) A for
some other partial isometry u, then by (4),

wy€ By(wy) A < By(w,+wp) A < P(u) A. ¥
LemMA 4.2. Let f and g be normal functionals on a real W*-algebra A, that is,

f.g€E, where A = E’, and let u and v be the partial isometries occurring in their polar
decompositions respectively. Then u and v are orthogonal if and only if

If+gll = 1l/—gll = 171 +ligll. ®
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Proof. As [4, Lemma 2].

A norm exposed face of the unit ball (W), of a real Banach space W is a non-empty
subset E, of (W), of the form

E ={feW:{f,x)=|f| =1} for some xe W’ of norm 1.

Note that, as in the complex case, if u is a non-zero partial isometry, then by Lemma
4.1(c), F, # . Note also that you cannot have 4, = {0} in a real W*-algebra 4.

LemMMa 4.3.  For each x in a real W*-algebra A with | x| =1 and E, # (J, there
is a partial isometry we A such that F, = F, and x—w is orthogonal to w.

Proof. As [4, Lemma 3].

Lemma 4.3 says that the map u— F, from the set of partial isometries in a real
W*.algebra to the set of norm exposed faces in the unit ball of the predual is onto.
Unlike the complex case, this map is not in general one-to-one, this being due to the
presence of skew-hermitian elements.

LEMMA 4.4. Let u and v be partial isometries in a real W*-algebra A. Then u and
v are orthogonal if and only if (8) holds for every (f,g)€F, x F,.

Proof. As [4, Lemma 4].

LeMMA 4.5. Let x be an element of a real W*-algebra A. Then x is a partial
isometry if and only if | x| = 1, F, # &, and f{x) = 0 for all f which satisfy (8), for all
gEE,.

Proof. As [4, Lemma 5].

PROPOSITION 4.6. Let ¢ be a weak*-weak*-continuous surjective linear isometry
of a real W*-algebra A onto a real W*-algebra B.

(@) If u is a partial isometry in A, then ¢(u) is a partial isometry in B.

(b) If u and v are orthogonal partial isometries in A, then ¢(u) and ¢(v) are
orthogonal partial isometries in B.

(©) If xe A then $(xx*x) = $(x)($(x))*$(x).

(d) If x and y are orthogonal elements of A, then ¢(x) and $(y) are orthogonal
elements of B.

Proof. The assertions (a) and (b) are proved as in [4, Proposition 1], and the
assertion (c) is proved as in [4, (2.3)}. For (d) it suffices to observe that if x = u|x| and
y = v|y| are the polar decompositions of x and y then v and v are orthogonal.
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5. Isometries of W*-factors of Type I

Our goal in this section is to prove the following.

THEOREM 5.1. Let H and K be Hilbert spaces over the same set of scalars, which
is either R, C or H, and let ¢: B(H) — B(K) be a weak*-weak*-continuous surjective
real-linear isometry. Then ¢ preserves the triple product, that is, for a,b,ce B(H),

pab*c+cb*a) = $(a) $(b)*@(c) + $(c) p(b)*¢(a).
Note that B(H) is necessarily a real C*-algebra if H is real or quaternionic.
If we define the triple product in any associative *-algebra as
{abc} = (ab*c+cb*a)/2, our conclusion can be rewritten more compactly as

plabe} = {¢(a) $(b) $(c)}-

The Peirce projections P,(v), k = 0, 1,2 relative to a partial isometry v were defined
in the previous section, as well as the notion of orthogonality: Py(u)v =1v (or
P(v)u = u), denoted by u L v. We say that two partial isometries « and v are colinear
if P(u)v =v and P(v)u = u. We indicate this relation by the notation u T v. If the
stronger conditions P,(u) B(H) <= P,(v) B(H) and P,(v) B(H) = P,(u) B(H) are satisfied,
we say that u and v are strongly colinear.

For complex Hilbert spaces, Theorem 5.1 is proved in [2]. We next prepare some
tools for proving the theorem in the other cases. Unless otherwise stated, all Hilbert
spaces are over one of the division algebras R, C, H.

By the rank of a partial isometry ve B(H) is meant the common dimension of
v(H), [H and rH, where [ = vv*,r = v*v. The partial isometry v is primitive if it cannot
be written as a sum of two orthogonal non-zero partial isometries.

DEFINITION 5.2. Let {u,: i =1,2,3,4} be four primitive partial isometries on a
Hilbert space H. The quadruple (u,,u,, 4, u,) is said to form a quadrangle if

1. u, and u,,, are strongly colinear and u, L u,,,;

2. {u, ., Upo} = 2u,,, for some k.
(The indices are computed modulo 4.)

LEMMA 5.3. The triple products among the partial isometries belonging to a
quadrangle satisfy
1. u? = u, (partial isometry property),
2. {upug ) = Uy, and {u, u, U, 5} = 3., (colinearity property);
3. (U gy, Upyo} = Jlhyy aNd {Uy Uppg, Uy o} = Jyyy.
4. All triple products among the partial isometries belonging to a quadrangle which
are not of the form in 2. or 3. vanish.

Proof. This follows from the computation rules
{4,(u) A;(u) A (u)} < At—j+lc(u)

{Ag(u) Ao(u) A} = {0} = {A4,(v) A,(w) 4},

where A4,(u) = P,(w) B(H) if k =0,1,2 and A,(u) = {0} otherwise, together with the
identity

and

{u, v, {xyz}} = {{uvx}, y, 2} — {x, {vuy}, 2} + {x, y, {uvz}},
which is easily verified.
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REMARK 5.4. Let v be a partial isometry on a Hilbert space H.

(i) The rank of v is one if and only if v is primitive;

(ii) If v is the sum of two orthogonal primitive partial isometries w, and w,, then
there are orthogonal primitive partial isometries w, and w, such that
(wy, Wy, Wy, w,) form a quadrangle with

B(0) BCH) = ® By(w,) B(H).

Jj=1

Indeed, if w, is the operator #,® &;: ar—><a|EDn, j=1,3, with &,&; an
orthonormal set in H, then we can choose w, =7, ® £, and w, =, ® &,.

The reason for the terminology in the following is that this definition and the
previous one make sense and are useful if the partial isometries map one Hilbert space
into another (see [3]).

DerFINITION 5.5. Let I be some index set. A family G = {u,,: i,je I} of primitive
partial isometries on a Hilbert space is called a rectangular grid if (u,, u,, u,,, u,,) is a
quadrangle for all choices of indices i,j, k,! with j %1 and i # k.

It is important to note that any two distinct elements of a rectangular grid are
either colinear or orthogonal. Also, the triple product among any three elements of
a rectangular grid vanishes, unless they all belong to some quadrangle. Thus, the
triple product on the real span of a rectangular grid is determined by the quadrangles
which are formed by elements of the grid.

Let {{;} be an orthonormal basis for the real Hilbert space H. Let ¢, be the
primitive partial isometry & ® ¢, defined by n—<y|&,> ¢, The family {e,} is a
rectangular grid and will be referred to as a family of elementary matrices on H.

LEMMA 5.6. The span of a family {e,} of elementary matrices on a real Hilbert
space H is weak*-dense in B(H).

Proof. This follows, just as in the complex case, from the fact that B(H), is the
trace class operator, denoted T(H). This latter fact also follows exactly as in the
complex case (see [21; VI.9, VI.10, VIL.18, V1.19(a), V1.24], and [19; 3.5.2, 3.5.3,
3.5.4)).

REMARK 5.7. Let H be a Hilbert space over C (H respectively). If {;} is an
orthonormal basis for H, then with H® :=the closed real span of {¢}}, H® is a real
Hilbert space, and we have

H=C®yH® (H=H ®gqH?" respectively)
and
B(H) = C®xB(H® (B(H)=H ®gB(H®) respectively).

In particular, if H is of finite dimension n over H, we can identify the real algebras
B(H) and M (H°?) by associating al, ® £,e€ B(H) with a ® e, which is the matrix
with a in the i, j-position and zeros elsewhere. In this case, B(H),(e,,) = H Qge,,.

The following is the analog of Lemma 5.6 for quaternionic Hilbert spaces.
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Proposition 5.8. If H is a quaternionic Hilbert space, then the real span of
{H ®ge,: i,jel} is weak*-dense in B(H), where {e,} is a set of elementary matrices
on H®

Proof. We first observe that (H ® T(H®))’ can be identified with
H® B(H®) = BH® HF).
In fact, ¢ e (H ® T(H®)) is associated with the element
1@x,+i®@x,+j® x;,+k® x,,

where the x, € B(H®) are such that ¢(1 ® ¢) = trace(tx,), #(i ® f) = trace(tx,), and so
on, for te T(H®), and the duality of H ® T(H®) and H ® B(H®) is given by

4
(U@ L,A® x) = (Z 7 /lp) trace (tx)
p=1
for te T(H®), xe B(H®) and A, u = p, +py i+ pgj+ py ke H.

To show the weak*-density, let w e H ® T(H®) and suppose that y vanishes on
allH ® e,,. To show that y = 0, define y‘” € (B(H®))', as above, by y"(a) = y(1 ® a),
w¥(a) = w(i® a) and so on, for ae B(H®). By the weak*-continuity of the map
ar AQ® a, y'” € B(H®),. Thus, since y‘?(e,) = 0 implies y'® = 0 for all p we have,
for A\® aeH ® B(H®),

vA®a)=Ly(l1®a)+ALy(i®a)+...=0.

Now let H and K be real Hilbert spaces and let ¢: B(H) — B(K) be a weak*-weak*-
continuous surjective linear isometry. To show that ¢ preserves the triple product,
we only need to show that {¢(e,)} is a rectangular grid in B(K). For this purpose, it
suffices to show that ¢ maps the quadrangles in B(H) into quadrangles in B(K). This
is done in Proposition 5.11 below.

LEMMA 59. Let H, K be two-dimensional real Hilbert spaces and let
(Wi, Wo, Wy, w,) be a quadrangle (of rank 1 partial isometries) in B(H,K). Let
z = aw, +bw,+cw,+dw, for a,b,c,de R. Then z is a real multiple of a primitive partial
isometry if and only if ac—bd = 0. Moreover, in this case, |z||* = a*+b*+ 2 +d*.

Proof. Choose orthonormal bases for H and K in which w, = [(1) g], and so on.

a
Thenz—[d

(a,d) and (b,c) are proportional. This proves the first statement. For the second
statement, let #, be a unit vector in the range of z*z. Then

l:] and applying it to the vectors (1,0) and (0, 1) shows that the vectors

IzII* = llz*zll = {z*zn, |7, > = trace (z*2).

LemMA 5.10. Let H and K be a pair of Hilbert spaces over R, C, or H, and let
¢: B(H) —» B(K) be a surjective real-linear isometry. Let u be any partial isometry in
B(H). Then ¢[P,(u) B(H)] = Py(¢(w)) B(K). In particular if u, and u, are orthogonal
partial isometries of rank 1 in B(H), then ¢(u,) and ¢(u,) are orthogonal partial
isometries of rank 1 in B(K), and ¢ restricts to an isometry of Py(u,+u;) B(H) onto

Py($(uy) + B(u5)) B(K).
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Proof. Let w be a partial isometry such that u+ w is a maximal partial isometry.
Then with M = B(H) and N = B(K), we have M,(u) = My(w) = {w}*, where M,(u) =
P(u) M. Since ¢ preserves orthogonality, g(M,(u)) < {p(w)}* = No(d(w)) = Ny($(w)),
where similarly N,(v) = P(v) N. By considering the inverse of ¢, we obtain equality.

PrOPOSITION 5.11. Let H and K be a pair of real Hilbert spaces, and let
¢: B(H) - B(K) be a surjective real-linear isometry. If (u,, u,, u,u,) is a quadrangle
of rank 1 partial isometries of B(H), then (¢(u,), p(u,), p(us), $(u,)) is a quadrangle
in B(K).

Proof. Let w,= ¢(u)) for j=1,3, and choose, by Remark 5.4, wy,w, to be
primitive partial isometries such that (w,,w,, wg,w,) is a quadrangle spanning
P,(w, +wy) B(K).

According to Lemma 5.10, we may write ¢(u,) = aw, +bw, +cw,+dw,. Since
@(u,) is a primitive partial isometry, we have by Lemma 5.9

ad+b+c+di=1. 9)

On the other hand, by the same lemma, (1, +u,)/+/2 is a partial isometry of rank

1. Thus

pluy +u) |* = (@+1)2+ b+ +d* =2, (10)
which together with (9) implies a = 0. This same argument when applied to u, and
u,+ ug yields ¢ = 0. Since the rank of ¢(u,) is one, we also have d=0 or 5=0. In
the case d=0, ¢(u,) =+w, and since u, L u,, ¢(u,)eN,(w,) = N,(w,), implying
¢(u,) = +w, (here N denotes B(K)).

Since (w;, —w,, —w;, —w,) is also a quadrangle, we may assume without loss
of generality that ¢(w,) =w,. The proof will be completed by showing that
¢(u,) = w,. Suppose instead that ¢(u,) = —w,, and let z = u, +u,+u,+u,. Then
¢(z) = w, + w, + w;—w,, which contradicts Lemma 5.9.

The proof for the case b = 0 is the same with w, and w, interchanged.

This completes the proof of Theorem 5.1 in the case of real Hilbert spaces. We
now complete the proof in the case of quaternionic Hilbert spaces, thereby
completing the proof of Theorem 5.1. As in the case of real Hilbert spaces, there will
be a reduction to the two by two matrix case. We formulate this case in the following
proposition.

PropoOsITION 5.12. Let M = B(H,K),N = B(H',K’), with two-dimensional
Hilbert spaces H,K,H',K’ over the quaternions H. Let ¢: M - N be a surjective
real-linear isometry. Then ¢ preserves the triple product.

Proof. Let {£} and {n,} be orthonormal bases for H and K respectively, and
define the operators e, = 5, ® &,€ B(H, K). Let e;, = ¢(e,), so that e;, and e;, are
orthogonal primitive partial isometries. Make a preliminary choice of unit vectors
to satisfy ey, :=n, ® &, and define w,,:=#; ® ;e B(H’, K’). An argument similar to
the one used to prove (10) shows that ¢(e,,)e[H @ wy,] U [H @ w,,]. A modification
of the bases results in orthonormal bases {5;} and {&;} such that either

Ple) =wy(i=1,2), ¢le,) =w;, and  @(ey) € Ny(wyp) = No(wyy) = H @ wyy,

> Ple) =wy (i=1,2), ¢les) =w, and ¢(e,;)eH @ w,,.
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In what follows, we shall assume the second alternative above, that is, the
case ¢(e,;) = wy;, the proof of the other case being similar. By Lemma 5.10,
P(My(e,)) = Ny(w,,) (1 <i,j < 2). Since M,y(e,) = H® e, and Ny(w,) = H ® w,, (see
Remark 5.7), there exist maps p,,:H — H satisfying

Pa®ey) = py(a) @ wy,, aeH.

We now assert that all the p,, coincide with a map p which is a *-anti-isomorphism
of H (in the case ¢(e,,) = w,,, the corresponding map is a *-isomorphism). With
z=a®e,+b®e ,+cR®e, +d® e,,, we have the implications ab™' =cd'=z
has one-dimensional range => z is a real multiple of a partial isometry of rank 1 = ¢(z)
is a real multiple of a partial isometry of rank 1=>p,,(@)p.,(¢)™" = py5(b) por(d)™?
(recall that ¢(e,;) = w,,). In particular, with a = cd™'b we obtain

P11(cd™'b) = p5(b) por(d) P51 (0)- (1)

By our choice of the bases, p,;, p;, and p,, are unital. Usingc =d =5 =1in (11)
shows that p,, is unital, that is, ¢(e,,) = w,,. From this and (11), our assertion follows.

We now have ¢(a ® e,)) = p(a) ® w,, ae H, with p a *-anti-isomorphism of H, and
from this it is easy to check that ¢ preserves the triple product. For example,

a_b—(.‘®e21

{a®e,;,,b@ep,,c@ ey, = 2

and

{p(a) ® w1, p(b) ® Wyy, pC) @ Wy} =

12

p(C)/7(2155 P

so that

pla®en.b® 812; c®eyh)=p (0_127—2) @ wy, = p(_c_—)ﬁfjp(a)

® wy,.

We can now complete the proof of Theorem 5.1. Suppose that the Hilbert spaces
H, K in Theorem 5.1 are over H. With {e,} a rectangular grid formed by elementary
matrices, by Proposition 5.8, @, ,M,(e,) is weak *-dense in M = B(H). Thus it
suffices to prove that

$({xyz}) = {(x) $(») $(2)} (12)

holds for xe M,(e,,), y€ M,(e,,), z€ M,(e,,,). If {e,, ., €,,,,} is not part of a quadrangle,
then both sides of (12) are zero since ¢ preserves strong colinearity and orthogonality.
chs:rwise x,y,z€ My(e,,+e,) = B(H, K) for some two dimensional Hilbert spaces
H K.

REMARK 5.13. Let H be a Hilbert space over C (H respectively) and let H® be a
Hilbert space over R such that

B(H)=C®zB(H® (B(H)=H ®gB(H®) respectively).

The proof of Proposition 5.12 showed that an isometry ¢ of B(H) factors as
¢ =p® ¢’ where ¢’ is an isometry of B(H®) and p is a *-isomorphism or *-anti-
isomorphism of C (H respectively). The isometry ¢’ is the restriction of ¢ to the closed
real span of an appropriate grid. The proof also indicates that the complex and
quaternionic cases follow in a unified way from the real case proved above.
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6. Isometries of real C*-algebras

For a projection p in a real W*-algebra, c¢(p) will denote the smallest central
projection dominating p. The projection ¢(p) is the unique central projection such
that Ac(p) is the intersection of all weak*-closed two sided ideals containing p. We
call ¢(p) the central support of p.

LeMMA 6.1. In a real W*-factor A, any two minimal projections are equivalent.

Proof. Let p and g be two minimal projections in 4. Then their central supports
¢(p) and c(g) are each equal to the identity.
Consider p4g. We claim that pA4q # {0}. In fact, if p4q = {0}, then

I'={xeA: pAx = {0}}

is a weak*-closed two sided ideal and we can find a central projection e such that

I = Ae. Since gel, g < e, and hence ¢(q) < e. Thus e = 1 and p = 0, a contradiction.
If x # 0 and xepAgq, we have that x = pxq, so that 5,(x) < p. Since p is minimal,

s5,(x) = p and similarly s,(x) = g. The lemma now follows from Proposition 3.1.

Let ¢(f) denote the central support of s(f), the support of a state f belonging to
the predual E of a real W*-algebra 4.

LeEMMA 6.2. Let fedS, be a pure state of a real C*-algebra A, and let c¢(f) be the
central support of f in A”. Then A”c(f) = B(H,) for some Hilbert space H, over R, C,
or H.

Proof. Since fis a pure state, it follows that s(f) is a minimal projection, c(f) is
a minimal central projection, and s(f) < ¢(f). Thus 4”c(f) is a real W*-factor.

Let {¢} be a maximal family of mutually orthogonal minimal projections in
A”c(f). We claim that ¢(f) = ) ,e,. Suppose this is not the case. Then, as in the
proof of Lemma 6.1, we have, for p =e, for some i, and ¢ = c(f)—Y e, that
pA”"c(f)q # {0}. Thus choosing x # 0,xepA”c(f)q, the argument of the proof of
Lemma 6.1 shows that 5,(x) = p and s5,(x) < ¢ are two orthogonal minimal equivalent
projections. Thus, {e}U{s,(x)} is a family of mutually orthogonal minimal
projections in A”¢(f), which is a contradiction.

Thus ¢(f) = Y ,e,, and choosing partial isometries {¥} in A4”c(f) such that
ul u, = e;, uul = e,, we see that {w,}, where w,; = u,u", forms a set of matrix units.
Since e, A”c(f) e, is a real Banach division algebra, it is isomorphic to one of R, C, H
[10, Theorem 9.7]. It follows that A”c(f) = B(H,) for some real, complex, or
quaternionic Hilbert space H,.

Define the atomic part of A" to be A"z,, where z,:=\/,cz5, ¢(f)-

LeEmMMA 6.3.  Let ¢ be a surjective linear isometry from a real C*-algebra A to areal
C*-algebra B. Then ¢"(A"z,) = B'z.

Proof. We remark first that if f, g€ dS,, then either ¢(f) = c(g) or c(f)c(g) = 0.
Indeed, if ¢(f)c(g) # 0, then c(f) A”c(g) # {0}, and hence the proof of Lemma 6.1
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would give a subprojection of c¢(f) equivalent to a subprojection of c(g). That
is, choosing x # 0, xec(f)A”c(g), we have that s,(x) is equivalent to s,(x) and
s(x) < c(f), s(x)<c(g). Let p be a minimal subprojection of s,(x) and g the
corresponding minimal subprojection of ¢(g) which is equivalent to p. By the proof
of Lemma 6.2, p (g respectively) is equivalent to s(f) (s(g)). Thus s(f) is equivalent
to s(g), and therefore ¢(f) = c(g).

Thus, we obtain that 4"z, =~ @ B(H,), and A"z, is the weak*-closed span of its
minimal projections. It remains to show that ¢” maps a minimal projection into B"z,.

From Proposition 4.6, we know that ¢” carries partial isometries to partial
isometries. In fact, it carries primitive partial isometries to primitive partial isometries.
Thus, if p is a minimal subprojection of z,,¢"(p) is a primitive partial isometry.
Then ¢"(p)*@”(p) is a minimal projection so that ¢"(p)*¢"(p)(1—z,) = 0. From
¢"(p) = ¢"(p) 25+ ¢"(p) (1 —25) We see that ¢"(p) = ¢"(p) 25, so that ¢"(p)€ B'z,.

We can now prove the main result of our paper.

THEOREM 6.4. A surjective linear isometry ¢ between two real C*-algebras
preserves the triple product: ¢(ab*c+ cb*a) = ¢(a) p(b)*¢(c) + ¢(c) p(b)*¢(a).

Proof. As A — A”z,is anisomorphism, by the previous two lemmas, it is enough
to check that ¢” preserves the triple product on 4”z,,.

Also, from Lemma 6.2, A"z, = @,,5, B(H,) and B'zp = @, ;5, B(K,), s0 we can
view ¢” as a map from @,.,s, B(H,) to @,.ss, B(K,). In this case the result follows
from Theorem 5.1 since for each f, there is a g such that K, and H, have the same
scalars and ¢"(B(H,)) = B(K,). To prove the last statement, it suffices, by symmetry
to show that ¢"(B(H,)) lies in some B(K). If (uy, u,, u,u,) is a quadrangle in B(H,),
then ¢”(u,), being primitive, lies in a summand of B”z,, and if ¢”(%,) and ¢"(u,)
belonged to different summands, then u, = ¢""*(¢”(4,)) and u, would be orthogonal,
which is a contradiction. Two more applications of this argument shows that ¢” maps
the quadrangle into some summand of B”z,. Moreover, any two quadrangles in a
given rectangular grid are mapped into the same summand. Indeed, picking an
element of each quadrangle, there is a third quadrangle in the grid which contains
both elements.

7. Contractive projections

By the Arens—Kaplansky theorem [10, 12.5], every commutative real C*-algebra
is isomorphic to a norm closed real *-subalgebra of a commutative complex C*-
algebra C(X,C). For each € 4’ there is a complex Borel measure u on X such that
lll = €1l and

&) = ‘Rf fdu for fe A.

We shall call u a representing measure for &.

For any complex measure pue C(X,C)*, u = ¢-|u| denotes the measure theoretic
polar decomposition of u.

Let P: A —> A be a (real) linear contractive projection and let P': A’ — A’ be its
Banach space adjoint.
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LeMMa 7.1. Let & be an extreme point of the convex set P'(A’), and let u be a
representing measure for . Then for every fe A

Pf= <é’f> ¢Ta |ﬂ|‘a-e-

Proof. Suppose that (Pf) ¢ is not constant |y|-a.e. Then there is a real a such
that, with
E, = {xe X: R(Pflx) $(x)) > o},
and
E, = {xe X: R(Plx) $(x)) < o1,

we have ¢ = |y|(E,) > 0 and 1 —¢ = |y|(E,) > 0. We have

Mg Ug
1 l_t 2
PR

and therefore, with ¢£,,&,€ 4’ defined by

n=t

s

aon =91 [ sau en=9gs | sa

we have £ = P'¢{ =P ¢ +(1-1) PE,.
Since ¢ is extreme, P'¢, = P'¢,. But

SPE, =§me Pfdu%mL (P gl = f R(P) $dlul > a.

Similarly, {f, P’¢,) < «, contradiction.
Therefore, (Pf) ¢ = k, |u}-a.c., and

(f,8> = CPf,&> = REPf > = REPS, plul) = Rk, Bluld = k.

REMARK 7.2. Let T be a subset of 4" and let § = {£}},., be a subset of T which
is maximal with respect to the property: &, # +&, if i # j. Then given any £e T either
teSor —€€S.

THEOREM 7.3. Let A be a commutative real C*-algebra, say A < C(X,C), and let
P be a contractive projection on A. Then there exists a family of complex Borel measures

{ﬂl}(el such that with p, = ¢,"|u| and S = U,supp 728
1. |l =1 for each iel,

2. there is a bounded linear transformation Q: A — C,(S,C) such that for each

iel B
Qflsuppl;q] = m<f; ﬂt> ¢1! Iu,l-a.e.,

3. there is an isometric simultaneous extension operator E: Q(A) —» A such that
P=EQ.

Proof. Let{{},., be a family of extreme points of P’(4’), which is maximal with
respect to the property: & # +¢&, for all i # jin J. Let 4, be a representing measure
for &, let S, = supp |y, and S = |, S,. Define

Q:A-Cy(S)and E: Q(4)—~ A4

Of = Pf|s and E(Qf) = Pf.

by
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The theorem will follow as soon as it is proved that

19f llcys) = I1Bf Il s

and for this it suffices to prove

I2f1l.s = sup|PAX)I.

zes

We have, by Krein-Milman,
I1Pfll, = sup |<¢, Pf>| = sup |, P)I
jed

{eP'(4),, {extreme

< sup |PA(x)|.

zes

= sup
jeJ

R J Pfdy,
S

The third-named author wishes to take this opportunity to make a correction in
[7]. In that paper, Lemma 1.3 (and hence Lemma 1.4) is false. Therefore the condition
(1.2) should be deleted as an assumption in Proposition 1.1 and as a conclusion in
Theorem 1. This change does not affect any of the later results in [7].

The following result is a straightforward consequence of Theorem 7.3, as in [7].

- PROPOSITION 7.4. Let P be a contractive projection on a commutative real C*-
algebra A.
(a) For f,g,he A, we have

0f 0gQh = Q(PfPgh) = Q(PfgPh).

Therefore Q(A) is a ternary subalgebra of C,(S, C), that is, it is closed under the
triple product fgh,
(b) the range P(A) is a real C*-ternary algebra with the triple product

L/ & k] = P(fgh) for 1,8, he P(4),
that is,

(WsSesSsh S Sl = UssSos U S il = Uis UasSos S o),
L&Al < 1L/ 1Igl 1Al

ILALAN = ILAIP.

and

In view of [7, Theorem 5], it is natural to ask whether P(A4) is isometric to a real
C,-space. This is false. The complex field C, considered as a real C*-algebra, is real
isometric to a two-dimensional Hilbert space. If C were isometric to a real C,-space,
then by [16, Corollary, p. 343], C would be real isometric to all continuous real
functions on some compact Hausdorff space, so its (real) dual would be isometric to
a real L'-space, which gives a contradiction.

The following remains a challenging and important open problem in the study of
real JB*-triples.

PROBLEM 7.5. Is the range of a contractive projection on a real C*-algebra
isometric to a linear subspace of some real C*-algebra, closed for the natural triple
product ab*c+cb*a?
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