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ABSTRACT

The Dunford-Pettis property is shown to hold for the uniform algebra A(Cl) and its dual for some
standard domains ft, including strongly pseudoconvex bounded domains in C", pseudoconvex bounded
domains of finite type in C2, and bounded domains in C. Previously the result was known for the unit ball
and unit polydisc in Cn. Techniques used involve Bourgain algebras, Hankel operators, properties of the
Bergman kernel, quasi-metrics on the boundary, and d-theory.

1. Introduction

A Banach space X over the complex field is said to have the Dunford-Pettis
property if for each Banach space Y, every weakly compact linear operator T: X -> Y
is completely continuous. There are several conditions equivalent to this which
have been discussed in [12]. Here is one of them which is often used as a definition
of the Dunford-Pettis property.

THEOREM 1.1 [15]. Let X be a Banach space. Then X has the Dunford-Pettis
property if and only if for every weakly null sequence (xn) in X and weakly null
sequence (x*) in X*, we have limn_oo<x*,xn> = 0.

No infinite dimensional reflexive Banach space Xhas the Dunford-Pettis property
since the identity operator /: X -• X is a weakly compact operator, but the unit ball
of X is not norm compact. The basic result proved by Dunford and Pettis in [13] is
that Ll(ji) has the Dunford-Pettis property. Since the canonical map of X into X**
is weakly continuous, Theorem 1.1 implies that X must have the Dunford-Pettis
property if X* has it. In particular, the space C0(K) of all continuous functions which
vanish at infinity on a locally compact Hausdorff space K has the Dunford-Pettis
property.

Work has been done by several authors to determine which Banach spaces have
the Dunford-Pettis property. The C*-algebras and their duals and preduals which
have the Dunford-Pettis property have been completely analysed by Chu and Iochum
in [6] (see also [7]). In [3], Bourgain proved that H™ of the unit disk has the
Dunford-Pettis property. In [4], Bourgain proved that the Ball algebra A(Bn) and the
polydisc algebra A(Dn) (and their dual spaces) have the Dunford-Pettis property,
thereby generalizing in two directions the result of J. Chaumat for the disc algebra
(see [22, Section 8]). Recall that A(Q) is the subspace of C(Q) of functions which are
holomorphic on Q.
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Now the unit ball and unit polydisc in Cn are examples of bounded symmetric
domains, and the unit ball is a special case of a strongly pseudoconvex domain. The
purpose of the present paper is to prove that both A(Q) and its dual space A(Cl)* have
the Dunford-Pettis property for a quite large class of domains in Cn including the
unit ball, strongly pseudoconvex domains, and finite type domains in C2. Our purpose
is facilitated by exploiting the connection between the Dunford-Pettis property
holding for A(Q) and the boundedness and compactness of certain Hankel operators
H+ on A(Q).

The paper is organized as follows. In Section 2, we give some relations between
A(Q) or A(O)* having the Dunford-Pettis property and the complete continuity of
some Hankel operators on A(Q). In Section 3, we consider more general integral
operators which are modelled on the Bergman projection, and we prove that they
satisfy the conditions used in Section 2. In Section 4, several examples of standard
domains which satisfy the conditions, and hence for which A(Q) and A(Q)* have the
Dunford-Pettis property, are given. Finally, in Section 5, we show, as an application
of ^-theory, that A(Cl) and A(Q)* have the Dunford-Pettis property when Q is a
bounded domain in the complex plane with C1 boundary.

Bourgain's methods in [4] are very useful for finding subspaces of C(K) (where K
is compact) having the Dunford-Pettis property. This theory has been developed by
Cima and Timoney in [9], where they define the so-called Bourgain algebra of a
subspace of C{K). Here we describe briefly their result. Let <f>eC(K) and let M^
denote the multiplication operator on C(K). Use 0x** to denote M**(x**) for all
x**e C(K)** and let Xbe any closed subspace of C{K). Then we let XB denote the space
of all functions <f>eC(K) satisfying the following condition: if (x**) is a weakly null
sequence in X** <= C(K)**, then limn^00 dist (<f>x**,X**) = 0. Here

dist(</>x*n*,X**) «inf {||0***-***||C(lo..:***e***} = \\<f>x*n** \C(K)**/X**

We let Xb be the space of all functions <fi e C(K) satisfying: if (xn) c: X is a weakly null
sequence, then lim,,,,^ dist ((/)xn, X) = 0. It has been proved in [9] that XB and Xb are
algebras, which are the so-called Bourgain algebras of X. From [4, Proposition 2] and
the proof of [4, Theorem 1], Cima and Timoney in [9] formulated and proved the
following theorem.

THEOREM 1.2 [9]. Let Kbe a compact Hausdorff space. Let X be a closed subspace
of C{K). Then we have

(i) if XB - C{K), then both X and X* have the Dunford-Pettis property ;
(ii) if Xb = C(K), then X has the Dunford-Pettis property.

2. Sufficient Condition on the Bergman Kernel

Let Q be a bounded domain in Cn with C1 boundary. We let dV denote Lebesgue
volume measure over O. For 0 <p ^ oo, we let LP(Q) be the usual Lebesgue space
with respect to the measure dV. We let AP(Q) be the subspace of LP(C1) consisting of
holomorphic functions. It is well known and easy to show that Ap(£l) is a closed
subspace of LV(Q). In particular, A2(£l) is a Hilbert space. By subharmonicity of
\f\p for/e AP(Q), it follows easily that the evaluation functional eJJ) = f{z) is bounded
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on Av(Cl) for every point zeQ. By the Riesz representation theorem, there is
KzeA2(Q) so that

for all fe A\Q). Let K(z, w) = Kz(w). It is well known that K(z, w) is a reproducing
kernel of A\Q), called the Bergman kernel. Let P:L\£l) -> A\Q) be the orthogonal
projection, the so-called Bergman projection. Then we have

for al l /GL2(Q). For <psL2(Q), we define the multiplication operator formally by
MJJ) = <f>f. The commutator of M+ and P is defined by [M^P] = M^P-PM^, and
we define the Hankel operator H^ as follows: H^ = [Af0, P]P. From these definitions,
one can easily see that H^ = [M^P] on A2(Q). In other words, we can also look at
[M^ P] as an integral operator with kernel function:

A,(z, w) = (0(z) - <P(w)) K(z, w) for z, w e Q.

Let A(C1) = A\Q) n C(O). Then v4(Q) is a Banach algebra, and it is easy to show
that A(Q) is a closed subspace of C(Q). The first relation between the Dunford-Pettis
property of the Banach space A(Gl) and the boundedness and complete continuity of
the Hankel operators H^ on A{Q) is given by the following simple proposition.

PROPOSITION 2.1. Let O be a bounded domain in Cn with C1 boundary. Assume
that for all <f>e C^Q), the Hankel operator H^ maps A(Q) into C(Q.) and is completely
continuous. Then A(Cl)b = C(Q). Hence, by Theorem 1.2, A(D) has the Dunford-Pettis
property.

Proof. It is required to prove that for each weakly null sequence (/„)*_! <= A(Q),
and all <fi e C(Q), we have

O. (2.1)

Since C^Q) is dense in C(Q), it suffices to prove (2.1) for all <f>eC\Ci).
Let ^eC\Cl). Since H^AiQ)) c C(Q), we have P(0/n)eC(Q) n 4̂2(

for all n. Since //^ is completely continuous from A(Q) to C(Q), we have

However,

This implies that (2.1) holds for all ^eC^Q), and completes the proof.

From the assumption of Proposition 2.1, one realizes that in order to prove that
A(Q) has the Dunford-Pettis property, it is important to understand when Hankel
operators carry A(Q) into C(Q) and are completely continuous from A(Q) to C(Q).
Conditions for the boundedness and compactness of the Hankel operators on
Bergman spaces or Hardy spaces have been studied by many authors (see for example
[2,1] and references therein).
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In the next two theorems, we first give a sufficient condition for the complete
continuity of H^.A^) -> C(Q) and then we show that this condition implies the
Dunford-Pettis property for A(Q)* and A(Q). In the following two sections, we shall
show that certain standard domains satisfy this condition.

THEOREM 2.2. Let Ci.be a bounded domain in Cn with C1 boundary. Let 0e C(Q).
Then the following statements hold.

(i) If ||A,(z,-)lli ^ C^for all zeO, then H^:Ap(Cl) -LP(Q) is bounded for all
1 < p ^ oo. Here we use the notation A™ = i/00, and C^ is a constant depending only on
<f) and Q.

(ii) If the set {K^(z, •): z e Q} is relatively compact in L1(Q), then
H^'.A(Q) -> LCO(Q) is completely continuous.

(iii) If the set {K^z, -)zeQ,}is relatively compact in L\Q) and ifK(z, w) e C(Q x Cle)
for all 0 < £ < 1, where Qe = {zeQ: dist (z,dQ) ^ e}, then H^:A(Q) -> C(Q) is
completely continuous.

Proof. Since the Bergman kernel is conjugate symmetric, we have |A (̂z, w)\ =
\K^(w, z)\ for all z, wefi. Applying Schur's lemma [25] with the assumption in (i), the
integral operator with kernel function K^ is bounded on LP(Q) for all 1 ^p ^oo, so
HfAp{&) -* LV(Q) is bounded.

Now we prove (ii). By (i), H^.AP(Q) -> LP(Q) is bounded for all 1 ^p <oo. In
particular, H^:A(Q) -> L°°(Q) is bounded. Let {/„} c A(Q) be a weakly null sequence.
We shall show that {H^(fn)} is strongly null in L°°(Q). Suppose not. Then there is a
positive number e0 and a subsequence zn/c e Q such that

I^C/»t)(*nfc)l > 4 for /: = 1,2,.... (2.2)
Since {K^z, •): z e Q} is relatively compact in L1(Q), there is a further subsequence (we
use the same notation) {A (̂zn ,•)} converging strongly to some geL^Q). Since {/„}
is weakly null, it is bounded in L°°(Q). Thus

f \K,(znk,w)-g(w)\\fnk(w)\dV(w)
Jn

fnki
w)S^)dV(w)

as k -> oo. This contradicts (2.2). Therefore WH^ifJW^ -• 0 as n ->oo.
We prove (iii) now; we note that, by (ii), it suffices to prove that H^{f) e C(Q) for

all/e/4(Q). Let f€A(Q). Since / / / / ) G C ( Q ) , it suffices to prove that HJJ) is
uniformly continuous on Q. If not, there are sequences (z£)fc and (zl)k in Q and a
positive number e0 such that lim^^^lz^ — z\\ = 0, and

l ^ ( / ) (4) - # , ( / ) (4)1 ^ fio for fc = 1,2,.... (2.3)
Since {K^z, •): z e Q} is relatively compact in LX(Q), without loss of generality, we may
assume that there are functions gv g2eL\Q) such that

d(e) = max

so that lim^o<5(e) = 0. Since K(z,w) is uniformly continuous onflxQ£, for each
e > 0, there is ^(e) > 0 such that for all Z1,Z2GQ and all weQ6 we have

|A,(Z\MO-A,(Z",MOI ^ S(e) if l^-z2! ^ r}(e).
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Thus

l^(/)(4)"^(/)(4)l^ f \Kt(zlw)-Kt(zl,w)\\f{w)\dV(w)
Jn

Jsic

+ 11/11. f \K^zl,w)-K^zl,w)\dV(w)
Jn-n.

\K<p(z[,w)-gj(w)\dV(w)f

+ 11/11

^ Cd(e) as fc-KX).

The above inequality contradicts (2.3) as e -• 0. Therefore, (iii) follows.

THEOREM 2.3. Let Qbe a bounded domain in Cn with Cl boundary. Suppose that
for all 0eC1(Q) the set {A (̂z, •): z e Q} is relatively compact in L1^), and K(z,w)e
C(Q x£le)for allO<e<\, where Qe = {zeQ:dist(z, dQ) ^ e}. Then A(Q)B = C(Q),
and hence by Theorem 1.2, A(Q)* and A(Q) have the Dunford-Pettis property.

In order to prove Theorem 2.3, we need the following well-known elementary
proposition.

PROPOSITION 2.4. Let <f> be the embedding map of a Banach space X into X**. Let
T be the weak topology of X, and a be the weak*-topology of X**. Then

(a) 0 is a homeomorphism from (X,r) onto a dense subspace of{X**,a);
(b) ifB is the closed unit ball ofX, then (j>{B) is a-dense in B**, the closed unit ball

ofX**.

For the proof of Theorem 2.3, it is required to prove the following.

CLAIM. / / (*••) is weakly null in A(Q)** and <j>e C(Q), then

lim

Proof of Claim. Since (***) is weakly null in A(Q)**, it is bounded. Since CX(Q)
is dense in C(Q), without loss of generality, we may assume that 0eCx(Q). We
first show that for each e > 0, there is Ne> 0 such that

sup|<]^(z, •),/••(*:•)>! <fc f o r a l l n ^ (2.4)
zed

where i:A(Q) -> C(Q) is the inclusion map.
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Suppose that (2.4) is not true. Then there are a sequence {zk} of points in Q, a
subsequence {x**} c A(Ci)** and a positive number e0 so that

|<^(zfc,0,'**(<*)>! ^k> for*=l ,2 , . . . . (2.5)

Since {A (̂zfc, •)} is_relatively compact in L\Q), there is a convergent subsequence,
still denoted by {K^(zk, •)}, and a function geZ/(Q) so that

ll^(**,-)-£lli >0 asA: ,00.

Since z*:-C(Q)* = JH^t) ->A(Q)* is a bounded operator with norm 1, we have

\\i*(K^k,-))-i*(g)L^ >0 as A: >oo.
Thus

as k -> 00. This contradicts (2.5). Therefore, we have completed the proof of (2.4).
By Proposition 2.4 with X = A(Q), for each n there is a net (xa) in A(Q) so that

(a) wioo^rilw;
(b) x*n* = <7C4**,,4*)-limaxa = a(C(Q)**,C(Q)*)-limaxa.
Since {A (̂z, •)} is relatively compact in L 1 ^) , an argument similar to the proof of

(2.4) above shows that

^ ^ e (2.6)
zetl zed

when a is sufficiently large. We shall show that

dist («£***, ,4(Q)**)<£ (or n^Ne.

In the first place, with

(A(Q)**)L = {x* eC(Q)*: (x*,A**) = 0} and ^(Q)1 = {x* e C(Q)*: (x*,A(Q)} = 0},

so that (A(Q)**)1 c A(ny, we have

= sup {\im\<</>xa,x*}\:x*e(A(nr*)1}
11**11-1 «

^ lim sup sup {\<<f>xa,x*>\:x*e(A(O)**)J
« 11**11-1

< lim sup sup {\(<f>xa,x*y\:xe(A(Q))1}
a 11**11-1

= lim sup Uxa + A(Q)\\CiCi)/Mn)

= lim sup distC(fl)(0A:a, A(Q)). (2.7)
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Therefore we need only to show that dist {(f>xa, A(Q)) < e. We have

K^(z,w)xa(w)dV(w)
m

= \<xa,Tt(z, •)>!<« (2-8)

by (2.6) for all zeQ. By Theorem 2.2(iii), P(</>xa)e A(Q). The proof of Theorem 2.3
is complete.

3. Sufficient condition on the domain

In this section, we shall study the boundedness and compactness of Hankel
operators on L°°(Q) and A(Q). In fact we shall consider more general operators which
are modelled on Hankel operators (see [1] for details). Let A' be a Hausdorff space.
A quasi-metric d on X is a continuous function d:XxX-> R+ which satisfies the
requirements for a topological metric except that the triangle inequality is replaced by

d(x, z) ^ C(d(x,y) + d(y, z)) for x,y,zeX. (3.1)

(See [101 or [11, Section 2] for the structure of spaces of homogeneous type, upon
which this is based.)

Let Q be a bounded domain in Cn with C2 boundary. Let r(z) denote the distance
from z to dQ and let n(z) be the projection of zeQ onto dQ (see [18]). It is clear that
this projection exists and is unique when zeQ is near dQ, say r(z) ̂  e0. Let d be a
quasi-metric on dQ as defined above. We define balls B(P,3), for PedQ and 3 > 0,
with respect to this quasi-metric. Then we define a Carleson region to be

V(w,3) = {zeQ:r(z) < 3 and n{z)eB(n(w),3)}

when weQ and r(w) < 3 < e0.
Let if/(z, 3) = 3a(B(n(z), 3)), where a denotes surface measure on dQ. For z, weQ,

we let
r(z, w) := inf {p ^ r{z):#(TT(Z), r{z)) c #(w,/?)}.

It has been proved in [1] that r(z, w) is quasi-symmetric, that is, r(z, w) « r(w, z).
A complex-valued measurable function K on Q x Q is a homogeneous kernel if it

is locally bounded on Q x Q and satisfies

\K(z, w)\ < Cy/(z,r(z, w))'1 for z,weQ and r(z), r(w) < e0, (3.2)

where C is some constant. If K is a homogeneous kernel, we denote the associated
integral operator by IK, which is defined formally by

M/). (3.3)

Note that if K is the Bergman kernel over Q, then IK is the Bergman projection P.
We shall now prove the following theorem.

THEOREM 3.1. Let Q be a bounded domain with C2 boundary in Cn and let d be a
quasi-metric on dQ satisfying the inequality:

for all z,weQ and some e > 0. Let K(-,•) be a homogeneous kernel on Q. Then
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(a) if <j>e C\Q), then H$ = [M+, IK] IK:L^Q) ->L°°(Q) is bounded;
(b) if K(-,)eC(QxQE) for all 0 < e « l , then {^ (z , ) : zeQ} w relatively

compact in / / (Q).

Proo/. Part (a) follows from the fact that \z — • \ K(z, •) e L\Q) uniformly for
zeQ, which we now show.

Let N = N(z) be the smallest integer such that dQ. a B(n(z), 2Nr(z)). Then

:-w\\K{z,w)\dV{w)

\K(z,w)\

^Al+Ilogr(z,w)|

where cW(z, S) is shorthand for W(x, cS).
Next we establish (b). Let {K^{zk, •)} be any sequence with zked (for k = 1,2,...).

We show that it has a convergent subsequence in L^Q). Since Q is compact, there is
a subsequence {zk} and an element zoeQ so that lim^^z^. = z0. We shall show that
K^{zk, ) is a convergent sequence in LX(Q). It suffices to show it is a Cauchy sequence
in L^Q). For any 0 < 6 <^ 1, since A (̂ •, •) is uniformly continuous on Q x Qs, there
is a positive integer Ns such that if /, m > Nd, then

for all weCls. Thus for l,m> Ns, we have

c f

where v(w) is the unit inner normal vector to dQ at w. Here we use the fact that
|0(z)-0(w)|<C|z-w|<C/(l+|logr(z,w)|) . Now (b) follows by letting (5->O,
and so the proof of Theorem 3.1 is complete.

Applying Theorem 3.1 and Theorem 2.3, we have the following result.
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COROLLARY 3.2. Let Vibe a bounded domain in Cn with C2 boundary and quasi-
metric d on dQ which satisfies (3.4). If K is a homogeneous kernel on Cl such that
K€ C(Q x Q£) for all e > 0, then both A(Q) and A(Q)* have the Dunford-Pettis
property.

4. Some standard domains satisfying the sufficient condition

In this section, we shall give several examples of domains Q in Cn which satisfy the
condition of Corollary 3.2, and hence for which A(Ci) and A(Q)* satisfy the
Dunford-Pettis property. First, we dispose of the known case of the unit ball in Cn.

EXAMPLE 4.1 [4]. IfQ = Bn, then both A(Q) and A(Q)* have the Dunford-Pettis
property.

Proof On the boundary of Bn, we have a quasi-metric d defined by

and the Bergman kernel K{z, w) for Bn is:

for z,weBn,

where cn is the volume of the unit ball Bn.
One can easily check that

(a) K is a homogeneous kernel;
(b) \z-w\^(2a\z,w)Y'2;
(c) K(z, w) £ C(Bn x (Bn\) for all e > 0.

Therefore, by Corollary 3.2, A(Bn) and A(Bn)* have the Dunford-Pettis property.

EXAMPLE 4.2. IfQ, is a bounded strongly pseudoconvex domain in Cn with smooth
boundary, then A(Q) and A(Q)* have the Dunford-Pettis property.

Proof We define the quasi-metric d on dCl as follows. For xedQ, let nx denote
the complex tangent plane in Cn at x. For t > 0 let Axt denote the set of points in Cn

having distance at most t from the ball in the plane nx with centre at x and radius y/t.
Let Bxl = Ax t n dQ. This is equivalent to the definitions given in [24,19]. The quasi-
metric on dCl is defined by

d{x,y) = inf {t > 0;yeBxt,xeByt}.

One can easily check that

(a) \z-w\ < Cd{z,w)112 for all z,we8Q;
(b) the Bergman kernel K(z, w) is a homogeneous kernel (apply Fefferman's

asymptotic expansion of the Bergman kernel given in [14]);
(c) K(z, w)eCx(Q. x O£) for all e > 0 (apply the result of Kerzman in [16]).

By Corollary 3.2, A(Q) and A(Q)* have the Dunford-Pettis property.

EXAMPLE 4.3. If Q is a bounded pseudoconvex domain of finite type in C2 with
smooth boundary, then A(Q) and A(Q)* have the Dunford-Pettis property.
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Proof. We let d be the quasi-metric defined in [20, 21]. For convenience, we recall
the definition. LetpedQ, and let A(p,S) be the quantity defined in [19, p. 116]. Fix
S > 0. Since A(p, z) is strictly increasing in z and A(p, 0) = 0, there is a unique z —
r(S,p) such that A(p,z) = S. Let XX,X2 be real vector fields such that XX,X2 and T
span the real tangent space to dQ at each point p. Here Xx, X2 span the complex
tangent space over R at each point and Tpoints in the 'complex normal' direction.
Then we define the ball B(p, 3) on dQ by

B(p,S) = {qedQ.q = exp^X. + ̂ X. + CT), \a,\ ^ z(p,3) forj = 1,2, \{\ ^ 3).

Notice that \B(p, 3)\ &z23.
The quasi-metric d on dQ is defined as follows:

d(z, w) = inf {/: z, we B(z, t) and ze B(w, t)}.

Suppose that Q is a domain of type m. Then, using [19, Theorems 3.1 and 3.2], one
can easily check that

(a) \z - w\ ̂  Cd(z, w)1/m for all z, w e dQ;
(b) the Bergman kernel K(z, w) is a homogeneous kernel;
(c) K(z, w) e C(Q x Qe) for all e > 0.

Therefore, by Corollary 3.2, A(Q) and y4(Q)* have the Dunford-Pettis property.

5. Application of ^-theory

In many cases, the integral representing kernels for solutions of the 5-equations
are simpler than the Bergman kernel, for example, for a bounded domain in the
complex plane. In this section, we shall apply 5-theory (for which see [17]) and the
ideas from Section 2 to prove that A(Q) and A(Q)* have the Dunford-Pettis property
for bounded Q with smooth boundary. Let us start with the following more general
theorem.

THEOREM 5.1. Let Q be a bounded domain in Cn with C1 boundary. If the
d operator T: C(Q) -> C(Q) is completely continuous (here HT(f) = / ) , then A(Q) has
the Dunford-Pettis property.

Proof. According to Theorem 1.2, it suffices to prove that for each weakly null
sequence (/„)*_! <= A(Q), we have

O (5.1)
n-»oo

for all <j>eC(Q). Since C\Q) is dense in C(Q), it suffices to prove that (5.1) holds for

Let ^EC\Q). For each n, we let un = T(fnd<f>). Since T: C(Q) -> C(Q), it
follows that uneC(Q) for all n and gn :=fn(j) — uneA(Q). Since fn~d<j) -> 0 weakly and
T: C(Q) -> C(Q) is completely continuous from A(Q) to C(Q), we have

lim ||MJ|OO = 0.
n-»oo

However,

completing the proof.
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If we know the integral kernel of the solutions of the d-equation on Q, then we
can check for complete continuity to obtain the Dunford-Pettis property. For
example, in the case of the complex plane, we can prove the following theorem.

THEOREM 5.2. Let Qbe a bounded domain in the complex plane with C1 boundary.
Then A(Q) and A(Gl)* have the Dunford-Pettis property.

Proof. The d-solution operator T: C(Q) -> C(O) is given by

where dA is Lebesgue area measure. It is easy to see that {l/(w —z):zeQ} is a
relatively compact set in L\Q). Thus T: C(Q) -> C(Q) is completely continuous. By
Theorem 5.1, A(Q) has the Dunford-Pettis property. Alternatively, one can see the
complete continuity by recalling that T: C(Q) -> Lipa(Q) for any ex < 1 and that the
embedding Lipa(O) —• C(Q) is compact.

In order to prove that A(Gl)* has the Dunford-Pettis property, we need to repeat
some parts of the proof of Theorem 2.3. In fact, for e > 0 arbitrary, if we replace
K^{z,w) in (2.4) by d(/>(w)/(z-w), then we have

sup
zed z — w

. * • < £

if n > Ne, where Ne is some integer depending only on e. By the related arguments in the
proof of Theorem 2.3, if we let xaeA(Q) with HxJ^ ̂  1 be such that \ima(xa,x*} =
<x**,x*> for all x*eA(Q)*, and if we define

then we have uasA(D) and

= \T(xJ(j>)(z)\ =
xa(w)d<t>(w)

dA(w)

sup
z — w

^** 2e.

Therefore, we have

dist(0x**,,4(Q)**) ^0 asn ^oo.

Applying Theorem 1.2, the proof of Theorem 5.2 is complete.

REMARK. The main results of this paper can be proved alternatively by using the
technique of 5-theory as represented in the proof of Theorem 5.2. The complete
continuity of the relevant ~d solution operators can be found in [23, 5,17].

It was pointed out by the referee that Theorem 5.2 can be obtained in another
way, using a result by Cima and Timoney in [9].
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