THE DUNFORD-PETTIS PROPERTY FOR SOME FUNCTION
ALGEBRAS IN SEVERAL COMPLEX VARIABLES

SONG-YING LI ano BERNARD RUSSO

ABSTRACT

The Dunford-Pettis property is shown to hold for the uniform algebra A(Q) and its dual for some
standard domains Q, including strongly pseudoconvex bounded domains in C", pseudoconvex bounded
domains of finite type in C2?, and bounded domains in C. Previously the result was known for the unit ball
and unit polydisc in C*. Techniques used involve Bourgain algebras, Hankel operators, properties of the
Bergman kernel, quasi-metrics on the boundary, and 8-theory.

1. Introduction

A Banach space X over the complex field is said to have the Dunford—Pettis
property if for each Banach space Y, every weakly compact linear operator T: X - Y
is completely continuous. There are several conditions equivalent to this which
have been discussed in [12]. Here is one of them which is often used as a definition
of the Dunford-Pettis property.

THEOREM 1.1 [15). Let X be a Banach space. Then X has the Dunford—Pettis
property if and only if for every weakly null sequence (x,) in X and weakly null
sequence (x}) in X*, we have lim,_ {(x},x,> = 0.

No infinite dimensional reflexive Banach space X has the Dunford-Pettis property
since the identity operator /: X — X is a weakly compact operator, but the unit ball
of X is not norm compact. The basic result proved by Dunford and Pettis in [13] is
that L'(x) has the Dunford-Pettis property. Since the canonical map of X into X**
is weakly continuous, Theorem 1.1 implies that X must have the Dunford—Pettis
property if X* has it. In particular, the space C,(K) of all continuous functions which
vanish at infinity on a locally compact Hausdorff space K has the Dunford—Pettis
property.

Work has been done by several authors to determine which Banach spaces have
the Dunford—Pettis property. The C*-algebras and their duals and preduals which
have the Dunford-Pettis property have been completely analysed by Chu and Iochum
in [6] (see also [7]). In [3], Bourgain proved that H® of the unit disk has the
Dunford-Pettis property. In [4], Bourgain proved that the Ball algebra A(B,) and the
polydisc algebra A(D") (and their dual spaces) have the Dunford—Pettis property,
thereby generalizing in two directions the result of J. Chaumat for the disc algebra
(see [22, Section 8]). Recall that 4(Q) is the subspace of C(Q) of functions which are
holomorphic on Q.
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Now the unit ball and unit polydisc in C* are examples of bounded symmetric
domains, and the unit ball is a special case of a strongly pseudoconvex domain. The
purpose of the present paper is to prove that both A(Q2) and its dual space A(Q)* have
the Dunford—Pettis property for a quite large class of domains in C”* including the
unit ball, strongly pseudoconvex domains, and finite type domains in C%, Qur purpose
is facilitated by exploiting the connection between the Dunford-Pettis property
holding for A4(Q2) and the boundedness and compactness of certain Hankel operators
H, on A(Q).

The paper is organized as follows. In Section 2, we give some relations between
A(Q) or A(Q)* having the Dunford—Pettis property and the complete continuity of
some Hankel operators on A(Q2). In Section 3, we consider more general integral
operators which are modelled on the Bergman projection, and we prove that they
satisfy the conditions used in Section 2. In Section 4, several examples of standard
domains which satisfy the conditions, and hence for which 4(Q2) and A(2)* have the
Dunford-Pettis property, are given. Finally, in Section 5, we show, as an application
of 0-theory, that A(Q) and A(Q)* have the Dunford—Pettis property when Q is a
bounded domain in the complex plane with C' boundary.

Bourgain’s methods in [4] are very useful for finding subspaces of C(K) (where K
is compact) having the Dunford—Pettis property. This theory has been developed by
Cima and Timoney in [9], where they define the so-called Bourgain algebra of a
subspace of C(K). Here we describe briefly their result. Let g€ C(K) and let M,
denote the multiplication operator on C(K). Use ¢x** to denote MJ*(x**) for all
x** e C(K)** and let X be any closed subspace of C(K). Then we let X; denote the space
of all functions ¢ e C(K) satisfying the following condition: if (x**) is a weakly null
sequence in X ** < C(K)**, then lim,,_ , dist (¢x}*, X**) = 0. Here

dist (gxx*, X**) =inf {||x}* —X** || yer : X¥*FEX*¥) = ([ Gx* + X **[| 0 0nsp0e-

We let X, be the space of all functions ¢ € C(K) satisfying: if (x,) = X is a weakly null
sequence, then lim,,_, , dist (¢x,, X) = 0. It has been proved in [9] that X; and X, are
algebras, which are the so-called Bourgain algebras of X. From [4, Proposition 2] and
the proof of [4, Theorem 1], Cima and Timoney in [9] formulated and proved the
following theorem.

THEOREM 1.2 [9]. Let K be a compact Hausdorff space. Let X be a closed subspace
of C(K). Then we have

(i) if Xz = C(K), then both X and X* have the Dunford—Pettis property;
(i) if X, = C(K), then X has the Dunford-Pettis property.

2. Sufficient Condition on the Bergman Kernel

Let Q be a bounded domain in C” with C! boundary. We let dV denote Lebesgue
volume measure over Q. For 0 < p < o0, we let L?(QQ) be the usual Lebesgue space
with respect to the measure dV. We let A?(Q) be the subspace of L?(Q2) consisting of
holomorphic functions. It is well known and easy to show that A7(Q) is a closed
subspace of LP(QQ). In particular, 4*(Q) is a Hilbert space. By subharmonicity of
| f17 for fe AP(€Y), it follows easily that the evaluation functional e,(f) = f(z) is bounded
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on A*(QQ) for every point zeQ. By the Riesz representation theorem, there is
K, e A¥(Q) so that

o) = Lf(w)K(w)dV(w)

for all fe 4(Q). Let K(z,w) = K,(w). It is well known that K(z, w) is a reproducing
kernel of A%(Q), called the Bergman kernel. Let P: L*(2) — A*(R2) be the orthogonal
projection, the so-called Bergman projection. Then we have

P(f)(2) = Lf(W) K(z, w)dV(w)

for all fe L¥Q). For ¢ L*Q), we define the multiplication operator formally by
M,(f) = ¢f. The commutator of M, and P is defined by [M,, P] = M, P—PM,, and
we define the Hankel operator H as follows: H, = [M,, P|P. From these definitions,
one can easily see that H, = [M,, P] on 4*(Q). In other words, we can also look at
[M,, P] as an integral operator with kernel function:

Ky(z,w) = (p(2)— p(w)) K(z,w) for z,weQ.

Let A(Q) = A%(Q) n C(Q). Then A(Q) is a Banach algebra, and it is easy to show
that A(Q) is a closed subspace of C(Q). The first relation between the Dunford—Pettis
property of the Banach space 4(Q2) and the boundedness and complete continuity of
the Hankel operators H; on A4(€2) is given by the following simple proposition.

PROPOSITION 2.1. Let Q be a bounded domain in C* with C* boundary. Assume
that for all $ e CY(Q), the Hankel operator H s maps A(Q) into C(Q) and is completely
continuous. Then A(Q), = C(Q). Hence, by Theorem 1.2, A(Q) has the Dunford—Pettis

property.

Proof. It is required to prove that for each weakly null sequence (f,)>., < A(Q),
and all ge C(Q), we have

lim dist (¢f;,, A(Q)) = 0. 2.1
Since C'(Q) is dense in C(Q), it suffices to prove (2.1) for all g CH(Q).

Let e C(Q). Since H(A(Q)) = C(Q), we have P(¢f,)e C(Q) n 4*(Q) = A(Q)
for all n. Since H, is completely continuous from A4(€) to C(Q), we have

lim | Hy(f)lle = 0.

—

However,

dist (¢/,, 4(Q) < 19/ — P(@f)ll oo = 1Hy(SD) -
This implies that (2.1) holds for all e C*(Q), and completes the proof.

From the assumption of Proposition 2.1, one realizes that in order to prove that
A(Q) has the Dunford-Pettis property, it is important to understand when Hankel
operators carry A(Q) into C(Q) and are completely continuous from A(Q) to C(Q).
Conditions for the boundedness and compactness of the Hankel operators on
Bergman spaces or Hardy spaces have been studied by many authors (see for example
[2, 1] and references therein).
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In the next two theorems, we first give a sufficient condition for the complete
continuity of H,:A(Q)— C(Q) and then we show that this condition implies the
Dunford-Pettis property for A(Q)* and A(Q). In the following two sections, we shall
show that certain standard domains satisfy this condition.

THEOREM 2.2. Let Q be a bounded domain in C* with C* boundary. Let ¢ € C(Q).
Then the following statements hold.

(1) If |1Ky(z,")l, < Cy for all zeQ, then H,: AP(Q) — LP(Q) is bounded for all
1 < p <o00. Here we use the notation A = H®, and C, is a constant depending only on
¢ and Q.

(i) If the set {Ky(z,):zeQ} is relatively compact in L), then
H,: A(Q) - L*(Q) is completely continuous. B

(iii) If the set {Ky(z,*)z€Q} is relatively compact in L\(Q) and if K(z, w) € CQ2xQ,)
Jor all 0<e<1, where Q, = {zeQ:dist (z,0Q) > ¢}, then H,:A(Q)— C(Q) is
completely continuous.

Proof. Since the Bergman kernel is conjugate symmetric, we have |K,(z, w)| =
|Ky4(w, 2)| for all z, we Q. Applying Schur’s lemma [25] with the assumption in (i), the
integral operator with kernel function K is bounded on L?(Q) for all 1 < p <o, so
Hy: AP(2) — LP(Q) is bounded.

Now we prove (ii). By (i), H;: 47(2) » L?(€) is bounded for all 1 < p <c0. In
particular, H,: A(Q) - L*(Q) is bounded. Let {f,} = A(€2) be a weakly null sequence.
We shall show that {H(f,)} is strongly null in L*(Q2). Suppose not. Then there is a
positive number ¢, and a subsequence z, €€ such that

\H(f, )z, =&, fork=12,.... (2.2)
Since {K(z,"):z2€Q} is relatively compact in L'(€2), there is a further subsequence (we
use the same notation) {K,(z,,,)} converging strongly to some ge LY(Q). Since {f}
is weakly null, it is bounded in L*(Q). Thus

H) @) < || £ mgomaron|+ f K (2., ) — g1, ()] V)

<

Lf,.k(W) gwW)dV(w)| + 11,1l 1 Ky(zp,» ) —8( ), —0

as k — oo. This contradicts (2.2). Therefore | H,(f,)|, — 0 as n —o0.

We prove (iii) now; we note that, by (i), it suffices to prove that H,(f)e C(Q) for
all fe A(Q). Let fe A(Q). Since Hy(f)e C(Q), it suffices to prove that Hy(f) is
uniformly continuous on Q. If not, there are sequences (z}), and (z2), in Q and a
positive number ¢, such that lim,_,_ |z} —z = 0, and

|H () (z)—Hy () (z) =2 ¢, fork=1,2,.... (2.3)
Since {K,(z,):z€ €2} is relatively compact in L'(€2), without loss of generality, we may

assume that there are functions g, g,€ L'(€) such that ||K,(z;,")—g,(*)l, =0 and
IKy(z2 )~ go( ), = 0 as k oo, Let

d(e) = max { J lg;(w)ld V(W)},
o\,

Jj=1,2

so that lim,_,d(e) = 0. Since K(z,w) is uniformly continuous on QxQ,, for each
€ > 0, there is 7(¢) > 0 such that for all z*,z?€Q and all weQ, we have

|Ky(2', w)— K (2%, W)l < 6(e)  if |2" —2%| < 7i(e).
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Thus
HANG) =@ < [ 1Kfehw)= K G mI 001 dV0)
<1/l L' K 2k W) — K (22, )] V()
IR G RO RO

<Ile X IKy(2), w) — g (W)l dV(w)

i=1J0-q,

Hifle2 | lgwldVw)

j=1J0-0,
+ llfllwf |Ky(zi, w) — Ky(z%, W) dV(w)
n!

< Co(e) ask —o0.

The above inequality contradicts (2.3) as ¢ — 0. Therefore, (iii) follows.

THEOREM 2.3.  Let Q be a bounded domain in C" with C* boundary. Suppose that
for all pe C'(Q) the set {Ky(z,"):2€Q} is relatively compact in L\(Q), and K(z,w)e
C(QAxQ,) for all 0 < & < 1, where Q, = {zeQ:dist(z,0Q) = ¢€}. Then A(Q), = C(Q),
and hence by Theorem 1.2, A(Q)* and A(QX) have the Dunford—Pettis property.

In order to prove Theorem 2.3, we need the following well-known elementary
proposition.

PROPOSITION 2.4.  Let ¢ be the embedding map of a Banach space X into X**. Let
T be the weak topology of X, and o be the weak*-topology of X**. Then

(a) ¢ is a homeomorphism from (X, 1) onto a dense subspace of (X**,0);
(b) if B is the closed unit ball of X, then ¢(B) is o-dense in B**, the closed unit ball
of X**.

For the proof of Theorem 2.3, it is required to prove the following.

CLAIM.  If (x**) is weakly null in A(Q)** and pe C(Q), then

lim dist (¢px**, A(Q)**) = 0.

Proof of Claim. Since (x**) is weakly null in 4(Q)**, it is bounded. Since C(Q)

is dense in C(Q), without loss of generality, we may assume that ¢e C*(Q2). We
first show that for each ¢ > 0, there is N, > 0 such that

supl(E(z, ), **(x¥*))| <3¢ foralln> N, 2.9

ze

where i: 4(Q) - C(Q) is the inclusion map.
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Suppose that (2.4) is not true. Then there are a sequence {z,} of points in Q, a
subsequence {x*} = A(Q)** and a positive number ¢, so that

KK (2 ), ** ORI 2 3y fork=1,2,.... 25)

Since {E(z,c;)} is relatively compact in L'(Q), there is a convergent subsequence,
still denoted by {K,(z,,")}, and a function ge L'(Q) so that

“K;(Zk,')—g"l——m as k—— o0.
Since i*: C(Q)* = #(Q) - A(Q)* is a bounded operator with norm 1, we have

I*(K (24 ) — *(8) | ay» — 0 a8 k—— 0.
Thus

I<i*(2), X321+ 1K (20, ) — 8l 135X | ayee —0

as k — co. This contradicts (2.5). Therefore, we have completed the proof of (2.4).
By Proposition 2.4 with X = A(Q), for each n there is a net (x,) in A(Q) so that

IK* (K2 ), X2 0] S I*(8), x|+ [Ki* (K 20 )) — 1*(), x5
<

(@) 1%l < IXE* ]| ggyees B )
(b) x}* = o(A**, 4*)-lim, x, = o(C(Q)**, C(Q)*)-lim, x,.

Since {K,(z,")} is relatively compact in L'(€2), an argument similar to the proof of
(2.4) above shows that
sup [(x,, K(z,"))| < sup[<x**, K (z, | +3e < e (2.6)
zefl zeQ

when « is sufficiently large. We shall show that
dist (gx**, A)**) <¢ forn>N.
In the first place, with
(A(Q)**), = {x*e C(Q)*:{x*,A**> =0} and A(Q)* = {x*e C(Q*:{x*, A(Q)) = 0},
so that (4(Q)**), < A(Q)*, we have
dist (px¥*, A(Q)**) = | px}* + A)** || cryr+/acrys

= sup {[{gx7*, x*D|:x* e (AQ)**),}

llz*l=1

= sup {lim|{gx,, x*>|:x*e(4()**),}

lz*ji=1 «

< lim sup sup {[<{¢x,, x*>|:x* € (A(Y**) }

a llz*(=1

< lim sup sup {[<{¢x,, x*>|:xe(4())*}

o llz*[=1

= lim sup [|¢x, + Al ey ace

= lim sup dist, g, (¢x,, 4(2)). 2.7
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Therefore we need only to show that dist (¢x,, 4(Q)) < ¢. We have

16(2) %.(2) = P(@x)(2)] = (x| = U K (2, w) x,09) dV(w)
Q

=[x, Ky(z, ) <& (2.8)

by (2.6) for all ze Q. By Theorem 2.2(iii), P(¢x,) € A(€2). The proof of Theorem 2.3
is complete.

3. Sufficient condition on the domain

In this section, we shall study the boundedness and compactness of Hankel
operators on L*(Q) and A(). In fact we shall consider more general operators which
are modelled on Hankel operators (see [1] for details). Let X be a Hausdorff space.
A quasi-metric d on X is a continuous function d: X x X —» R* which satisfies the
requirements for a topological metric except that the triangle inequality is replaced by

d(x,z) € C(d(x,y)+d(y,z)) forx,y,zeX. 3.1

(See [10] or [11, Section 2] for the structure of spaces of homogeneous type, upon
which this is based.)

Let Q be a bounded domain in C* with C? boundary. Let r(z) denote the distance
from z to dQ and let 7n(z) be the projection of ze 2 onto 62 (see [18]). It is clear that
this projection exists and is unique when zeQ is near 0Q, say r(z) <e¢, Letd be a
quasi-metric on Q as defined above. We define balls B(P, d), for PedQ and ¢ > 0,
with respect to this quasi-metric. Then we define a Carleson region to be

€(w,0) = {zeQ:r(z) < J and n(z) € B(n(w), )}

when weQ and r(w) < 6 < ¢,
Let w(z,d) = da(B(n(z), J)), where ¢ denotes surface measure on 9Q. For z, weQ,

we let
r(z,w) =inf {p = r(2): €(n(2), r(z)) = €(w, p)}.

It has been proved in {1} that r(z, w) is quasi-symmetric, that is, r(z, w) = r(w, z).
A complex-valued measurable function K on Q x ) is a homogeneous kernel if it
is locally bounded on Q x Q and satisfies

|K(z,w)| € Cy(z,r(z,w))™" forz,weQ and r(z),r(w)<e,, 3.2

where C is some constant. If K is a homogeneous kernel, we denote the associated
integral operator by I, which is defined formally by

I.fz) = Jﬂ fw) K(z, w) dV(w). (3.3)

Note that if K is the Bergman kernel over Q, then I, is the Bergman projection P.
We shall now prove the following theorem.

THEOREM 3.1.  Let Q be a bounded domain with C* boundary in C" and let d be a
quasi-metric on 0Q satisfying the inequality :

C 1+e
— S —_ .
2= (1+uogr(z,w)|) 34

for all z,weQ and some ¢ > 0. Let K(-,") be a homogeneous kernel on Q. Then
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(@) if peCYQ), then HE = [M,, ] 1: L*(Q) — L*(Q) is bounded,

b)) if K(-, )eC(QxQ) Sor all 0 <e<1, then {Kz,"):zeQ} is relatively
compact in L‘(Q)

Proof. Part (a) follows from the fact that |z— ‘| K(z,*)e L*(Q2) uniformly for

zeQ), which we now show.
Let N = N(z) be the smallest integer such that 6Q < B(n(z),2"r(z)). Then

J. |z—w||K(z, w)| dV (W)

1 1+¢
< CL Kz, w) (1 Tiiog 1z, w)|) aw)

<C }bf L ( 1 )de(w)

k=1J 2%@(z, r(2))-2514(z, r(2)) [2°B(z, r(z))| \1 +|log r(z, w)|

(1+Z(tuo—;m)l")
<<(+E (rmez) )
sc(+E))<e

where ¢%(z, 0) is shorthand for €(x, ¢d).

Next we establish (b). Let {K(z,, )} be any sequence with z,eQ (for k = 1,2,...).
We show that it has a convergent subsequence in L*(€2). Since Q is compact, there 1s
a subsequence {z, } and an element z,€€ so that lim,,z, = 2y We shall show that

Ky(z,,,") is a convergent sequence in L'(Q). It suffices to show it is a Cauchy sequence
in L‘(Q) For any 0 < ¢ < 1, since Ky(-,") is uniformly continuous on Q x Q,, there
is a positive integer N; such that if [,m > Nj, then

1K)z, W) — Kz, , W) < &

for all we ;. Thus for /,m > N, we have
IKy(zep ) — Kylzie )y
< "(K¢(zk,,')_K¢(ka»')) Zo, 1+ ,|(K¢(zkls')“K¢(zkm, N —%,)III
< I(Ky(zep ) A= Zo )+ 1Kz D (1= Z )1 + 1Kz ) — Ky(2e 7)) Za, Iy

C f—[ (1K (2, w+ V(WD +1K (2, , w+ tv(W))]) do(w) dt + C| Q| 6
0Jan

J 1
C| ——————dt+CIQ| o
fo iog (1/py= 2+ €I

< C,——=+C|Q4,
g0

where vw(w) is the unit inner normal vector to dQ at w. Here we use the fact that
|#(2) —p(w)| < Clz—w| < C/(1+]|log r(z,w)]). Now (b) follows by letting J — 0,
and so the proof of Theorem 3.1 is complete.

Applying Theorem 3.1 and Theorem 2.3, we have the following result.
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COROLLARY 3.2. Let Q be a bounded domain in C* with C? boundary and quasi-
metric d on 0Q2 which satisfies (3.4). If K is a homogeneous kernel on CQ such that
KeC(QxQ,) for all ¢>0, then both A(Q) and A(Q)* have the Dunford—Pettis

property.

4. Some standard domains satisfying the sufficient condition

In this section, we shall give several examples of domains Q in C* which satisfy the
condition of Corollary 3.2, and hence for which A(Q2) and A(Q)* satisfy the
Dunford-Pettis property. First, we dispose of the known case of the unit ball in C”.

ExaMmpLE 4.1 [4). If Q = B,, then both A(QQ) and A(Q)* have the Dunford—Pettis
property.

Proof. On the boundary of B,, we have a quasi-metric d defined by
d(z,w) = |1 =<z, w)|,

and the Bergman kernel K(z, w) for B, is:

K(iz,w)=c! for z,weB,,

1
(1={z,wy)™!
where c,, is the volume of the unit ball B,.

One can easily check that

(a) K is a homogeneous kernel;
(0) |z—wl| < (2d(z,w))"*;
(c) K(z,wyeC(B, x(B,),) for all ¢ > 0.

Therefore, by Corollary 3.2, A(B,) and A(B,)* have the Dunford—Pettis property.

ExaMPLE 4.2. IfQ is a bounded strongly pseudoconvex domain in C* with smooth
boundary, then A(QX) and A(Q)* have the Dunford-Pettis property.

Proof. We define the quasi-metric d on dQ as follows. For xe 6Q, let n, denote
the complex tangent plane in C” at x. For ¢ > 0 let 4, , denote the set of points in C*
having distance at most ¢ from the ball in the plane =, with centre at x and radius +/1.
Let B, , = A, , n 0Q. This is equivalent to the definitions given in [24, 19]. The quasi-
metric on 0L is defined by

d(x,y)=inf{t > 0;yeB

z,t

X€B, }.
One can easily check that

@) |z—w| < Cd(z,w)"* for all z,wedQ;

(b) the Bergman kernel K(z,w) is a homogeneous kernel (apply Fefferman’s
asymptotic expansion of the Bergman kernel given in [14]);

(€) K(z,w)eC=(QxQ,) for all ¢ > 0 (apply the result of Kerzman in [16]).

By Corollary 3.2, A(Q) and A(Q)* have the Dunford--Pettis property.

EXAMPLE 4.3. If Q is a bounded pseudoconvex domain of finite type in C* with
smooth boundary, then A(Q) and A(Q)* have the Dunford-Pettis property.
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Proof. Welet d be the quasi-metric defined in [20, 21]. For convenience, we recall
the definition. Let pe0f2, and let A(p, ) be the quantity defined in [19, p. 116]. Fix
0 > 0. Since A(p,7) is strictly increasing in 7 and A(p,0) = 0, there is a unique 7 =
7(J, p) such that A(p,7) = J. Let X;, X, be real vector fields such that X, X, and T
span the real tangent space to dQ at each point p. Here X, X, span the complex
tangent space over R at each point and T points in the ‘complex normal’ direction.
Then we define the ball B(p, ) on dQ by

B(p,0) = {qe0Q:q = exp,(a, X, + o, X, +(T), |o)) < 7(p,9) forj = 1,2, |{] < 6}
Notice that |B(p, d)| ~ t%6.
The quasi-metric d on 0S) is defined as follows:
d(z,w) = inf {t:z,we B(z, ) and ze B(w, 1)}.

Suppose that Q is a domain of type m. Then, using [19, Theorems 3.1 and 3.2]; one
can easily check that

(a) [z—w| < Cd(z, w)™ for all z,we dQ;
(b) the Bergman kernel K(z, w) is a homogeneous kernel;
(c) K(z,w)eC(QxQ,) for all ¢ > 0.

Therefore, by Corollary 3.2, A(2) and A(Q)* have the Dunford—Pettis property.

5. Application of 3-theory

In many cases, the integral representing kernels for solutions of the d-equations
are simpler than the Bergman kernel, for example, for a bounded domain in the
complex plane. In this section, we shall apply 6-theory (for which see [17]) and the
ideas from Section 2 to prove that 4(Q) and A(Q)* have the Dunford—Pettis property
for bounded Q with smooth boundary. Let us start with the following more general
theorem.

_ THEOREM 5.1. Let Q be a bounded domain in C" with C' boundary. If the
0 operator T:C(82) — C(QQ) is completely continuous (here 0T(f) = f), then A(QQ) has
the Dunford—-Pettis property.

Proof. According to Theorem 1.2, it suffices to prove that for each weakly null
sequence (f,)2., < A(Q), we have

lim dist (¢f,,, A(2)) = 0 (5.1)
for all ge C(Q). Since C*(Q) is dense in C(Q), it suffices to prove that (5.1) holds for
all ge CY(D).

Let ¢eCY(Q). For each n, we let u, = T(f,0¢). Since T:C(Q)— C(Q), it
follows that u,e C(Q) for all n and g, :=f, ¢ —u, € A(Q). Since f, d¢ — 0 weakly and
T:C(Q)) —» C(Q) is completely continuous from A(Q) to C(Q), we have

lim Jlu, |, = 0.

n—00

dist (¢f,, A(Q)) < ¢/ —&allo = sl s
completing the proof.

However,
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If we know the integral kernel of the solutions of the d-equation on €, then we
can check for complete continuity to obtain the Dunford-Pettis property. For
example, in the case of the complex plane, we can prove the following theorem.

THEOREM 5.2. Let Q be a bounded domain in the complex plane with C* boundary.
Then A(QQ) and A(Q)* have the Dunford—Pettis property.

Proof. The 0-solution operator T:C(Q) — C(Q) is given by

e =1 | 22 auo

where dA is Lebesgue area measure. It is easy to see that {1/(w—2z):zeQ} is a
relatively compact set in L}(Q). Thus T: C(Q) - C(Q) is completely continuous. By
Theorem 5.1, A(Q2) has the Dunford-Pettis property. Alternatively, one can see the
complete continuity by recalling that T: C(Q) — Lip,(Q) for any « < 1 and that the
embedding Lip,(Q) — C(Q) is compact.

In order to prove that 4(Q)* has the Dunford—Pettis property, we need to repeat
some parts of the proof of Theorem 2.3. In fact, for ¢ > 0 arbitrary, if we replace
K(z,w) in (2.4) by 0¢(w)/(z— w), then we have

(1
z—w
if n > N, where N, is some integer depending only on &. By the related arguments in the

proof of Theorem 2.3, if we let x,€ A(Q) with ||x,||, < 1 be such that lim,{(x,, x*) =
(x¥*, x*) for all x*e A(Q)*, and if we define

ua(z) = ¢(Z) xa(z) - T(xa 5¢)(Z),
then we have u, e A(Q) and

sup <e

2eQ

it Q) < 93,0~ = T, 393N = | [ 22 4
Q
< il:g <?;;(—t)),x:*> +e< 2

Therefore, we have
dist (px}*, A(Q)**)—0 asn—> o0.
Applying Theorem 1.2, the proof of Theorem 5.2 is complete.
REMARK. The main results of this paper can be proved alternatively by using the

technique of d-theory as represented in the proof of Theorem 5.2. The complete
continuity of the relevant @ solution operators can be found in [23, 5, 17].

It was pointed out by the referee that Theorem 5.2 can be obtained in another
way, using a result by Cima and Timoney in [9].
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