Structure of J B*-Triples

Bernard Russo

Abstract. This paper is a summary of the known structure of J B*-triples. Its central
focus consists of two structure theorems, due jointly to the author and Yaakov Friedman.
Sections 2 and 3 discuss these results in detail. Sections 1 and 4 play somewhat different
roles. The former discusses some general aspects of the subject, and gives some back-
ground. The latter discusses some topics which are especially interesting to the author.

The style of this survey is informal. Proofs of some major theorems are given in out-
line, together with the background material. In several places, a preview of forthcoming
work is described and some problems are proposed.
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Introduction and overview

Why study JB*-triples?

Here are two reasons from the functional analyst’s point of view. In the first
place, by the fundamental result of Kaup ([84]), JB*-triples are in one to one
correspondence with bounded symmetric domains in complex Banach spaces. In
the finite dimensional case this is due to Koecher [86], cf. Loos [88]. Operators on
Hilbert spaces of analytic functions is a mainstream topic in operator theory and
has blossomed in the last 25 years. Although most attention has been focused on
functions defined on the unit disk, recently much attention has been devoted to
functions defined on the unit ball or on the unit polydisk in C™. More generally,
Toeplitz, Hankel, and composition operators have been considered on spaces of
holomorphic functions defined on Cartan domains (the finite dimensional bounded
symmetric domains). A fundamental result here is the complete structure theory
of the Toeplitz C*-algebra of a Cartan domain, due to Upmeier (cf. Lecture 8 of
[116]). More recently, the notion of quantization is playing a key role here (Upmeier

[117] and Coburn).
A second justification for the study of JB*-triples arises from the fact that

the category includes C*-algebras, JB"-algebras, Hilbert spaces and spin factors.
There is reason to believe that the well known Jordan algebra approach to quantum
mechanics can be broadened in such a way that Jordan structures other than the
binary ones will be significant. This is currently being explored by Friedman and
Naimark [46].
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In a lecture at the second U.S.-Japan conference on operator algebras in 1977
([39]), E. Effros introduced these three categories to study injectivity and nucle-
arity:

N: real normed spaces, contractions;
F: function systems, positive unital maps;
O: operator systems, completely positive unital maps.

It was known for a long time that the appropriate algebraic models for the cate-
gories F and O are Jordan C*-algebras and C*-algebras, respectively. Investigation
-into the extent that the algebraic structure within these categories is influenced
by geometric properties alone was carried out by Friedman—Russo ([49]). This in-
vestigation suggested that in the categories F and O, geometric properties do not
depend on the order structure, and at the same time introduced the appropriate
algebraic model for the category N, namely the JB*-triple.

In order to see why a triple product rather than a binary one determines the
geometry, we focus our attention on mappings of the algebraic models. If A is
a unital C*-algebra and w is any fixed unitary element in A, then 7" defined by
Tz = wz,x € A is a linear isometry. Moreover, {T'z, Ty, Tz} = {zyz}, where

1
{zyz} = Sley™z + 2y*z),

i.e., T" preserves the Jordan triple structure. However, 7' does not preserve the
order structure on A. In general, it is known that a completely positive unital
isometry of a C*-algebra preserves the (associative) C*-structure (Choi, Stgrmer,
unpublished), a positive unital isometry of a C*-algebra (more generally of a “JB-
algebra”) preserves the Jordan structure (Kadison [80], Wright-Youngson [121]),
and an arbitrary isometry of a JC*-triple (resp. JB*-triple) preserves the Jordan
triple structure (Harris [68], resp. Kaup [84]). Thus in each algebraic model the
(surjective) norm preserving linear maps respect the algebraic structure.

Consider next the norm decreasing idempotent mappings in each model. Before
1980, it was known that the image of a completely positive unital projection on
a C*-algebra is a C*-algebra ([20]), and that the image of a positive unital-pro-
jection on a “JC-algebra” is a “JC-algebra” ([41]). Friedman-Russo have shown
that the image of an arbitrary contractive projection on a JC*-triple (a “concrete”
JB*-triple) is a JC*-triple ([52]). Since in particular, the image of a contractive
projection on a C*-algebra has, in general, only a Jordan triple structure, this
is further evidence that a JB*-triple is the appropriate algebraic model in the
category N.

These three categories are the framework, and the following three tables, in
which [] refers to literature references, constitute a guide to this survey of “classical
associative and non-associative operator systems”.
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Table 1. Representation theorems

C*-algebra J B*-algebra J B*-triple
Gelfand Naimark theorems
[60] Gelfand (5] Alfsen, [54] Friedman
& Naimark 1943 Shultz & Russo 1986

& Stormer 1978

State space characterization
[6] Alfsen—Shultz (4] Alfsen [59] Friedman
& H.-Olsen 1980 & Shultz 1978 & Russo 1992

Equivalent geometric category

[25] Connes [76] Iochum 1984 [84][118][115]
[82] Kaup 1983
Upmeier, Vigué 1976

Table 2. Structure theory

C*-algebra JB*-algebra JB*-triple
Factor classification
[35](24](26][65] [110)[106][107] [71][73][74][29]
von Neumann 1929 Topping 1965 Horn 1984
Connes 1976 Stormer 1968 Dang &
Haagerup 1983 Friedman 1987
Duality
[40] Effros 1963 [103] Shultz 1979 [51] [17] Barton-Timoney

[101] Sakai 1960 Friedman-Russo 1985 1986 [72] Horn 1987




212 Bernard Russo

Table 3. Linear mappings

C*-algebra JB*-algebra JB*-triple
Isometries
[80] Kadison 1951 [80] Kadison 1951 (84] Kaup 1983
[121] Wright & [68] Harris 1973

Youngson 1978

Contractive projections

[20] Choi & [41] Effros & [52](85] Kaup 1933
Effros 1977 Stormer 1979 Friedman—Russo 1985
Derivations
(99][100][81] [114] [14][70] Ho 1992
Kadison, Sakai 1966 Upmeier 1980 Barton-Friedman 1990
Amenability
[27][63][19] Connes [70] Ho 1992

1978 Haagerup 1983
Bunce-Paschke 1980

Bilinear forms

(64](93] Pisier 1978 (23] Chu-Tochum  Barton-Friedman 1987
Haagerup 1985 & Loupias 1989 [13]{15] B.F.-Russo 1992
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1. Contractive pro jections, quantum
mechanics, bounded symmetric domains

We now know that the notion of contractive projection plays an (unexpected)
ubiquitous role in the representation theory of Jordan triple systems. In the first
two subsections of this section, the main results on contractive projections are
described, setting the scene for the representation theory of section 2.

The third and fourth subsections introduce the quantum mechanical setting
which is relevant to the representation theory of section 3.

In the final subsection, a beautiful and deep application of J B*-triples to op-
erator theory, due to Upmeier, is described.

1.1. Contractive projections on
C*-algebras. The commutative case

By a contractive projection on a normed space X we mean a continuous linear
idempotent map P : X — X with |P| = 1. We are interested in the case that X
is a Banach algebra A.

Let P(A) denote the range of P, which is simply a closed linear subspace of A.
If A is a C*-algebra and P(A) happens to be a C*-subalgebra, then it is a well-
known result of Tomiyama [108], that P is positive and satisfies the conditional
expectation formula P(azb) = aP(z)b for a,b € P(A) and = € A.

In general, we can ask for the structure of P and of P(A4). That is, what
algebraic properties do P and P(A) have?

In 1980, the literature on this problem consisted of three papers:

e Choi-Effros 1974 [20]: If A is any unital C*-algebra and P is completely positive
and unital, then P(A) is a C*-algebra under the product (a,b) — P(ab). The
crux of the matter here was to prove the associative law, which amounts to a
conditional expectation type formula:

P(P(ab)c) = P(aP(bc)), a,b,ce P(A).

o Effros—Stormer 1979 [41]: If A is any unital C*-algebra and P is positive and
unital, then P(Ap) is a Jordan algebra under the product (a,b) — P(a o b),
where aob = (ab+ba)/2. The main point here was to prove the Jordan identity,
again, a conditional expectation formula:

P(ao P(boa?)) = P(P(aob)oa?), a,be P(A).

e Arazy-Friedman 1978 [9]: If A is the C*-algebra of compact operators on a
separable Hilbert space, and P is any contractive projection on A, then P =
@, Pr, Pr = Qi + Tk where Q) has six possible forms: Qz = z, Qz =
(z+2T7)/2, Qz = (z — zT)/2, and three others which we will not describe
here.
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In each of these examples, the image of P, or of Q (=the “essential part” of
P) was either a Jordan subalgebra or a Lie subalgebra. In 1980, it was natural
to try to prove that if P1 = 0, then P(A) should be a Lie algebra under the
product (a,b) — P([a,b]). Failing this, it was “decided” that P(A) must have an
algebraic structure that includes both Jordan algebras and Lie algebras. It was
also decided to work out completely the cases in which A is commutative or A is
finite dimensional. This was done in [47] and [47a].

The following two theorems appear in Friedman-Russo 1982 [47]. The first one
was the first detailed analysis of non-Markovian projections in this setting. It was
extended to commutative real C*-algebras (and corrected) in [21].

Theorem 1.1.1. Let P be a contractive projection on a commutative C*-algebra
A = Cy(K). Then there exist a family of norm one complex Borel measures {j;} C
A*, with polar decompositions 1; = p;.|1;|, and a contractive linear map T : A** —
A such that

e for f e A,
Qf = Z(f, Wi)P; is continuous on S = the union of the supports of pq;

xs(T€) =0 for € € A,
e P=Q+T on A

The converse also holds.

The proof of this theorem revealed the following interesting facts:

e Pf is an isometric extension of Q.
e S is a boundary for P(A) in the sense of Shilov.

A ternary algebra is a linear space X with a trilinear map

[, ] XXX xX—X

satisfying
o [g,6,0l=0&a=0;
o [[ob, ¢, d el = [a,[b;c/d); €] = [a:b; [, d,e])
X is commutative if [a,b,c] = [¢,b,a]. The main literature references on this

are [69], [87], and [122].
If a ternary algebra X is also a Banach space, then we have a C*-ternary algebra
if in addition
e |[[a,b, ]| < Ilalllgbll!!6|l;
e |lfa,a,alll = [la]*.

Theorem 1.1.2. Let P be a contractive projection on a commutative C*-algebra
A = Cy(K). Then P(A) is a C*-ternary algebra under the triple product (f, g, h) —

P(fgh).
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The proof of this theorem revealed the following:

° P(A),g is a ternary sub-algebra of Cy(S)
e P(A) is a subalgebra of A < P is averaging in the sense of Birkhoff.

1.2. Algebraic and holomorphic
methods in operator systems

The Riemann Mapping theorem states that any simply connected domain in the
complex plane C is holomorphically equivalent either to C or to the open unit disk.
For domains in C", a classification is not possible without further assumption, such
as the existence of an isolated holomorphic symmetry at each point.

For bounded domains, a consequence of Cartan’s Uniqueness Theorem (1931)
is that the set G = aut (D) of complete holomorphic vector fields on D is a real
Lie algebra making the group G = Aut (D) of all holomorphic automorphisms of
D a real Lie group. From this the irreducible bounded symmetric domains in C™
were classified (1935).

Is there a Riemann mapping theorem or classification of bounded symmetric
domains in an arbitrary complex Banach space? Although such a project is not
feasable, the following progress was made.

¢ Upmeier 1976 [115]: the set G = aut (D) of complete holomorphic vector fields
on a bounded symmetric domain D in a complex Banach space is a real Banach
Lie algebra and the group G = Aut (D) of all holomorphic automorphisms of D a
real Banach Lie group.

o Vigué 1976 [118]: every bounded symmetric domain in a complex Banach
space has a Harish-Chandra realization, that is, is holomorphically equivalent to
a circled domain containing the origin.

* Kaup 1982 [83]: classified the bounded symmetric domains in a Hilbert space.

e Kaup 1983 [84]: (Riemann mapping theorem) every bounded symmetric do-
main in a complex Banach space is holomorphically equivalent to the open unit
ball of some Banach space (a JB*-triple).

Kaup’s Riemann mapping theorem set up an equivalence of categories
{Bounded Symmetric Domains} < {JB*-triples}.

For a summary of the construction of the triple product on the JB*-triple
corresponding to a bounded symmetric domain, see Loos 1977 [88], or Friedman-—
Russo 1986 [54].

A forerunner of Kaup’s theorem in one direction, in the special case of a C*-
algebra, was proved by Harris 1973 [68], thereby providing a link between infinite
dimensional holomorphy and functional analysis: the open unit ball of a C*-algebra
is a bounded symmetric domain, a transitive family of automorphisms being pro-
vided by the Mébius transformations

a = (1= bb")"12(a + b)(1 + b*a) (1 — b*b)1/2.
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Since this formula involves only the symmetrized triple product ab*c -+ cb*a, the
result holds for J*-algebras (now called JC*-triples), that is, norm closed subspaces
of L(H, K) stable for the map a +— aa*a.

Harris’s result suggested that it is fruitful to find connections between func-
tional analysis and other fields, and to exploit the connection. For example, index
theory for elliptic operators connects algebraic topology and operator theory, and
Connes’ theory of cyclic cohomology connects differential geometry and operator
algebras.

Kaup’s Riemann mapping theorem suggests developing the theory of
JB*-triples and exploiting their relation with bounded symmetric domains.

As a step in this direction, Friedman-Russo solved the contractive projection
problem in 1983 [52].

Theorem 1.2.1. Let P be a contractive projection on a JC*-triple M. Then P(M)
is a JB*-triple under the triple product (a,b,c) — P ((ab*c + cb*a)/2) and P(M)_
15 1somorphic to a JC™* -triple.

Friedman-Russo also pointed out how choosing the correct category (in this
case, JC™-triples instead of C*-algebras) leads to insight and in some cases sim-
plification.

After receiving a preprint of this work, Kaup [85] discovered an elegant short
proof of the first statement of Theorem 1.2.1, valid in the category of JB*-triples.

Theorem 1.2.2. Let P be a contractive projection on a JB*-triple U. Then P(U)
is a JB*-triple under the triple product (a,b,c) — P({abc}) where {abc} is the
original triple product in U.

The proof of Theorem 1.2.1 is functional analytic, strongly dependent on the
underlying Hilbert spaces, and is long. Kaup’s proof of Theorem 1.2.2 uses holo-
morphic methods almost exclusively and is quite short.

We conclude this subsection with the following moral. Theorem 1.2.1 shows that
results can be improved, clarified, and unified by a consideration of the appropriate
category, in this case the one consisting of systems with a triple product rather
than a binary one. Theorem 1.2.2 shows that further improvement and elegance
can be obtained by working in an equivalent category, in this case a geometric one
rather than an algebraic one.

1.3. State spaces of quantum mechanics

In the period 1978-1982 several papers appeared which characterized the state
spaces of various topological algebraic structures in terms of affine geometric phys-
ically motivated axioms on a compact convex set.

The cornerstone result in this direction was the work of Alfsen—-Shultz in 1978
[4]. We do not define all the terms here.
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Theorem 1.3.1. A compact convex set K is the state space of some JB-algebra
if and only if it satisfies the following four properties:

e Hilbert ball property;

e K = K; ® Ky, Ky atomic, Ky non-atomic;

e all norm exposed faces are projective;

o AR(K) = AY(K) — A~ (K).

At the same time, Alfsen and Shultz introduced the three pure state properties,
which can replace the first two of the above properties:

e extreme points are norm exposed;
e P-projections preserve extreme rays;
e symmetry of transition probabilities.

Applications of this result to the cases of C*-algebras and W*-algebras were
done by Alfsen-Hanche-Olsen—Shultz 1980 [6] and Iochum-Shultz 1982 [77]. A
finite dimensional application for JB-algebras, but with more physicallly appealing
axioms was done by Araki 1980 [8].

In the process of solving the contractive projection problem (Theorem 1.2.1),
Friedman-Russo proved analogs of six out of the above seven properties in the
case K = ballQ(M™), where @ is a contractive projection on the dual M* of a
JC*-triple M.

In 1983 the following were three outstanding problems in the theory of
JB*-triples. All three are motivated by the classical theory of operator algebras,
and have now been solved.

e Characterize the unit ball of the dual of a JB*-triple. Give physical meaning
to the axioms. (Note that this involves the case Q=identity, M= a JB*-triple, of
the contractive projection problem). The solution to this problem, due to Friedman
and Russo [59], is described in section 3. See also the discussion in subsection 1.4.

e Find a universal enveloping object in the category of JB*-triples, that is,
show that the second dual of a JB*-triple is a JB*-triple. This was solved by
Dineen [32] and is a key step in the solution of the next problem.

e Find a Gelfand-Naimark type representation theorem for JB*-triples. The
solution to this problem, due to Friedman and Russo [54], is described in section 2.

1.4. Geometric spectral theory
The spectral theorem says that for an operator z in a Hilbert space,

- o0
a:::z:*:>x:/ Adey,
— 00

where {e)} is a resolution of the identity supported on the spectrum of z. In
particular,

[ee]
wZO:>:c:/ Adey.
0
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Thus any self-adjoint z € L(H), can be approximated in norm by operators of the
form > A\;e; with A; € R and {e;} a finite family of pairwise orthogonal projections.
Using the polar decomposition z = u|z| for an arbitrary bounded operator leads
to the approximation in norm of z by finite sums ) A\;v; where A; > 0 and {v;} is
a family of pairwise orthogonal partial isometries.
In an arbitrary normed space X, when does a (geometric) spectral theorem
hold? That is, under what conditions can we write, for any element x € X,

uniquely,

T = Z)w-ui

where A; > 0 and the u; form an “orthogonal” family of “distinguished elements”
(building blocks). The appropriate meanings of “orthogonal” and “distinguished
element”, as well as that of the sum, will depend on the underlying metric structure
(norm, affine geometry) of X.

The natural setting in which to discuss spectral theory and polar decompostion
of operators on Hilbert space is that of a von Neumann algebra, and more gener-
ally a C*-algebra, or their non-associative analogs (for instance, Jordan operator
algebras). In these settings, another important tool is a polar decompostion for a
(not necessarily positive) normal functional.

In the algebraic approach to quantum mechanics, observables correspond to
self-adjoint operators, and states correspond to positive normalized functionals.
Making use of the order structure inherent in these models, Alfsen—Shultz, and
later Alfsen-Hanche-Olsen—Shultz, Araki, and Iochum—Shultz showed (cf. subsec-
tion 1.3) that in an ordered Banach space, a compact convex set which satisfied a
set of axioms, some with physical significance, was affinely isomorphic to the state
space of an operator algebra of one of the above types. An initial tool in the proofs
of these results was a spectral theorem for arbitrary elements in ordered Banach
spaces satisfying some of the axioms referred to above.

In view of the above discussion, it is reasonable to ask whether a Banach space
in which the unit ball satisfies some physically meaningful affine geometric axioms
is isomorphic to the unit ball of the dual space of some C*-algebra. Presumably,
some preliminary steps would be the investigation of that validity of a polar decom-
position of an arbitrary element (thought of as a “normal functional” on the dual
space), and a spectral decomposition of an arbitrary element of the dual space.
Since no order structure is assumed, it is more realistic to expect to obtain char-
acterizations of the unit ball of the dual (respectively predual) of the non-ordered
analogs of operator algebras, namely the JB*-triples (respectively JBW *-triples).
Thus a possible interpretation of this subsection is a formulation of a geometric
and order-free approach to quantum mechanics, in which observables correspond
to operators (not necessarily self-adjoint), and states correspond to normalized

functionals (not necessarily positive).

In fact, all of the properties considered by Alfsen-Shultz, with one exception
(which has no meaning in an order-free context), have analogs which are satisfied
by the dual spaces of JB*-triples.



220 Bernard Russo

In the rest of this subsection, we shall introduce, based on the quantum me-
chanical measuring process, a class of Banach spaces which admits a polar de-
composition of an arbitrary element and a spectral decomposition of an arbitrary
element of its dual space. The unit ball of a member of this class is then the natural
candidate for the “geometric state space” of a quantum mechanical system, in the
sense that, under the appropriate set of “Alfsen—Shultz” type axioms, this class
should coincide with the class of all preduals of JBW *-triples.

Let us begin by recalling the following affine geometric properties of an operator
algebra. Recall first that for an element z of norm 1 in a von Neumann algebra
M, F, denotes the norm-exposed face in the unit ball of the predual M, of M
determined by z. Also, for elements f,g € M, f is orthogonal to g (f L g) if

If £ gll = I+ llgll (1.1)
We have the following [57], which we use as the basis for our model:

(1) Anelement z € M is a partial isometry if and only if ||z| = 1 and (z, ;) = 0.

(2) Partial isometries u and v are orthogonal if and only if F, L F;,.

(3) There is a bijection of the set of all partial isometries and the set of norm
exposed faces of the unit ball of M,, given by the map u — Fj,.

For an arbitrary normed space X, define orthogonality of elements f,g by
((1.1)), and denote it by f<{g. Then define a projective unit to be an element x
satisfying ||z| = 1 and (z,F¢) = 0, and define orthogonality of two projective
units by F,OF,.

Then we have the following two questions:

(A) Is there a bijection u — F, of the set of projective units and the set of norm

exposed faces?
(B) Is every element of X approximable in norm by a linear combination of pair-

wise orthogonal projective units?

The terms and the result in the next two paragraphs are from [53]. They will

be discussed more fully in section 3.

Let Z be a weakly facially symmetric space (WFS space). Then the map u — Fy,
is not a bijection in general, and the spectral theorem fails. However, the map
u +— F,, restricts to a bijection of the set of all geometric tripotents and the set of

all symmetric faces.
On the other hand, suppose Z is a strongly facially symmetric space (SFS
space). Then (assuming that Z is reflexive), every x € Z* can be written uniquely

in the form
I = Z)\ivi
i=1

where \; > 0 and {v;} is a pairwise orthogonal family of geometric tripotents.

This spectral theorem is used only peripherally in the main result of sec-
tion 3. By contrast, the following geometric polar decomposition, from [56], is
of paramount importance.
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Let Z be a neutral SFS space. Then for any non-zero f € Z, there exists a
unique geometric tripotent v with || f||~1f € F,,, and (v, {f}?) = 0. Moreover, F,
is minimal (|| f||~'f € Fy = F, C F;) and f is “faithful” and “positive” on F, in
the sense that F, C F, = f(u) > 0.

1.5. Toeplitz C*-algebras. Application
of finite dimensional J B*-triples

Bounded symmetric domains are higher dimensional generalizations of the open
unit disk. H. Upmeier, in the mid 1980’s, obtained a complete structure theory for
the C*-algebra 7 generated by all Toeplitz operators T¢h = P(fh) with continuous
symbol f € C(S) on the Shilov boundary S of a bounded symmetric domain D of
arbitrary rank r. Here, h € H?(S), P is the orthogonal projection of L2(S, i) onto
the Hardy space H?(S), and u is the unique probability measure invariant under
the compact group K of all holomorphic automorphisms of D fixing 0. Previous
work of Berger, Coburn, Koranyi in the 1970’s dealt with the rank one case and

the tube domain case of rank 2.
The boundary structure of a bounded symmetric domain is more complicated
than that of the strictly pseudoconvex case, for which Toeplitz operators have been

studied extensively.
Upmeier’s theory is based on the fact that the domain D can be realized as the

open unit ball of a finite dimensional JB *_triple Z. The boundary structure of D
can be described by using the tripotents of Z. A new feature is that 7 /K, K =
the compacts, is not generally abelian, so the concept of solvable C*-algebra, due
to Dynin [37] is used.

Theorem 1.5.1. The Toeplitz C*-algebra T associated with a bounded symmetric
domain D C Z of rank r is solvable of length . That is, there exist closed two-sided

ideals
{0y=ZychCc - CL, CLpa=T
with
Tr+1/Zr = C(Sk) ® K(Hg),
where Sy is the compact manifold of all tripotents of rank k.
Moreover, the set of equivalence classes of irreducible representations of T can

be identified with the set of tripotents of Z, I is the closed commutator ideal of T,
and T /T, = C(S), where S = S, is the Shilov boundary. Further, I = K(H?(S)).

The proof of this result is contained in a series of three papers of H. Upmeier,
the contents of which are summarized as follows.
In the first paper [111], the following is achieved:

e a description of the root spaces of the semi-simple Lie algebra kC in terms of
Peirce decompositions (here k is the Lie algebra of K);
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e a separation of variables formula for polynomials on JB*-algebras;
e explicit Peter-Weyl decomposition of the unitary K-module H2(S).

In the second paper [112], the following is achieved:

e a characterization of the Poisson and Szego kernel functions in Jordan theoretic

terms;

e a relation between Toeplitz operators and differential operators;

e a description of the irreducible representation o, corresponding to a tripotent
e in terms of Toeplitz operators on a lower dimensional bounded symmetric

domain.

In the third paper [113], Theorem 1.5.1 is obtained by setting ok := Pecs, Te
(0 <k <r), and Ty, := ker o.

I consider this result of Upmeier’s to be one of the deepest and most beautiful

applications of Jordan theory to analysis. For an elementary approach to the Peter—
Weyl decompositon, I strongly recommend the book by Faraut-Koranyi [44].
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2. Gelfand Naimark theorem

This section is devoted to an exposition of a representation theorem of Gelfand-
Naimark type for JB*-triples.

The first subsection recalls the statements and ideas of the proofs of the ear-
lier Celfand-Naimark type theorems for the categories of C*-algebras and JB*-
algebras. As in the proof of the Jordan algebra version and a later proof of the
C*-algebra version, a reduction is made to the case of the JB*-triples which are
dual spaces by passing to the second dual. Thus the structure theory of this special
case is reviewed in the second subsection. The next two subsections outline proofs
of the main theorem, due to Friedman-Russo and Dang-Friedman respectively.
The section concludes with a candidate for the definition of real JB*-triple, and a
Gelfand representation theory in the commutative case. The infinite dimensional
non-commutative real triples need to be further explored from the point of view

of functional analysis.

2.1. Gelfand Naimark theorem for
C*-algebras and Jordan algebras

Let’s begin by recalling the original Gelfand-Naimark theorem of 1943. Let A be
a C*-algebra, that is, a Banach *_algebra satisfying |z[® = |lz*z||. Each state
@ € S(A) of A gives rise via the GNS (Gelfand-Naimark-Segal) construction to
a representation (7, H,). For each set S of states one forms a representation
g = @ypesm, which is faithful if § C S(A) separates the points of A.

The following is the celebrated Celfand-Naimark theorem for C*-algebras. A
complete proof can be found in most books on functional analysis, for example
[97]

Theorem 2.1.1 (Gelfand-Naimark theorem for C*-algebras). Each C*-algebra 1s
isometrically isomorphic to a C*-algebra of operators on a complex Hilbert space.
Each commutative C*-algebra is isometrically isomorphic to the C*-algebra of all
continuous comples valued functions vanishing at infinity on some locally compact
Hausdorff space.

As a by-product of the above proof we obtain the following, which was observed
by Sherman and Takeda in 1954 [34]. Let my = @pes(a)Te be the universal repre-
sentation of A. Then A** is isometrically isomnorphic to the von Neumann algebra
which is the weak closure of my(4).

Anticipating the rest of this subsection, we ask rhetorically at this point: Where
do the axioms of a C*-algebra come from?

In the middle of the 1960’s, Topping [110] and Stormer [106], [107] began the
study of real Jordan subalgebras of L(H)sq (H 2 complex Hilbert space). These
were called JC-algebras if norm closed and JW-algebras if weakly closed.
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The abstract version of these Jordan operator algebras are the JB-algebras and
were defined as early as 1948 by Segal [102]. Thus, the axioms of a JB-algebra
came from physics; more recently, in view of lochum’s thesis 1982 [76], they can
be said to come from geometry too.

The complexification of a JB-algebra is called a JB*-algebra and previously
went under the name of Jordan C*-algebra (Kaplansky, Wright [120]).

In the 1930’s two important steps on the algebraic side of Jordan algebra theory
were the classification of finite dimensional formally real Jordan algebras over the
reals (Jordan, von Neumann, and Wigner 1934 [79]) and the fact that exceptional
Jordan algebras exist (Albert).

Since the finite dimensional JB-algebras coincide with the formally real ones,
a Gelfand—Naimark theorem for Jordan Banach algebras must exclude the excep-
tional algebras. The following is due to Alfsen—Shultz—Stgrmer in 1978 [5], [67].

Theorem 2.1.2 (Gelfand-Naimark theorem for Jordan algebras). If A is a JB-
algebra, then there is unique closed ideal J such that A/J is isometrically isomor-
phic to a JC-algebra, and J is purely exceptional, that is, every representation of
J into some L(H)sq 15 2z€T0.

The original proof of this theorem follows a well known path, but is long, re-
quiring new techniques to deal with the non-associativity. These techniques include
the following:

ordered Banach spaces

topologies on the enveloping monotone completion A A

spectral theory (singly generated subalgebras are continuous function spaces)
comparison and equivalence in the lattice of projections

analysis of spin factors

coordinatization.

9.9. Some structure theory for JBW™*-triples

We begin with the definition and some properties of JB*-triples. The reader who
finds this subsection uncomfortable might prefer the more leisurely discussion of
the same topics in subsection 3.1. This subsection is essentially a summary of |51}

Definition 2.2.1. A Banach space U over C is said to be a JB*-triple if it is

equipped with a continuous triple product (a,b,c) — {abc} mapping U x U X U

to U such that

(i) {abc} is linear in a and ¢ and conjugate linear in b;

(ii) {abc} is symmetric in the outer variables, i.e., {abc} = {cba};

(iii) for any x € U, the operator §(z) from U to U defined by 8(z)y = {zzy}, is
hermitian (i.e., expité is an isometry for all real t) with non-negative spec-

trum;
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(iv) the triple product satisfies the following identity, called the “main identity”:

§(z){abc} = {6(z)a,b,c} — {a, §(z)b, c} + {a, b, 6(z)c}; (2.1)
(v) the following norm condition holds:
{zzz}] = zll°. (9.2)

Define the quadratic operator Q(z) by Q(z)y = {zyz} and then set Q(z,y)z =
{zzy}. A tripotent is an element e satisfying e = Q(e)e = {eee}. With each
tripotent there are associated the Peirce projections:

. Poe) = Q(e)
e Pi(e) = 2(5(e) — Q()?)
o Pyle) = I—26(e) + Q(e)”

so that we have

I = Py(e) + Pyi(e) + Po(e) and 6(e) = Pa(e) + %Pl(e),

and the Peirce decomposition: U = Uz (e) ® Ui(e) ® Uo(e).

The following are fundamental algebraic properties of a tripotent e in a Jordan
triple system U.
e {Ui(e), Us(e), Us(e)} C Ui—jxle)
o {Up(e),Ua(e), U} = 0 = {Uaz(e),Us(e), U}
e U,(e) is a complex unital Jordan algebra with involution:
zoy:= {zey} ot = {exe}.
The following are fundamental topological properties of a tripotent e in a
JB*-triple U.
o Us(e) is a JB*-algebra, and Us(e)sq is a JB-algebra
e The Peirce projections are contractive, as is Py (e) + Py(e)
e The family Sx(e) := A2Py(e) + APi(e) + Po(e) for A € T is a one parameter
group of isometries.

The following basic proposition has the interpretation that the Peirce spaces
Us(e) and Up(e) have the unique Hahn-Banach extension property. It goes under
the name “neutrality”.

Proposition 2.2.2 (Proposition 1 of [51]). Let U be a JB*-triple, e € U a tripo-
tent, and f € U*. Then fo Pa(e) = f of and only if ||f o Pa(e)| = IIfIl-

A partial order for tripotents is defined by: e < ¢’ if ¢/ — e is a tripotent
orthogonal to e, where a orthogonal to b means {ab-} = 0.

Corollary 2.2.3. e < ¢’ if and only if Py(e)e’ = e.
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A JBW*-triple is a JB*-triple which is the dual of some Banach space. It is
known that a JBW*-triple has a unique predual and that the triple product in a
JBW *-triple is separately weak*-continuous. This will be discussed in subsection
2.3. The predual of U is denoted by U.

By the Gelfand theory of commutative JBW *-triples, one has a polar and
spectral decomposition of an arbitrary element of a J BW*-triple. For functionals
on the other hand, we have the following ([51, Proposition 2}):

Proposition 2.2.4 (Polar decomposition of a normal functional). Let U be a
JBW?™-triple and let f € U.. Then there is a unique tripotent e, called the support
tripotent of f, such that f o Py(e) = f and fly,(e) s @ faithful positive normal
fu ‘ctional.

‘Another key property of the predual of a JBW*_triple is the fact ([51, Propo-
sition 8]) that every norm exposed face of ball U, is “projective” (cf. Theorem
1.3.1). In this context this simply means that for every norm exposed face Fr,
that is, with z € U of norm 1,

Fy={pe U :lpll=1=p()}

there is a tripotent w such that F = Fy.

The Peirce projections are fundamental operators on JB*-triples. When do
they commute? The most general condition has been given in [90]. For our purposes
here, the following sufficient condition is adequate.

Proposition 2.2.5 (Lemma 1.10 of [51]). If e and v are tripotents in a
JB*-triple U and if one of them belongs to one of the Peirce spaces of the other,
then [Pa(e), Ps(v)] = 0 for all a, 8 € {0,1,2}.

Atomic decompositions

This subsection is devoted to the decompositions of a J BW*-triple U and its
predual into atomic and purely non-atomic parts. We therefore next explain some
of the definitions and tools needed in the proofs.

A tripotent e in a JB*-triple U is minimal if the Peirce 2-space Uz (e) is one-
dimensional. In any JBW *-triple, there is a bijection between minimal tripotents
and extreme points of the unit ball of the predual, and each such extreme point is
norm exposed ([51, Proposition 4]). ‘

The map
Z%’fi = Zaiei»
i i

where ¢; is the support tripotent of the extreme point f;, is a conjugate-linear
bijection of the finite span of the extreme points onto the finite span of the minimal
tripotents ([51, Lemma 2.11]).
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The following four properties, analogs of results for JB-algebras [4], are instru-
mental for the main decomposition theorems.

Symmetry of Transition Probabilities [51, Lemma 2.2]
If fi, fo are extreme points with support tripotents e1, e2 respectively, then

f1(e2) = fa(e1).

Hilbert Ball Property [51, Proposition 5]
If u and v are minimal tripotents in any Jordan triple system, then the smallest
Jordan triple system containing these two elements is of dimension at most 4, and

is thus isomorphic to one of the following spaces:
Ca Ml,Z(C)) Co (C) M?(C)’ S?((C)

Extreme Ray Property [51, Proposition 7]
If e is any tripotent and f is an extreme point, then P>(e)"f is a scalar multiple
of an extreme point.

Minimal Ray Property [51, Proposition 6]
If e is any tripotent and w is a minimal tripotent, then P,(e)u is a scalar
multiple of a minimal tripotent.

Theorem 2.2.6 (Atomic decomposition of U [51, Theorem 1]). If U is a JBW?*-
triple, then
U, = AG° N,

where A is the norm-closure of the span of the extreme points of the unit ball of
U,., and N is a closed subspace of Us whose unit ball has no extreme points.

Proof. If ¢ € U, has support tripotent e, then the polar decomposition says that
{0 restricts to a normal faithful state on the JBW™-algebra Us(e). Thus ¢ decom-
poses locally. The minimal ray property is then used to show that this is a global
decomposition. O

Note that the corresponding result for JBW™-algebras is elementary since the

projections form a complete lattice.
The original proof of the next theorem uses the map

Zaifi > Zaz‘ei,
) 1
and the extreme ray property. Later, proofs were given in [33], [91], and [29].

Theorem 2.2.7 (Atomic decomposition of U [51, Theorem 2)). IfU is a JBW™-
triple, then

U=Ad" N,
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where A is an ideal which is the weak*-closure of the span of the minimal tripotents
of U, and N is a weak®-closed ideal with no minimal tripotents.

Some further structure theory for J BW*-triples will be discussed in subsections
2.3, 2.4 (type I) and 4.3 (continuous).

Facial structure in a JBW*-triple and its predual

The facial structure of the closed unit balls in JBW-algebras and their preduals
were described by Edwards-Riittimann by means of elements of the complete
lattice of idempotents. One of their main methods, which is also available in the
complex case, is the use of the mappings E — E’ and F +— F, between subsets of
the‘ unit balls ball V and ball V* in a Banach space V and its dual V* defined by

} E' ={aebalV*:a(z) =1,Yz € E}
and
B ={rxecbalV:a(z)=1Yz € F}.

The following two theorems appear in [38]. Let {/(A) denote the set of tripotents
of the JBW*-triple A with a largest member adjoined.

Theorem 2.2.8. Let A be a JBW*-triple with predual A,. Then the mapping
u — wu, is an order isomorphism from the complete lattice U(A) onto the complete
lattice of norm-closed faces of the unit ball of Ax. In particular, every norm closed
face of ball A, is norm-ezposed.

Theorem 2.2.9. Let A be a JBW*-triple. Then the mapping u — u,’ is an anti-
order isomorphism from the complete lattice L{(A) onto the complete lattice of
weak*-closed faces of the unit ball of A. Moreover, u," coincides with u+ ball Ap(u).

2.3. Gelfand Naimark theorem for J B*-triples

JB*-triples are generalizations of JB*-algebras and hence of C*-algebras. The
axioms can be said to come from geometry in view of Kaup’s Riemann mapping
theorem. JB*-triples first arose in M. Koecher’s proof ([86]) of the classification
of bounded symmetric domains in C"*. The original proof of this fact, done in
the 1930’s by Cartan, used Lie algebras and Lie groups, techniques which do not
extend to infinite dimensions. On the other hand, to a large extent, the Jordan
algebra techniques do so extend, as shown by Kaup and Upmeier.

The following is due to Friedman-Russo ([54]). The Cartan factors are defined

in subsection 3.1.

Theorem 2.3.1 (Gelfand-Naimark for JB*-triples). Every JB*-triple is isomet-
rically isomorphic to a subtriple of an £%°-direct sum of Cartan factors.
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This theorem is not unexpected. However, the proof required new techniques
because of the lack of an order structure on a J B*-triple. Here is a chronology of
the proof of the theorem. Some of the steps have been mentioned already.

step 1: February 1983 Friedman—Russo ([52])
Let P: A — A be a linear projection of norm 1 on a JC*-triple A. Then P(A)

is a JB*-triple under {zyz}pa) = P({zyz}a) for 2,y,2 € P(A). (This was new
for A = a C*-algebra.)

step 2: April 1983 Friedman-Russo ([50))
Same hypotheses. Then P is a conditional expectation, that is, for a, b,ce A,

P{PaPbPc} = P{PabPc} and P{PaPbPc} = P{aPbPc}.

step 3: May 1983 Kaup ([85])

Let P : U — U be a linear projection of norm 1 on a JB*-triple U. Then
P(U) is a JB*-triple under {zyz}pw) = P({zyz}v) for z,y,z € P(U). Also
P{PaPbPc} = P{PabPc} for a,b,c € U, which extends one of the formulas in
the previous step.

step 4: February 1984 Friedman-Russo ([51])
Every JBW*-triple splits into atomic and purely non-atomic ideals.

step 5: August 1984 Dineen (132)]
The bidual of a JB*-triple is a JB*-triple. -

step 6: October 1984 Barton-Timoney ([17]) :
The bidual of a JB*-triple is a JBW*-triple, that is, the triple product is

separately weak™-continuous.

step 7: December 1984 Horn ([71),[72],73},74])

Every JBW*-triple factor of type I is isomorphic to a Cartan factor. More
generally, every JBW*-triple of type I is isomorphic to an ¢>®_direct sum of L™
spaces with values in a Cartan factor.

step 8: March 1985 Friedman-Russo ([54])
Putting it all together:

0 UsU*=A®N = (0Ca) BN =0(U™) @& N

implies that com: U — A= @ Cy is an isometric isomorphism.

Here are some consequences of the Gelfand-Naimark theorem for JB*-triples,
found in [54].

o Every JB*-triple is isomorphic to a subtriple of a JB*-algebra.

o Tn every JB*-triple, |[{zy=} | < z/lvlll=]]
o Bvery JB*-triple U contains a unique norm-closed ideal J such that U/J is

isomorphic to a JC*-triple and J is purely exceptional, that is, every homo-
morphism of J into a C*-algebra is zero.
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The following two properties of JBW™*-triples, suggested by the Gelfand-
Naimark theorem, were established by Barton—Dang-Horn [12].

e Every JBW*-triple splits into a direct sum U = J & [U/J] where J is purely
exceptional and U/J is isomorphic to a weakly closed JC*-triple. (For JBW-
algebras this is due to Shultz 1979 [103].)

e Every JBW*-triple which is isomorphic to a JC*-triple is isomorphic to a
weakly closed JC*-triple. (For W*-algebras this is due to Sakai 1957 [101].)

2.4. Classification of atomic factors

There is a second proof of the Gelfand-Naimark theorem for JB*-triples which is
due to Dang-Friedman [29]. It relies on their new and transparent proof of the
classification of Cartan factors of type L. This latter proof is based on the following
three works:

o Eidea) 1934 Jordan-von Neumann-Wigner [9]: classification of formally real

ordan algebras;
e (technique) 1978 Arazy-Friedman [9]: classification of the ranges of contractive

rojections on C; and Ceo;
e (relations between tripotents) 1985 Neher [91]: Jordan triple systems with

enough tripotents.

The building blocks of the algebraic structure of a Jordan triple system are
the tripotents and their corresponding Peirce projections, and there are important
relations between pairs, triples, and quadruples of tripotents (orthogonal, colinear,
governing, trangle, quadrangle,.. .). These terms will not be defined here. The
relations are fundamental tools in the Dang-Friedman proof. Entirely similar ideas
are instrumental in the proof of the main result of [59], which is the topic of
section 3.

The Dang-Friedman classification of the Cartan factors of type I begins with
an irreducible JBW*-triple U with a minimal tripotent v.

Proposition 2.4.1 ([29]). If u is any tripotent in the Peirce 1-space U1(v) of v,
then one of the following holds:

e u is minimal in U (this holds if and only if u and v are colinear);

o u is minimal in Uy (v) but not minimal in U (this holds only if u governs v);

e w is not minimal in Uy (v) (this implies v is the sum of two minimal tripotents
of U).

Corollary 2.4.2. -The rank of Ui(v) is at most 2.

Proposition 2.4.3 ([29]). If v,0,u,u are the minimal tripotents forming a quad-
rangle, and if Uy (v + 0) # {0}, then dim Us(v + 9) € {4,6,8,10}.
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The Dang-Friedman classification scheme ([29)) is now the following: let J(v)
denote the weak*-closed ideal generated by v. Then

case 0: Rank Uy (v) = 0; then J(v) ~ C;

case 1: Rank U;(v) = 1,u a tripotent of U1 (v) minimal in U; then J(v) is a
Hilbert space (Cartan factor of type 1

case 2: Rank Uj(v) = 1,u a tripotent of U1 (v) minimal in Uy (v); then J(v) is a
Cartan factor of type 3 (symmetric operators).

In cases 3-7, Rank Uj(v) = 2, u is a non-minimal tripotent in Ui (v), and

7= {uvu}. |

case 3: U; (v + 0) = {0}; then J(v) is a Cartan factor of type 4 (spin factor).
In cases 4-7, Ui(v + ©) # {0} and so by Proposition 2.4.3, these are all the
cases possible.

+ §) = 4; then J(v) is a Cartan factor of type 1 (all operators).

case 4: dim Us(
v+ ) = 6; then J(v) is a Cartan factor of type 2 (anti-symmetric

v
case 5: dim Us(

operators). L
case 6: dim UQ(* + ) = 8; then J(v) is a Cartan factor of type 5 (1 by 2 matrices

over the Octonions).
case 7: dim Uz‘(v + 9) = 10; then J(v) is a Cartan factor of type 6 (3 by 3

Hermitians over the Octonions).

In each case, J(v) is a summand in U.

The ideas just discussed have application to the study of isometries of real and
complex triples and algebras.

o All the JB*-triples for which every real linear surjective isometry preserves the
triple product can be determined, and as a corollary it follows that all real
linear isometries of any (complex) C*-algebra preserve the triple product [28].
This will be discussed below in subsection 4.1.

e Surjective isometries of real C*-algebras preserve the triple product [21]. This
will be discussed below in subsection 4.1.

e Do the isometries of a real JB*-triple preserve the triple product? Since we do
not yet have a workable definition of real JB*-triple, I won’t say much here.
However, see subsection 2.5.

This subsection also suggests the following problem, which is of great interest
for C*-algebras. If A is any C*-algebra, then A and its bidual M := A** can be
considered as JB*-triples, M being a J BW*-triple with predual A*. As in any
JBW*-triple, there is a bijection between minimal tripotents of M and extreme
points of the unit ball of A*. Also M has an atomic part spanned in the weak*-
topology by the minimal tripotents and equal to an £>°-sum of Cartan factors of
types 1-6. By the work of Horn, Neher, and Dang-Friedman, each Cartan factor
is spanned by a “grid”, and thus elements of M may be considered as functions
on the set S of extreme points of the unit ball of A*.
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Problem 1. Put a “topological-like” structure on S so that A C M is identified
as the set of all “continuous-like” functions on S.

A partial solution to this problem will be discussed in subsection 3.6. The prob-
lem is significant because even for C*-algebras, it is necessary to take advantage
of the triple product structure in order to guarantee that S will consist of ex-
treme points. In other words, colinearity doesn’t exist for projections, which are
the building blocks for binary structures.

| 2.5. Real JB*-triples

In contrast to the situation for JB*-algebras (and to some extent for C *-algebras),
Jordan triple systems over the reals have played no role in the analytic theory of
JB*-triples. This is due to the history of the area: JB*-triples were born of an
investigation into certain aspects ‘of several complex variables ([86]). However,
a theory of real Jordan triples and real bounded symmetric domains in finite
dimensions was developed by Loos ([88]). This, together with the observation that
many of the more recent techniques in Jordan theory ([51], [84], [17]) rely on
functional analysis and algebra rather than holomorphy, suggests that it may be
possible to develop a real theory and to explore its relationship with the complex
theory.

In this subsection we employ a Banach algebraic approach to real Banach Jor-
dan triples. Because of our recent observation on commutative JB*-triples (see a
subsection below), we can now propose a new definition of real JB*-triple, which
we call J*B-triple. Our J*B-triples include real C*-algebras and complex JB*-
triples. The main result of [31], which will be described in this subsection, is a
structure theorem of Gelfand-Naimark type for commutative J*B-triples.

Real Banach Jordan triples

Definition 2.5.1. A Banach Jordan triple is a real or complex Banach space U
equipped with a continuous bilinear (sesquilinear in the complex case) map
UxU> (z,y) — zoy € L(U)
such that, with {zyz} := zoy(z) we have
{zyz} = {zyz}; (2.3)

(2,9, {wo=}} + {u, {yzv}, 2} = {{zyu}, v, 2} + {u,v, {zy2d} (2.4)

Recall that a Banach Jordan triple U over C is said to be a JB*-triple if

(a) for any = € U, the operator x5 from U to U (that is, zoz(y) = {zzy}, v €
U) is hermitian (i.e., exp it(zoz) is an isometry for all real t) with non-negative

spectrum;
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(b) the following norm condition holds:
|lzoz| = l|z]*.

The proof of the following theorem was suggested by Jonathan Arazy. Since it
is so short and elegant, we include it here.

Theorem 2.5.2. Let U be a complex Banach Jordan triple. Suppose that

1. |{zza}] = =l
2. |[{zyz}| < Izl vl izl

3. U is positive, i.€., aﬁw)(znx) c [0,00) for eachz € U.

Then U is a JB*-triple.

Proof. We only need to show that zoz is hermitian, for eachzeU.
Since § := izoz is a continuous derivation, o = et® is a continuous automor-

phism for each real . Thus, for each z € U,
@) ]| = [{a(2), alz),a(z)}] = le({zzz})]| < izl
and therefore, by iteration,
la(@)| < el iz,

that is, [|af| < 1. T O

The terminology in the next definition was motivated by [7], and the spectral
conditions were inspired by [115].

i
Definition 2.5.3. A J*B-triple is a real Banach space A equipped with a structure
of real Jordan triple system which satisfies

{zza}ll = ||l
I{zyz} | < [l=] vl lI=15

JCE(A)(IDJ:) C [0, 00) for x € 4
UCE(A)(:wy _yoz) CiR for x,y € A

RS

Over the complex field, JB *_triples are the same as J* B-triples.
A closed subtriple B of a J*B-triple A is a J*B-triple. In particular, a closed

real subtriple of a JB*-triple is a J* B-triple.
A real C*-algebra is a closed subalgebra of its complexification, which is a
complex C*-algebra in some norm. Thus, a real C*-algebra, with the triple product

1
{zyz} = 5(@y"z + 2Y°T).

is a closed real subtriple of a J B*-triple, and hence a real C*-algebra is a J*B-

triple.
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Two important and natural problems left open in the paper [31] are the fol-
lowing.
Problem 2. Is the complexification of a J*B-triple is a JB*-triple in some norm

extending the original norm. (This is solved for commutative J * B-triples in The-
orem 2.5.8.)

Problem 3. Is the bidual of a J*B-triple a J*B-triple with a separately weak™-
continuous triple product.

|
‘ Commutative complex triples

We are going to use Theorem 2.5.2 to modify the treatment in [84, Section
1] by not requiring that zoz be hermitian. Theorem 2.5.5 below is needed to
prove the main result of this subsection, namely Theorem 2.5.8, which leads to a
Gelfand-Naimark Theorem for commutative real J* B-triples.

Definition 2.5.4. A Banach Jordan triple is commutative if

({zyz}uv} = {zy{zw}} = {z{yzu}v}.

For example, any commutative C*-algebra Co(Q) is a commutative Banach
Jordan triple with fog(h) = fgh.
Throughout this subsection U will denote a commutative complex Banach Jor-

dan triple.
Let B = B(U) := the closed span of UcU in L(U). Then B is a commutative

Banach subalgebra of £(U). Denote the Gelfand Transform of B by
PB : B(U) o Co(X),

where X = Xj is the maximal ideal space of B. Let A = A(U) := the set of all
non-zero triple homomorphisms A : U — C. Precisely,

A={X:U — C:0# X linear, A\({abc}) = Ma)A(b)A(e)}-

According to [84, Lemma 1.6], A is a bounded subset of L(U,C). Thus, A is
a weak*-locally compact space and a “principle T-bundle” (T=unit circle) under

the action
TxA>(@t,AN—tAE A,

where (t.\)(z) = tA(z).
Define a norm closed subtriple of Co(A):

Crom(A) = {f € Co(h) : F(t:2) =tf(N),V(t; ) € T x A}

and a Gelfand Transform U 3> z — & = T'y(z) € Chom(A) by Ty(z)(A) = A(=).
Thus

FU : U — Chom(A)
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is a continuous triple homomorphism. The proof of the following theorem is im-
mediate from [84, §1], since the assumptions imply that U is a JB*-triple.

Theorem 2.5.5. Let U be a commutative complexr Banach Jordan triple. Suppose

that
1. |[{zea}(l = =]
2. [[{zyz} < Nzl vl =l
3. U is positive, i.¢., O'E(U)(:ZJDSIJ) c [0,00) for each z € U.
Then the Gelfand representation U — Chom(A) is an isometric surjective triple
isomorphism.

For a generalization of this theorem, see (48].

Commutative Real triples

Now let A be a commutative real Banach Jordan triple, that is, a real Banach
space A, together with a tri-linear map

Ax Ax A> (z,y,2)— {zyz} € A

which satisfies |

{zyz} = {zyﬂ?};‘

Hayzyu} = {myfzu}} = {{yzu}v}.

We shall define a natural Gelfand transform and state a representation theorem
of Gelfand-Naimark type.

By analogy with the complex case, let B(A) be the Banach subalgebra of
L(A) generated by AoA. Then B(A) is a commutative real Banach algebra (not
necessarily unital, cf. [62, p. 63]). Let XB(a) denote the space of complexified
characters (cf. [62, p. 82]), that is

XBay = {r:BA)—-C,0#7 real-linear, 7(ST) = 7(S)7(T)}.

By analogy we define AG to be the collection of all non-zero real-linear triple
homomorphisms of A into C; precisely,

A% = {A: A — C: A real-lincar, A # 0, A({abe}) = Aa)A(B)A(c)}

By the proof of [84, Lemma 1.6], each such A is automatically continuous and A%
is contained in a bounded subset of L (A, C). Note that e¥AS = A, that AG is
closed under complex conjugation, and that A4 is locally compact in the topology
of pointwise convergence on A.

In order to obtain the analogue of Theorem 2.5.5 we need to consider the
complexification of A. '

Lot U := AC — ¢(4) + ip(A) be the complexification of A and let ¢ : A = U
be the natural embedding. The space U becomes a complex commutative Jordan
triple system in the natural way and ¢ is a real-linear triple isomorphism into.
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The given norm on A can be used to define a norm on U as described in [62].
With this norm, U is a commutative complex Banach Jordan triple.

As above, let B(U) be the closed complex subalgebra of L(U) generated by
UoU and define B(¢(A)) to be the closed real subalgebra of L(U) generated by

#(A)o¢(A). Then B(AC) = (B(4)C.

Proposition 2.5.6. Suppose that A is a commutative J*B-triple. Then B(A), with
the norm of L(A), is a commutative real C*-algebra with involution determined by
(zoy)* = yoz. Consequently, B(U) is a C*-algebra in some norm extending the
norm on B(A) (by (62, 12.4]).

Let A(U) be defined as above.

Lemma 2.5.7. With the above notation,

(i) for each A € A(U) thereis X' € Ay such that Mo(z) +ig(y)) = N (z) +iX (y)
for x,y € A. This correspondence establishes a bijection A(U) « AG;

(ii) for each T € Xp) there is 7' € X such that 7(T +1S) = 7/(T) + it'(S)
for T, S € B(A). This correspondence establishes a bijection Xpw) < Xpay-

We can now state the main result of [31].

Theorem 2.5.8. Let A be a commutative J*B-triple. There is a norm on the
complezification U of A extending the norm on A and for which U is a JB*-triple.

1
‘We conclude by describing the Gelfand transform and stating and proving a

Gelfand-Naimark type theorem for commutative J * B-triples.

As noted earlier, the space A% is a locally compact Hausdorff space in the
topology of pointwise convergence on A. The bijection in Lemma 2.5.7(i) is a
homeomorphism. Now let

Ct o (A2) = {f € Co(A)) : F(eON) = e f(N) and F(V) = fF(N)}
and define a Gelfand transform I‘H} A — C*om(A?“) by Fﬂf(sc)()\’) = N(z).
Let p : Ay — A be the restriction map implicit in Lemma 2.5.7 and let p* :

Cﬁom(AcA) — Chom(Au) be its transpose.

Note that p~ (M) (é(z) + id(y)) = A(z) + i (y) and therefore F% maps A into

Clom (AS). Since

rGog=por%,

I‘I} is an isometry. .
Finally, if f € Cﬁom(Af“> and 7,y € A are such that p*f = Ty (é(z) +id(y)),

*

the fact that f(V) = f(V) implies that y = 0, hence TR(4) = C;_ (A%). This

proves
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Theorem 2.5.9. Let A be a commautative J* B-triple. Then the Gelfand transform
is an isometric triple isomorphism of A onto C’flom(Ai).
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3. State spaces of J BW *-triples

The main purpose of this section is to outline a proof of Theorem 3.0.2 below.

In the first subsection, we take a more leisurely look at the definition and
examples of JB*-triples than we did in subsection 2.2. In the second subsection
we examine those properties of a JBW*-triple that serve as the basis for the axioms
that will characterize them. These axioms and their appropriate framework (the
facially symmetric spaces) are introduced and discussed in the third subsection.
The proof of the main result is outlined in the fourth subsection and in the following
one, the spin factor, which is fundamental to the whole construction, is discussed
in detail. The section closes with a discussion of the Stone-Weierstrass problem
for JB*-triples, which is the key to obtaining a duality in terms of extreme points

(“pure states”). ‘
To start, let’s state a special case of the main result. In the following, Z denotes
a complex Banach space. The terms will be defined later in this section.

Theorem 3.0.1. Let Z be an atomic neutral strongly facially symmetric space
which satisfies the four “pure state properties” and has spin degree 4. Then there
exist Hilbert spaces H and K, and a closed subspace M of Z* such that

Z*~L(H,K)&" M.
In particular, if Z is irreducible, then Z* ~ L(H, K), that is, Z* is isometrically
(linearly) isomorphic to a Cartan factor of type 1.

More generally, we have the following non-ordered analog of the fundamental
result of Alfsen—Shultz 1978 for Jordan algebras discussed in subsection 1.3.

Theorem 3.0.2 ([59]). Let Z be an atomic neutral strongly facially symmetric
space which satisfies the four “pure state properties”. Then Z* is isometrically
1somorphic to an atomic JBW™*-triple.

By work of Neher, Horn, and Dang-Friedman, (see step 7 in the proof of The-
orem 2.3.1, and subsection 2.4),

T* ~ @awca (31)

where each C, is a Cartan factor. Actually, (3.1) is proved directly, which implies
Theorem 3.0.2. '

3.1. What is a JB*-triple?

Consider a complex Banach space U equipped with a triple product
{zyz} : UxUxU—-U

which satisfies two algebraic properties:
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{zyz} = {zyz} is linear in  and z and conjugate linear in y.
§(z) :=iD(z) : z — i{xzz} is a derivation, that is,

s{zyz} = {6z,y, 2} + {z, 6y, 2} + {z,y, 62};
and two topological or norm properties:

o |D(@)llBw) = ll=lF- .
e D(z): 2+ {zzz} is hermitian positive, that is,

opwy(D(z)) C [0,00) and |e*" | gy <1 YVt €R.
That is what a JB*-triple is. Here are some examples:

e Hilbert space: {abc} = [(alb)c + (c|b)a]/2.
e C*-algebra: {abc} = [ab*c + cb*al/2.
e JB*-algebra: {abc} = (aob*)oc+ (cob*)oa— (aoc)ob*.

Now you ask, what is a JBW™*-triple? This is a JB*-triple which is the dual
of some Banach space. From the above examples of JB*-triples, we see that Hilbert
spaces, von Neumann algebras, and JBW*-algebras are examples of JBW *-triples.
Perhaps the most important class of examples are the Cartan factors, which are
defined as follows:

type 1 L(H, K)

type 2 {z € L(H) : 2* = —z}
type 3 {z € L(H) : z* = 5}
type 4 spin factor

type 5 M; 5(O)

type 6 (M3(O);,

The Cartan factors of types 1 to 4 are (realizable as) JC*-triples, that is, norm
closed subspaces M of L(H, K) stable for the “cubes”: z € M = zx*z € M. For
types 2 and 3, z* = Jz*J for some conjugation J on the Hilbert space H. For a
description of the Cartan factors of types 5 and 6, see subsection 4.3.

Now we give a definition of the spin factor, the Cartan factor of type 4. This
is a JB*-triple U equipped with a complete inner product (:|-) and a conjugation
J on the resulting Hilbert space such that

(oye} = {2tz (e - (E12) Ty (32

and such that the given norm || - ||y and the Hilbert space norm are equivalent.
Note that a spin factor is necessarily a reflexive Banach space. Some simple ex-
amples of spin factors are S3(C) (two by two symmetric complex matrices), M, (C)
(two by two complex matrices), A4(C) (four by four anti-symmetric complex ma-
trices). Of course these are also Cartan factors of types 3,1, and 2 respectively.
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Let’s analize the last example. Let

0100 006 00
-1 00 0| _ 0 0
Uy = Uiz = 0 0 0 0 Ul = U3qg = 0 0 8 ? >
000 0 00 “=1 9
0010 000 o0
. _ | o0oo0oo0o| _ 000 -1
WEMEE 9 g o BEuwa=g 0 0 ol
0 00 0 010 o0
and
000 1 0 0 0 0
0000 0 0 10
BEMET L g 0 0 o WTUBT |G 1 g g
-1 00 0 0 0 0

1 : - ; ol
If we consider {'U/]',U,j}?,__l as an orthonormal basis and define Ju; = 4;, it is a

simple matter to check (3.2).
It is important to note the following properties of the basis in the above exam-

ple:

e u; and u; are orthogonal; :
e For 1 # j, u; and u; are colinear (their non-zero entries are in common rows

and columns);

e u; and 7; are colinear;

o For 1 # j, {uu;4;} = —i;/2 (the quadruple (u;,%;;u;, ;) forms an “odd
quadrangle”).

We shall see in subsection 3.5 below that all spin factors can be described by
“spin grids”, that is, orthonormal bases of the form

{wi, @i}ier or {ug, s tier U {uo}

The spin grids for the other examples mentioned above are
10 0 1 0 0 0 0]
w©: o o] %o [5 3] [43]

and

20: |5 o] [oo] 1]
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3.2. Algebraic and affine aspects of JBW *-triples

Recall that a tripotent in a JB*-triple U is an element u satisfying v = {uuu},
and that it gives rise to a Peirce decomposition of U (see subsection 2.2):

U =Us(u) ®Ui(u) ®Up(u).

Let’s illustrate this with-a JC*-triple M C L(H, K), where a tripotent v is
just a partial isometry. If we set £ = uu* and r = u*u, then £ and r are projections
and the block matrix decomposition

1

e [(1 fxg)xr (1 fxe()llerz r)}

is what the Peirce decomposition is all about. Here of course,

o Py(u) =fxr
o B(wzr=(1-0z(1l-r)
o Pi(u)z =4z(l —7)+ (1 —f)zr.

Let A be a C*-algebra and let S(A) denote the state space of A. The pure
states P(A), that is, the extreme points of S(A4), are important examples of faces
of the convex set S(A), and the latter is a norm-exposed face, namely it equals F}
in the unit ball of the predual of the von Neumann algebra M = A*™*, where for
z € M of norm 1, recall that

Fp={feM.  |fl=1=f(z)}

As will be noted later, M, is a neutral, strongly facially symmetric space satisfying
FE and STP. Since these properties do not depend on order, it will be natural to

replace M by a JBW*-triple.
Let’s recall that in an arbitrary JBW*-triple U, there is a one-to-one corre-

spondence
{tripotents of U} «» {norm exposed faces of (U,);} (3.3)

given by u — F,,, where
Fo={peUi:lpl=1=p(z)}

Under this correspondence, minimal tripotents correspond to extreme points. Such
a minimal tripotent is called the support tripotent of the extreme point. (This is
a special case of the polar decompositon of a normal functional, see Proposition
2.2.4.) Note that if U is in particular a von Neumann algebra, and u = 1, then F,
is the normal state space of U.

We next introduce an important mapping called the Peirce reflection. Namely,
for any tripotent u, set

Su = PQ(U) i Pl(u) + P()('u,)
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Note that L
Si=1I, Pa(u) + Py(u) = (I + S,)/2, and P, (u) = (I - S,)/2. (3.4)

Because of the “Jordan” decomposition (for hermitian functionals) in the “Jordan”
algebra Uy (u) = Py(u)U, we have

Pa(u)*(Us) = spe Fu.

(Note the different uses of the name “Jordan”). We also have Fy(u)*(U,) = FL.
Therefore we have the key motivating property (implicit in [51]) for the geometric
characterization of JBW*-triples, that is:

Proposition 3.2.1. Let u be a tripotent in a JB*-triple. Then the fized point set
of the symmetry S is )

spc Fu @ Fj

The following is a converse to Theorem 3.0.2, which of course preceded that
theorem. PE, STP, and ERP are proved in [51], FE is proved in [38].

Proposition 3.2.1. Every JBW*-triple satisfies the four pure state properties.

What are the pure state properties? Although they were discussed in subsection
2.2, they are important enough to bear repeating.

e (PE) Point Exposure (resp. (FE) Face Exposure): Every extreme point
(resp. norm closed face) in the unit ball of the predual is norm exposed.

* (STP) Symmetry of Transition Probabilities: For every pair of extreme
points g, f of the unit ball of the predual with support tripotents U, U respec-
tively,

flw) = g(v).
Example: M = L(H,K), f = Wen, § =wWepg- Thenv=1®¢, u=0Q®a and

f(w) = {(B)n) = (€le)(Bln) = g(v).

¢ (ERP) Extreme Rays Property: The image of an extreme point of the unit
ball of the predual under any Peirce 2 projection is a multiple of an extreme

point, that is
Py(u)*ext (U,)1] C Cext (U,);.
Example: With M = L(H,K), £ = wu*, 7 = u*u and & = r&/|ré|,n’ =
n/|enll, we have
Py(w)weq(z) = (zréln) = rélllienllwer m (z).

e (JP) Joint Peirce decomposition: The intersection of the Peirce 1-subspaces
corresponding to two orthogonal minimal tripotents is contained in the Peirce
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2-space of their sum, that is,
Ui(u) NU1(v) C Us(u + v).

For any two orthogonal tripotents er,es (not necessarily minimal), the well
known joint Peirce decomposition includes the formula

U2(€1 + 62) = Uz(el) + UQ(CQ) + Ul(el) n Ul(eg).

The weaker version (JP) quoted above suffices for our purposes.

3.3. Affine geometric model for JBW *-triples

What is an affine geometric model, based on physically significant axioms, for a
JBW*-triple? The answer is: a neutral strongly facially symmetric Banach space.
These were discussed briefly in subsection 1.4. We now discuss in more detail this
fundamental concept in an abstract normed space.

A basic notion in affine geometry is that of face. We consider faces F' of the
unit ball (Z); of Z, so recall that this means that F' is a non-empty convex subset
of (Z); with the following property: if f € (Z)1 and f = Ag + (1 — A)h for some
g,h € Fand A € (0,1), then f € F.

Let Z be a normed space, with elements denoted by f,g,.... We say that f
and g are orthogonal, notation f{g, if ’

If £ gll = IIFIF -+ llgll-

A norm one element v € Z* is called a projective unit if (u, F¥) = {0}. Obviously,
by Y is meant the set of all elements orthogonal to each element of ¥ C Z.
A face F' C (Z); is said to be a symmetric face if there is a surjective linear
isometry Sr on Z such that 512? = ] and SpF & F© is the fixed point set of Sp
(cf. Proposition 3.2.1). Then call Z weakly facially symmetric (WES for short) if
every norm exposed face in (Z); is symmetric.

Every symmetric face F' gives rise to the “geometric” Peirce projections Py (F)
on Z defined (with an eye toward (3.4)) by Py(F) + Py(F) = (I + Sr)/2, and
Py(F) = (I — Sr)/2. Of course the meaning here is that P,(F) is the projection
with range the closed span of F' and FPy(F) is the projection with range .

Our definitions are not sharp enough to get a purely geometric analog of the
correspondence (3.3). So let’s introduce the right thing. A projective unit v is said
to be a geometric tripotent if F,, is a symmetric face and St u = u. At this point
it would be prudent to use the notation S, for Sg,.

Here is the promised one-to-one correspondence [56].

Proposition 3.3.1. In a WFS space, there is a one to one correspondence between
geometric tripotents and symmetric faces.

What about the minimal geometric tripotents ot 2™ (which are defined by the
condition that the geometric Peirce 2-space be one-dimensional). Do they corre-
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spond to extreme points of the unit ball of Z. Only in strongly facially symmetric
spaces satisfying the (geometric) pure state property (PE) (see the discussion and
table below). By definition, a weakly facially symmetric space is strongly facially
symmetric (notation, SFS) if whenever a symmetric face F is contained in a norm
exposed face, say F' C F, (with y € Z* of norm 1), then Sty = y. In such spaces,
projective units are automatically geometric tripotents. Also, in such spaces, the
one-to-one correspondence given in Proposition 3.3.1 restricts to a one-to-one cor-
respondence between minimal geometric tripotents and ezposed points. Thus, a
priori, there may be extreme points whose “support geometric tripotent” is not a
minimal geometric tripotent. What is meant by the support geometric tripotent
of an element of Z? This is defined by the polar decomposition of an arbitrary
element of Z, discussed in the next paragraph.

Note that three of the four pure state properties stated in Proposition 3.2.2,
namely FE, ERP, and JP, make immediate sense in the category of WFS spaces.
But so does the fourth, STP, in neutral SFS spaces because of the uniqueness of
the geometric polar decomposition for any element of the space [56]: if f € Z, then
there is a unique geometric tripotent u such that

F/Ifll € Fy and (u, {f}°) = 0.

Since we mentioned the concept of neutral, and because it is fundamental in
what follows, we better give its definition. The notion is based on a fundamental
result of Effros (1963) for von Neumann algebras which was extended to JBW*-
triples by Friedman-Russo (1985), see Proposition 2.2.2. The result of Effros is the
following: if p is a normal functional on a von Neumann algebra, if e is a projection
in the von Neumann algebra, and if the functional z — p(ex) has the same norm
as p, then it equals p. This property is referred to as neutrality.

'This suggests defining a space to be neutral if for every symmetric face F, Py(F)
is a neutral projection, that is, | P;(F)f|| = ||f|| implies Py(F)f = f.

In view of the previous discussion, the following propostion should not be sur-

prising.

Proposition 3.3.2. A JBW™*-triple (more precisely, its predual) is an ezample
of a neutral SF'S space satisfying the four (geometric) pure state properties. In
particular, geometric tripotents correspond to tripotents.
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Table 4. Summary of above discussion

von Neumann algebra JBW*-triple SE'S space
partial isometry tripotent geometric tripotent
block matrix Peirce geometric Peirce
decomposition decomposition decomposition
state norm one functional norm one functional
pure state extreme point extreme point
pure state property pure state property pure state property
(binary) (ternary) (geometric)
neutrality neutrality neutrality

It may be more natural to use the term “extreme point property” in the ternary
and geometric categories, but we chose to stick with “pure state property”, for
physical reasons.

3.4. Steps in the main theorem

In this subsection, let Z denote an atomic neutral SF'S space which is irreducible.
Irreducible means that Z does not have a non-trivial L- summand, that is, there
do not exist subspaces Y # Z,{0} and Y’ such that Z = Y @* Y'. Theorems 3.4.1
and 3.4.2 below‘ appear in [58]

Theorem 3.4.1. If Z satisfies PE, STP, and is of rank 1, then Z* is isometric
to a Hilbert space (Cartan factor of type 1 and rank 1)

A normed space is said to be of rank I if no two non-zero elements are ortho-

gonal.
The key point in the proof of Theorem 3.4.1 (see [568, Section 2]) is the con-

struction of a continuous symmetric sesquilinear form (f|g)» = (f,7(g)) induced
by the densely defined conjugate linear map

T XZD szfj — Z_Zj’l)(fj) ISVAR
1 1

where v(f) denotes the support geometric tripotent of the extreme point f. Under
the assumptions of the theorem, every element of Z is a scalar multiple of an
extreme point, and it follows that the above sesquilinear form is positive definite

and induces the given norm of Z.
Recall that every WFS space can be decomposed with respect to any geometric

tripotent. In particular, if v and 9 are a pair of minimal orthogonal geometric
tripotents, then

Z = Zg(?) +'17) ¥+ Zl(v+17) + ZQ(’U +’(~))
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If Zy(v+79) = Zo(v+0) = {0}, we say that Z is of Type Io. In that case,
Z = Zy(v + 0) is the span of the rank 2 face Fyi5. A detailed study of rank
2 faces in SFS spaces is carried out in [58, Section 3], which leads to the proof
of the following theorem (given in [58, Section 4]). Because of its fundamental
importance, the spin factor, and the paper [58] will be discussed in some detail in
the next subsection.

Theorem 3.4.2. If Z satisfies FE, STP, and is of type I, then Z* is isometric
to a spin factor (Cartan factor of type 4).

Theorems 3.4.3 and 3.4.4 below appear in [59]. These theorems are proved
with the aid of an invariant called the spin degree. Roughly speaking, this is the
dimension of a spin factor appearing in Z as a geometric Peirce 2-space. More
precisely, Z has spin degree n (3 < n < o0) if there exist orthogonal minimal
geometric tripotents v, ¥ such that Z;(v+9) has dimension n and Z; (v+%) # {0}.
Without the latter condition, Z would be a spin factor (by Theorem 3.4.2), since
by irreducibility, it would follow that Zy(v + ©) = {0}.

Theorem 3.4.3. If Z satisfies FE, STP, ERP, and is of spin degree 3, then Z*
18 1sometric to symmetric operators (Cartan factor of type 3).

Theorem 3.4.4. Suppose that Z satisfies FE, STP, ERP and JP. Then

e if Z has spin degree 4, then Z* is isometric to L(H, K) (Cartan factor of type

1),
® if Z has spin degree 6, then Z* is isometric to anti-symmetric operators (Cartan

factor of type 2);
e if Z has spin degree 8, then Z* is isometric to My 2(O) (Cartan factor of type

5);
e if Z has spin degree 10, then Z* is isometric to [M3(O)]s, (Cartan factor of

type 6).

The other spin degrees (0o, odd greater than 3, even greater than 10) do not

occur.

Theorems 3.4.1, 3.4.2, 3.4.3 and 3.4.4, together with Zorn’s lemma yield a proof
of Theorem 3.0.2. Two important steps in the proof, each involving the geometric
Peirce 1-space are the following:

e If a space has finite spin degree n,.then there is a minimal geometric tripotent

whose geometric Peirce 1-space has spin degree n — 2.
e The geometric Peirce 1-space of a minimal geometric tripotent is of rank at

most 2.

Here is a sketch of the proof of Theorem 3.4.4.
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Let M := Z*. Suppose first that Z has spin degree 4. Then there exist two
orthogonal minimal geometric tripotents with My (v + ©) ~ M2(C). Let u and @
correspond in Mz (v + 7) to the matrix units F1o and Fa;. Then u, @ € M;(v),
and it follows that M;(v) is the direct sum of two orthogonal Hilbert spaces,
with orthnormal bases of the form {u = Uiz, U13,. .. and {@ = U1, UBL, - - -}
The fact that the triple v, u1;,ui1 Sits strategically in a spin factor implies, by
Theorem 3.4.2, the existence of a geometric tripotent u;; such that the quadruple
v, U1, Ui1, s behaves like the two by two matrix units. It is now natural to set
v = U1, obtaining a family {us;}icr jes in one-to-one correspondence with the
matrix units {E;;}, which are known to be weak*-total in L£(H, K). Since it is
easy to show abstractly that the family {u;;} is weak*-total in M, this sets up a
natural bijection  from a dense set in M onto a dense set in L(H, K).

It remains to show that the mapping ~ is norm preserving, and this is the
difficult part of the proof. First of all, you can reduce to the case that one of the
index sets I or J is finite. Then you use the following fact, valid in this case: if
€ M is of norm 1 and has “coordinates” x;; (coordinates can be defined for an
arbitrary elemedt of M, not just a finite linear combination of the generating set),
then z is a minimal geometric tripotent if and only if for all 4,7, k, p,

i det Tig  Tik | _
f Tpj Tpk

This implies that x and x~1 are contractive, completing the proof of the first
statement of Theorem 3.4.4.

Now suppose that Z has spin degree 6. Then there is a minimal geometric
tripotent v such that M;(v) has spin degree 4 and is of rank at most two. By the
part of the theorem proved already, M1 (v) ~ L(H, K), and hence there is a system
of minimal geometric tripotents uy; with ¢ € {1,2} and j € J corresponding to
the matrix units in the space of 2 by |J| matrices (2 < |J| < 00). By a completion
argument as above, using spin factor structure, one obtains a “geometric symplec-
tic grid”, that is, a family of minimal geometric tripotents which behaves like the
standard generators in the Cartan factor of type 2, the anti-symmetric operators
on a Hilbert space. Again, the difficult part is to prove that the natural map of M
into the Cartan factor is an isometry.

Next suppose that Z has spin degree 8. As above, there is a v with M;(v) of
spin degree 6 and rank at most 2. This implies that M, (v) is either the 4 by 4 or 5
by 5 anti-symmetric matrices. Since it cannot be a spin factor, it is the latter. This
time the completion process using the spin factor structure leads to a generating
set for Z consisting of 16 elements. The natural map must now be shown to be an
isometry of M onto the Cartan factor of type 5.

Finally suppose that Z has spin degree 10. As above, there is a v with M (v)
of spin degree 8 (and rank at most 2), hence must be the Cartan factor of type
5. In this case the completion process using the spin factor structure leads to a
generating set for Z consisting of 27 elements. The natural map must now be

shown to be an isometry of M onto the Cartan factor of type 6.
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In summary, setting up the correspondences between a dense subset of M and a
dense subset of the appropriate Cartan factor is (relatively) easy. Proving that this
map is an isometry, equivalently, that minimal geometric tripotents are mapped
to minimal tripotents, is the hard part.

3.5. Geometry of the dual ball of the spin factor

We are going to discuss in more detail the complex spin factor, which is the Cartan
factor of type 4. It is a JC*-triple which in dimensions 3,4,6, and 8 is isomorphic
to S5(C), M2(C), A4(C) and the Cayley numbers, respectively. It is an example of
a JBW*-algebra, it is related to Clifford algebras, and to the CAR C*-algebra and
it is the complexification of the real spin factor (which is itself a JBW-algebra).

In what follows, we shall construct the complex spin factor. We begin with an
outline of the construction. In this subsection, following [58] and [29], we outline
a proof of Theorem 3.4.2 and discuss a new property of the spin factor (facial
decomposition). The proof consists of four steps:

step 1 Hilbert ball property of a rank 2 face
step 2 dimZ =3

step 3 dim Z = 4

step 4 dual spin grids

Assume the notation of Theorem 3.4.2.

Step 1: Hilbert ball property

The starting point is the following lemma.

Lemma 3.5.1. Let v and 0 be orthogonal minimal geometric tripotents and let
p and o be any two orthogonal extreme points of the rank 2 face F,i5. Then
v(p) +v(c) =v+75 and p+ o = f+ f. (Here, v(g) denotes the support geometric
tripotent of the functional g and f, f are extreme points with v = v(f) and U =

v(f)-)

This lemma allows us to unambiguously define the “center” of the rank 2 face
F to be the average of any two orthogonal extreme points of the face.

The following is the basic construction of a real Hilbert space, which justifies
the name Hilbert ball property.

Proposition 3.5.2. Let v and ¥ be orthogonal minimal geometric tripotents and
let & be the center of the rank 2 face Fyy5. Then Fyig — &, with the norm of Z is
the unit ball of a real Hilbert space H which is the completion of

Ho:={t(g—&):t>0,9 € co extFyiz}
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with Tespect to the inner product
(t(g — E)ls(h — €)) :=ts(2(rlp) = 1).
(Here, (7|p) denotes transition probability)

Step 2: Two-by-two symmetric matrices

Let Z be the closed span of the rank 2 face F; with center £ and let H¢ denote
the Hilbert space Fr —&. Let e1, €2 be any orthonormal set in He.

Lemma 3.5.3. There ezist orthogonal extreme points f1, fl such that

ext F,, Nspan{e1, ez, &} = {(ewfl +e ¥f)/2+ex: 0 R}

Thus we have a rich supply of extreme points, which is enough to prove

Theorem 3.5.4. span{fl,fl,ez} ~ 55(C)x.

Step 3: Two-by-two matrices

Same setting as the previous step. Let e1, ez, €3 be any orthonormal set in He.

Lemma 3.5.5. There exist orthogonal extreme points fa, —fg in Fe, such that

. :fz—fz . :Z.f2+f2.
2 9 ) 3 9 A

By using this lemma and the known structure of the state space of the C*-
algebra M, (C), we can prove

Theorem 3.5.6. span{ fi, f1, f2, fg} ~ M5(C)..

In any JB*-triple, the following corollary is well known and easily seen to be
valid for arbitrary tripotents. Here, it is obtained in a more general setting (SFS
space) for a particular kind of geometric tripotent (minimal).

Corollary 3.5.7. If Z is a neutral strongly facially symmetric space of type Io
satisfying FE and STP, and if u is a minimal geometric tripotent, then the one
parameter group Sy(w) = APa(u) + Pi(u) + AFo (u),\ € T consists of isometries of
Z.

Before going into step 4, we are first going to construct the triple product and
norm in a concrete spin factor in an elementary way by using properties of a spin
grid. There are two parts to the construction, namely, the Hilbert space structure
and the norm (=JB*-triple structure). Keep in mind that until we reach step 4,

we are in a concrete setting.
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Part 1 of the construction: Hilbert space structure

The assumptions that we make in the following definition are known to hold
for a spin grid in a spin factor ([29]).

Definition 3.5.8. Let I be an index set of arbitrary cardinality. A basis, or spin
grid is a collection G of linearly independent elements {u;, @; }ier or {uo, Us, Us bicr-
Deﬁ?e a triple product {uvw} for elements of the basis by:

1. {uuu} = u for all u € G (the basis will consist of tripotents).
2. For distinct non-zero 1, J,

. 1 .
{uiuiuj} == {’LL-L’U/{U/J} = ’2'Uj, {ujujui} = {Uj’LLj'lLi} = Eui,

1 1
{ﬂiﬁiﬂj} = iﬂj’ and {ﬁjﬂj’ai} = §ﬂi

u; will be colinear with u; and with @, and 4; will be colinear with 1,); and
J j j
~ L 55 = s
{uinji} = =5, {ujlilly} = —5%
(“che quadruple (us,uj, 4, %;) will be an odd quadrangle).
3. In case ug exists, for each 7 # 0,
L 1 - .
{Uiuiuo} = {Uiuiuo} = 5“0, {UOUOUz’} = Uy, {Uououz’} = U
(up governs u; and ), and
{uOuin} = —’ﬂ,i, {uoﬁiuo} = —Uq4.

4. {uvw} = {wvu} for all u,v,w € g.
5. All other products {uvw} where u,v,w are from the basis, are zero. In parti-
cular, for each i # 0,

{w;du} = 0 = {tuu} forallu € §

(us, @; will be orthogonal).

It follows from these properties that the set of all scalar multiples of basis
elements is closed under the triple product {-, -, -}. Hence, the triple product {5}
can be extended to the real or complex span of the basis elements to be linear in the
outer variables and (in the complex case) conjugate linear in the middle variable.

Define an inner product on sp G by

(a]b) — Z aigi + Z &izi -+ 2&050. (3.5)

where a = 3" a;u; + Y @il +aouo and b = Sobiuit Yy, b;ii; +boug are two elements
of spg.
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Definition 3.5.9. The completion of spG with respect to the norm || - ||2 deter-
mined by the inner product (3.5) is called a (concrete) spin factor, and will be

denoted by C.
If T is finite with n elements, the dimension of C is 2n or 2n + 1. Otherwise, C

is infinite dimensional, and (3.5) is then a convergent sum.
Part 2 of the Construction: JB*-triple structure (norm)

The norm on the spin factor C which will make it into a JB*-triple is not the
Hilbert space norm used in the definition, since that norm does not satisfy (2.2).
In order to define the correct norm, which will be equivalent to the Hilbert norm,
we introduce the following concepts. Define a conjugation # on basis elements by
ug = U, ﬂg =4, and ug — wuo, and extend this to the linear span in a conjugate
linear way.

The connection between the triple product, inner product, and conjugation is
given by

2{abc} = (alb)c + (c|b)a — (a)ch)bh (3.6)

For each element a of C, the notion of determinant is defined by
- 1
deta := Zaiai 4 gf = §(a|au). (377)

Proposition 3.5.10 (Proposition 3.3, Lemma 3.4 of [29]). Let C be a spin factor.
|

1. If a € C, then a is a scalar multiple of a minimal tripotent if and only if
deta = 0 and in this case, from (2.2) and (3.6), the norm must be defined by
llal] = (a’a)% = ||al|2 for such a;

9. Elements a and b in C with deta = detb = 0 are scalar multiples of orthogonal
tripotents if and only if there is A € C such that b = \al.

Proposition 3.5.11 (Proposition 3.6 of [29]). For any element a in a spin factor
C, with deta # 0, there is a unique set of non-negative numbers {s1, sz} determined

by
s? 4+ s2 = (ala), s152 =|detal. (3.8)

Also, if s1 # s2, two orthogonal minimal tripotents e, f are détermined uniquely
by a such that

a=se+sf. (3.9)

Corollary 3.5.12 (Corollary 3.7 of [29]). If a has decomposition (3.9), then from
(2.2) and [51, Lemma 1.3(a)], [la|| must be defined as max{si1, s }. From (4.4) it
follows that this norm is equivalent to the Hilbert norm |l - l2, and therefore C is
complete and reflexive in this norm.
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Hence every element a € C has unique coordinates {a;,d;,ao} with

a = Z a;u; + Z diﬂi + apgluo, (3.10)

where convergence is in || - || (up may not exist).

Step 4: Dual spin grids

\
Definition 3.5.13. A dual spin grid in a facially symmetric space Z = Z5(F¢) of
type Iz is a family {fj, f}jeru{1}> or {fi» fitieru(uy U{fo}, where I is an index set
not containing 0 or 1, and for each j € I, f;, f; are a pair of orthogonal extreme
points of ball Z such that £ = (f1 + f1)/2, and with ey = (f1 — f1)/2, and

e; = (fj — f;)/2 and & = i(f; + f;)/2 (G € I), (3.11)

the collection {e_l,ej,e;}jel or {el,ej,e;'}jej U {fo}, is an orthonormal basis in
the Hilbert space He.

We can now prove Theorem 3.4.2. Label any orthonormal basis of H¢ as
{61,€j,69}je1- For each j construct a pair fj,fj satisfying (3.11). Next set f; =
e1 + &, and fi = e; — & Then {fj,_fj}je]u{]_} is a dual spin grid with the same
linear span as {e1, e, €}, &} er. There is now an obvious map from this linear span
to the linear span of a spin grid in a complex spin factor. It must be shown that
this map is isometric, and therefore extends to the desired isomorphism. As usual,

this is the difficult part.
This completes the proof of Theorem 3.4.2.

Facial decomposition

We next discuss the facial decomposition in a concrete spin factor. We expect
this to be a useful tool in the relation between spin factors and physics. It already

helped in the proof of Theorem 3.5.6.

Definition 3.5.14. Let Z be the predual of a concrete spin factor. (Z itself can
therefore be identified with a spin factor.) An element ¢ € Z is said to be unitary
if |€]z = 1 and &¥ = ¢ for some A € T. For 0 # a € Z define the phase ((a) of a

to be
((a) = deta/|detal if deta # 0;  ¢(a) =1if deta=0.

Proposition 3.5.15. Let a be any norm 1 element of Z and let A = ((a). Then
the center & of a rank 2 face F, containing a is given by

‘
d +2’\a . (3.12)

Moreover, ¢ is unitary and {(§) = A.
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The following proposition is the facial decomposition of an arbitrary element
of the predual of a spin factor.

Proposition 3.5.16 (Facial decomposition). Let Z be the predual of a spin factor.
For each non-zero a € Z, there are unique elements £, h € Z with

(i) &, h are scalar multiples of unitaries and a = & + h;

(i) ¢(&) = ~¢(h) = ¢(a).
Moreover,

(i) (¢|k) =0, and henee [lall3 = €3 + I3

(i) llallz = lEllz > [1bllz;
) [detal = (€% — I1I3)/4, and hence [¢llz = |kl < deta = 0.

In Proposition 3.5.16, if [lallz = 1, thenaand £ belong to the face F¢ containing
a whereas h = a — £ is “parallel” to F. Moreover, by this proposition, the face Fe
is a real Hilbert ball defined by

FE = {6 +h:heZ, ”h’”2 <1, <ﬂh’> = O’hn = 'C(g)h}

Note that since‘(hlh’) = (WYh¥) = (h'|h), the inner product (E+h|E+D) =
(€1€) + (h|W) is real. This should be compared with Proposition 3.5.2.

The followiné consequence of the facial "decomposition in the concrete spin
factor is needed i:n the proof of Theorem 3.5.6. A direct proof is very computational.
1
Lemma 3.5.17. Let A be an extreme point of the unit ball of Ma(C)x (that is,
Mj(C) with the trace norm). Then there exists p € T and orthogonal projections
P,Q € M3(C) with

A € Fup+mq-

3.6. Stone Weierstrass theory

JB*-triples as complex Banach spaces

Sakai [101] initiated the study of C*-algebras and W*-algebras as Banach
spaces. :

Since the algebraic structure of a JB*-triple is determined by holomorphy and
geometry, and does not depend on an order structure, it seems appropriate to
analyze the Banach space structure of a JB*-triple. This can be illustrated in
the relationship between RNP (Radon-Nikodym property) KMP (Krein-Milman
property), and atomicity (Chu-Tochum (22], Barton-Godefrey [16]).

The following definition is motivated by ideas of Shultz (13],[104)). In it we use
the notion of atomic decomposition of a Banach space, as formulated in [33]. We
denote the atomic part of a Banach space X by (X )a-
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Definition 3.6.1. A Banach space is said to be weakly perfect if for every & €
(X**)q, if € is weak*-uniformly continuous on ext (X*); U {0}, then £ € X.

Theorem 3.6.2 (Shultz [104], Brown [18]). Every C*-algebra is weakly perfect.

Proof. Shultz showed that if £, £*¢ and £€€* € A** are all uniformly continuous on
P(A) U {0}, then £ € A. Brown removed the assumptions on {*¢ and £€*. But
P(A) C ext (A*);. 0

Problem 4. Which JB*-triples are weakly perfect?

Besides C*-algebras, examples of weakly perfect JB*-triples are Hilbert spaces,
spin factors, elementary JB*-triples, and commutative JB*-triples. The answer is
not known for JB*-algebras. To understand why weakly perfect JB*-triples are
important, see Corollary 3.6.5 below.

Extreme points as a dual object for JB*-triples

The following theorem was proved using a classical theorem of Wigner, together
With‘ Glimm’s Stone-Weierstrass theorem (for C*-algebras) and some representa-
tion theory of C*-algebras. It can be summarized as follows (in the category of
C *—Jlgebras): in the presence of Wigner’s theorem,

Theorem 3.6.3 (Shultz [104]). If A and B are C*-algebras, and v : P(A)U{0} —
P(B)U{0} is a weak*-uniformly bicontinuous bijection preserving orientation and
transition probabilities, then A and B are isomorphic (as C*-algebras).

Stone—Weierstrass = Weakly Perfect = Dual Object.

The following theorem is an unpublished analog of Wigner’s theorem for JBW -
triples. In it, E(A) denotes the set of extreme points of the unit ball of the predual

A, of the JBW*-triple A.

Theorem 3.6.4 (Dang-Russo). If A and B are atomic JBW*-triples, and 9 :
E(A)U{0} — E(B)U{0} is a bijection preserving transition probabilities, then A
and B are isomorphic (as JB*-triples).

Corollary 3.6.5. If A and B are JB*-triples, one of which is weakly perfect, and
¥ : E(A)U{0} — E(B)U{0} is a uniform homeomorphism in the weak® -topology
preserving transition probabilities, and if 1(0) = 0, then A and B are isomorphic
(as JB*-triples).

In view of the above discussion, a Stone-Weierstrass theorem becomes impor-
tant for JB*-triples.
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Problem 5 (Stone—Weierstrass). If A is a JB*-subtriple of B, and A separates

E(B)U {0}, then A= B.

The Stone-Weierstrass conjecture is known to be true for

o some C*-algebras (Glimm, Sakai, Popa, Bunce, ..., Fujimoto);
o all commutative JB*-triples (Friedman—Russo 48]);
e Hilbert spaces and spin factors.
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4. Linear mappings of J B*-triples

The content of this section is obvious from the title and the table of contents.
We discuss, in turn, isometries, contractive projections, derivations, and bilinear
forms.

4.1. Isometries
Isometries of JB*-triples

In 1951, Kadison [80] proved the following non-commutative extension of the
Banach-Stone theorem, thereby showing that the geometry of a C*-algebra deter-
mines somes aspects of its algebraic structure.

Theorem 4.1.1. Let T be a surjective linear isometry of a unital C*-algebra A
onto a unital C*-algebra B. Then there is a unitary element w € B and a Jordan
*-isomorphism p of A onto B such that

Tz =up(z), €A

The proof of the original Banach-Stone theorem, that is, the case in which A
and B are abelian, say A = C(X), B = C(Y), uses duality and the intimate
relation between the topological space X and the algebra C'(X).

Instead, Kadison gives an intrinsic proof, depending mainly on spectral theory
and the underlying Hilbert spaces on which A and B act. He also points out that
the Jordan *-isomorphism p preserves the “quantum mechanical structure”, that
is, the linear structure and the power structure of self-adjoint elements. It follows
that it preserves the symmetrized triple product {abc} = (ab*c + cb*a)/2, that is,
if p(a + 1b) := p(a) + ip(b), then p{abc} = {p(a), p(b), p(c)}, for all a,b,c € A, not
necessarily self-adjoint.

As an early example of the use of triple products, Kadison also shows that a
quantum mechanical isomorphism preserves commutativity. We sketch the elegant
argument.

e p preserves the Lie triple product.
Reason: [[a, b], c] = [ab — ba, ¢] = 2{abc} — 2{bac}.
e p preserves the square of commutators.

Reason: [a,b]? = (ab — ba)® = 2{al{bab}} — {a{blb}a} — {b{ala}b}.

e If ab = ba, then [a,b] = 0 so [[a,b],c] = 0 Ve which implies that [p(a), p(b)]

belongs to the center of B. But [p(a), p(b)]? = 0 so [p(a), p(b)] = 0.

Using some basic results in operator algebras from 1951-1963, a proof of The-
orem 4.1.1 can be given [30] which

e is similar to the commutative proof in that it uses affine geometric properties
of the convex set of states; more precisely, it consider faces (=extremal subsets)
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instead of pure states (=extreme points), where by “state” is meant any norm

one functional;
e is independent of order, hence applies to JB*-triples to give a different proof

of Kaup’s 1983 generalization [84] of Theorem 4.1.1.

Theorem 4.1.2 (Kaup). Let T' be a surjective linear isometry of a JB*-triple A
onto a JB*-triple B. Then T is an isomorphism.

The basic results referred to above are

e bidual;
e polar decomposition of normal functional;
e Jordan decomposition of normal hermitian functional,

e neutrality.

Prior to Theorem 4.1.2, versions of it were obtained for JC*-triples (Harris
1973 [68]) and for JB*-algebras (Wright-Youngson 1978 [121]).

In the rest of this subsection, we outline the proof of Theorem 4.1.2 obtained
in [30] in the special case of a C*-algebra, that is, of Theorem 4.1.1.

If T is a surjective linear isometry of a unital C*-algebra A onto a unital C*-
algebra B, then its adjoint T™* maps faces to faces and preserves orthogonality.
The proof is then achieved by

e connecting the algebraic structure to faces;

e characterizing partial isometries in terms of faces and orthogonality;

e using polarization and approximation (spectral theorem); namely with 2B) =
2z*z and © = ¥ A\ju; (finite sum, A; > O u; orthogonal partial isometries) we
have £®) = 3" Nu;, Tz = ¥ ATy, T(e®) = X ATy, = (Tz)®). This,
together with the polarization formula

1
{abc} = = Z af(a+ ab+ Be)® (4.1)

8
at=1,0%2=1

completes the proof.

Besides the basic results referred to above, the following five lemmas, some of
independent interest, are also needed in the proof.

Algebraic structure of the Peirce 2-space

For any partial isometry v in a von Neumann algebra M, Ms (v) is an abstract
W*-algebra (a - b := av*b, af := va*v, unit v) with normal state space Fy.

Norm condition for orthogonality

For f,g € M, with polar decompositions f = u|f| and g = vlgl, v L v if and
only if |[f £ gll =[£Il + Il

Norm exposed faces and partial isometries

Every norm-exposed face Fy, of ball M, is given by a unique partial isometry
w: Fp = Fy.
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Geometric condition for orthogonality
ulove b, LF,

Geometric characterization of partial isometry
An element z € M is a partial isometry if and only if ||z|| = 1, F, # ¢, and
(x,Fl) =o0.

The genesis of the above proof is contained in subsection 1.4.

|
Real isometries of JB*-triples

As suggested by section 3, a natural candidate for the “state space” of a
JB*-triple is the entire unit sphere of its dual. Motivated by the symmetry trans-
formation in quantum mechanics, one would like to consider invertible affine maps
on the unit sphere of the dual of a JB*-triple. Unlike the situation in C*-algebras
and JB*-algebras, these maps turn out to be the adjoints of real-linear (not
complex-linear) surjective isometries. Thus it is meaningful to study such maps.
Theﬁesult described below is due to Dang [28] and can be viewed as an extension
of a‘famous theorem of Wigner or of the previously mentioned theorem of Kaup.
It also provides a partial converse to a theorem of Friedman-Hakeda [45].

rI}"he first step is to exploit the one-to-one correspondence between tripotents
in a JBW™*-triple and the norm-exposed faces in the unit ball of its predual, as in
the previous subsection, to show that a real-linear isometry preserves cubes and
orthogonality of elements. Since the map is assumed to be only real-linear however,
the polarization formula (4.1) is no longer applicable. Thus a new technique is
needed. In view of the Gelfand-Naimark theorem of section 2, the next step is to
analyze real-linear isometries between Cartan factors.

Theorem 4.1.3. Let U and V be Cartan factors with the rank of U at least 2
and let ¢ : U — V be a real-linear surjective isometry. Then ¢ is either linear or
conjugate linear and preserves the triple product.

The following is the main result of [28].

Theorem 4.1.4. Let M and N be JB*-triples and let ¢ : M — N be a real-linear
surjectwe tsometry. If M** does not have a nontrivial Cartan factor of rank 1 as
a direct summand, then ¢ is the sum of a linear isometry and a conjugate linear

1sometry.

The result has immediate application to all C*-algebras and all JB*-algebras
since these categories do not contain Hilbert spaces of dimension larger than 1.
For a further extension of Kadison’s isometry theorem, see the next subsection.
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Isometries of real C*-algebras

The paper [21] arose from a desire to define and study infinite dimensional real
JB*-triples via functional analysis (cf. subsection 2.5). The first attempt to formu-
late a definition came from a consideration of the range of a contractive projection
on a real C*-algebra. Although this can be analyzed easily in the commutative
case, see [21 section 7], the general case poses serious obstacles, and it remains
open as to Whet}‘ler this range is isomorphic to a norm closed subspace of another
real C*-algebra stable for the triple product in that C*-algebra (see [52] for the

case of a complex C*-algebra).

Upmeier ([115, §20]) has proposed a definition of a real JB*-triple. His spaces
include real C*-algebras, JB*-triples considered as vector spaces over the reals,
and the bounded operators between real or quaternionic Hilbert spaces. They also
have the property that their open unit balls are real bounded symmetric domains.
Since a real C*-algebra is a real JB*-triple, hence essentially a geometric object,
a natural test for its structure theory is whether the surjective linear isometries
preserve the triple product. This is the main problem solved in [21] and discussed
in this subsection.

The main result is the analog, for real C*-algebras, of Kadison’s celebrated
theorem (4.1.1), and is based, in outline, on the recent affine geometric proof
of that theorem ([30]). Accordingly, the tools needed for that proof, which are
standard results in the theory of (complex) C*-algebras, need to be found for real
C*-algebras. Although some of these results were expected or could be predicted,
some of the proofs contain new ideas.

The ingredients of the proof are the following:

the bidual of a real C*-algebra is a real C*-algebra;

definition of a real W*-algebra;

the complexification of a real W*-algebra is a W*-algebra;

standard spectral theoretic type results are formulated for a real W*-algebra;

relation between partial isometries and norm exposed faces which connects the

algebraic structure of a real W*-algebra with the geometric structure of the
unit ball of its predual;

e an isometry preserves orthogonality and “cubes”, and sends partial isometries
to partial isometries;

e the special case of the main result in which the two real C*-algebras are W*-
factors of type I, i.e., of the form L(H) for some real, complex, or quaternionic
Hilbert space H;

e reduction of the main result to the special case.

In the rest of this subsection, we elaborate on some of these steps.

A real C*-algebra is a real Banach *-algebra A such that [a*al = la|* and
1+ a*a is invertible in A if A has a unit. If A is not unital we require that 1 +a*a
be invertible for all @ in the unit extension A of A. We note that, by [96, 4.1.13],
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if A is a non-unital real C*-algebra, then the unit extension A=A®R is a real
C*-algebra under the norm

[I(z, | = sup{llzw + du| : v € A4, ||ul| = 1}.

A real Banach algebra A is Arens regular if the two Arens products on the
second dual A” coincide. If A is a real Banach *-algebra which is Arens regular,
then the involution * on A extends naturally to A” and A” becomes a real Banach
*-algebra. Moreover, the extended involution is o(A”, A")-0(A”, A") continuous.

If A is a real C*-algebra, then its complexification A = A + ¢4 can be given a
norm so that it becomes a complex C*-algebra, and A embeds isometrically as a
real C*-subalgebra of A ([62, 15.4]).

In [21], it is shown that a real C*-algebra is Arens regular. Hence, there exists
a natural o(A4"”, A")-c(A”, A")-continuous involution * on A” which extends the
involution * on A: for z € A", z*(f) := (z, f*) where f* € A’ is defined by
f*(a) := f(a*) for a € A.

Thborem 4.1.5. Let A be a real C*-algebra. Then its second dual A", equipped
with the Arens product and natural involution, is a real C*-algebra.

\

Let A be areal C*-algebra. We call A a real W*-algebra if A is linearly isometric
to the dual space E’ of a real Banach space E such that multiplication in A4 is
separately o (A, E)-continuous.

Theorem 4.1.6. Let A be a real W*-algebra. Then its complezification A is a
W*-algebra. Morever, A is 0(A, Ax)-closed in A, and for a,aq € A,

o(A, E)-lima, =a & o(A, A,)-lima, = a.
Theorem 4.1.7. Let H and K be Hilbert spaces over the same set of scalars
which is either R, C or H, and let ¢ : L(H) — L(K) be a weak™-weak”-continuous
surjective real-linear isometry. Then ¢ preserves the triple product: for a,b,c €
L(H),
¢(ab*c + cb*a) = ¢(a)p(b)*d(c) + ¢(c)#(b)"p(a).
Theorem 4.1.8. A surjective linear isometry ¢ between two real C*-algebras pre-

serves the triple product: ¢p(ab*c + cb*a) = qb(&z)qb(b)*qb(c) + ¢(c)p(b)*@(a).

4.2. Contractive projections

We have witnessed the important role played by contractive projections in the
structure theory of JB*-triples, see subsections 1.1, 1.2 and 2.3. This subsection
contains information on contractive projections which is a result of that structure

theory.
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Conditional expectation and bicontractive projections

Let X be an arbitrary Banach space. We consider two questions regarding
idempotent linear maps on X.

Problem 1. If P: X — X is a contractive linear projection, that is || P|| <1,
then describe P and its range P(X).

Problem 2. Define the class S to be those Banach spaces X for which every
bicontractive projection P, that is |[P|| < 1 and |[I — P|| < 1, is of the form
P = (I + 6)/2 where 6 is an involutive isometry. Describe the class S.

Here is the history of Problem 1 prior to 1980. References can be found in [47].

1965 Douglas: X = L(u) = P = QR, Q Markov, and P(X) ~ L'(v).
1966 Ando: X = LP(u) = P(X) ~ LP(v).
1969 Wulbert—Lindenstrauss: X = CR(K) = P(X) ~ a C,-space.

On C(K), most results assumed P1 = 1, that is, P is Markov.

1978 Arazy!—Friedman: X = Cs (=compact operators on a separable Hilbert

space)= complete classification of P(X) (Cartan factors of types 1,2,3,4).

Two other results involving positive and completely positive projections on C™-
algebras, and progress after 1980 have been discussed in subsections 1.1 and 1.2.

Here is the history of Problem 2. References can be found in [55].
1977 Bernau-Lacey: Cy(K),LP € S.
1978 Friedman—Arazy: Cwo, C; (trace class) € S.

A natural question: Which C*-algebras belong to S? In particular, does L(H) €
87 The answer is yes, see Theorem 4.2.1.

1982 Stgrmer: Partial result: If P is a positive bicontractive projection on a
C*-algebra, then 2P — I is an isometry.

In their study of a contractive projection P on a commutative C*-algebra A,
as noted in subsection 1.1, Friedman—Russo also proved the following:

P(A) is an abstract C*-ternary ring.

P(A) is a subalgebra if and only if P is averaging (P(fPg) = PfPg).
(A) ~ a unital Banach algebra if and only if ext ball P(A) # ¢.

(A) ~ a C, space always.

P
P

With this information, it was easy to give another proof of the result of Bernau-
Lacey, namely that Co(K) € S.
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The' bicontractive projection problem was completely solved in the category of
JB*-triples by Friedman—Russo in 1985 ([55]). Earlier it was solved for JC™*-triples,
hence C*-algebras, in 1983 ([50]).

Theorem 4.2.1. Every JB*-triple belongs to the class S.

Here are the main steps in the proof. Let P be a bicontractive projection on a
JB-triple U.

e Let ¢ =2P —I. To prove |0 <1, it suffices to show that
0({zzz}) = {6zbx0x}. (4.2)
e Two conditional expectation formulas (for contractive projections):

Kaup: P{PaPbPc} = P{PaPbc};
Friedman—Russo: P{PaPbPc} = P{PabPc}.

e P(U) is a subtriple of U.

A simple calculation now yields (4.2).

As a by-product of the above proof, it can be shown that the image P(U)
of a contractive projection on a JB*-triple U is isomorphic to a subtriple of the
JB*-triple U**. Thus, the abstract triple product on P(U) can be realized in a
concrete way, as was the case with JC*-triples.

Application to Banach space theory: contractive projections on C,

Let H be a separable, infinite dimensional complex Hilbert space and let £(H)
denote the space of all bounded linear operators on H. Let Coo = Coo(H) denote
the subspace of L(H) consisting of all compact operators.

For 1 < p < oo let C, = Cp(H) be the Banach space of all z € C, for
which

Izl = (tr|zl?) /7

is finite, where |z| = (z*z)/? and “r” denotes the usual trace.

The spaces C, are called “von Neumann-Schatten p-classes”; Cy is the Hilbert
space of Hilbert—Schmidt operators and C; is the trace class. The standard refer-
ences for the basic properties of C,, are [61], [105], [89], and [36]. :

An important application of JB*-triple-theory is the following result of Arazy-
Friedman 1992, [10], [11]. It extends and continues their work on contractive pro-
jections in C; and Cy, [9]. While this result is similar to those of [9], the methods

used are very different. We shall not define all of the terms here.

Theorem 4.2.2 (Arazy-Friedman). Let X be a closed subspace of Cp,1 < p <
00,p # 2. Then the following four properties are equivalent:

(1) X is the range of a contractive projection from Cp;
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(2) X is the £,-sum of subspaces, each of which is canonically isometric to the
C, ideal of a Cartan factor of one of the types 1 - 4;

(3) XP=1 .= {v(z)|z|P~';z € X} is a closed linear subspace of Cq, (p™' + ¢ "
= 1) where z = v(z)|z| is the polar decomposition of the operator x;

(4) V :=span {v(z);z € X} is closed under the triple product

{u,v,w} = (w*w + wv*u)/2,

and is an atomic JC*-subtriple of L(H). Moreover, X is a module over V', namely
(VVX}C X and {VXV}C X.

As a corollary it follows that the category of C, ideals of atomic JCW ™-triples
is stable under contractive projections.

This work is obviously related to the theory of contractive projections on JB*-
triples (see subsections 1.1 and 1.2). The Jordan triple product is the algebraic
structure which respects the geometry (in JB*-triples as well as in Cp). Therefore
the JB*-formalism can be used effectively in this work. In this formalism the
results have a relatively simple form, contrary to the work [9] in which the ranges
of contractive projections in C; and Co, are described without this formalism in
a complicated way.

The main tools in studying the contractive projections in €y and Cy in [9]
are the fact that contractive projections on these spaces respect the rich facial
structures of their unit balls, and the intimate connection of these structures to
the Peirce projections. In the present context Cp is uniformly convex and uniformly
smooth (see [89], [109]), and thus each non-trivial face of the unit ball is a single
point. Instead, the basic technique is the study of the differentiation of the support-
functional map N, : Cp — Cy (for 2 < p). This map is defined by N,(0) = 0 and

No() = 2> |zlg™2 itz #0,

where for z with the polar decomposition z = v(z)|z| the powers 2% are defined
by z® := v(z)|x|*.
Here are some of the topics needed for the proof of Theorem 4.2.2.

e Properties of contractive projections on C,, which depend on smoothness, strict
convexity and reflexivity.

e Differentiation formulas and Schur multipliers.

e Connection between a contractive projection and Pierce projections associated
with elements in its range.

o Existence of atoms and basic relations between atoms.

e Structure of N-convex subspaces of Cp.

4.3. Derivations

In a regional conference in 1985 held at UC Irvine [116], H. Upmeier posed three
basic questions regarding derivations:
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Q1: Are everywhere defined derivations bounded?
Q2: When are all bounded derivations inner? '
Q3: Can bounded derivations be approximated by inner derivations?

The meaning of derivation depends on category. All definitions will be given,
and usually the meaning will be clear from the context. The property in Q2 is
abbreviated i.d.p. (inner derivation property).

As shown in Table 3 in the introduction, these three questions have all been
answered in the binary cases. Q1 has been answered affirmatively by Sakai in [98]
for C*-algebras and affirmatively by Upmeier in [114] for JB-algebras. Q2 has
been answered affirmatively by Sakai in [99] and Kadison in [81] for von Neumann
algebra; Sakai in [100], Elliott in [42], and Akemann—Pedersen in [2] have all worked
out results for certain C*-algebras, while Upmeier has also answered it in [114] for
“JW-algebras”. Q3 has been answered affirmatively by Upmeier in [114] for JB-
algebras, and it follows trivially from the Kadison-Sakai answer to Q2 in the case
of C*-algebras.

In the ternary case, both Q1 and Q3 have been answered affirmatively by
Barton and Friedman in [14] for JB*-triples. Here, we discuss the answer to Q2
for “JBW*-triples”, due to Ho [70]. There are three subsections. The first two
concern derivations of a JBW *-triple into itself. The third involves derivations of
a JB*-triple into its dual space, which is an example of a “module.”

Derivations of JBW*-triples of type I

There are two main results in Ho’s dissertation. We state the first one now,
and then define some terms and briefly describe what is involved.

Theorem 4.3.1. Let A be a JBW™-triple of type I (by known structure theory,
A= @ZOEIL"O(QQ, Co),
where C,’s are Cartan factors of types 1-6). Let
K ={a€el:C, is type 1 non-square or type 4}.
Then every derivation on A is inner if and only if sup,c g dim C, < oo0.
A tripotent u is said to be abelian if {uAu} is a unital associative Jordan
algebra. By definition, a Type I JBW™-triple A is one which is generated by its

abelian tripotents. It was proved in Horn’s dissertation [71] that a type I JBW™-
triple A can be decomposed as follows: there exist measure spaces 2, and Cartan

factors C, such that
A= @ZOGILOO(QQ, Co)

Horn also showed that for an arbitrary JBW*-triple A, A = A; @ Ac, where Ac
(for continuous) means that A contains no abelian tripotents, and Ay is of type L.
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The Cartan factors of types 1-4 were described in subsection 3.1. To define the
remaining two “exceptional” Cartan factors we first need a definition.

Definition 4.3.2. The Octonions O is an eight dimensional, complex (nonasso-
ciative) algebra with standard basis {eq, -, e7} satisfying

(1) 606j=6j:6j60, jZO,"',7;
(ii) ejz = —eq, ejex = —exej, Jk=1,---,7, j#k; and

(iii) eres = e3, €1€4 = €5, €67 = €1, €265 = €7, €€4 = €2, €3€4 = €7, €3€5 =
€6.
For a = ZZ:O tie; € O, define a/ := tpey — ZZ:I tie;, @ = Z;Ofiei, and
* .y =]
a*i=a’,
Cartan factor of type 5: M; 5(O) := the space of all 1 x 2 matrices over O,
the Octonions. The triple product on M, ; is

1 N *
{zyz) = §[m(y z) +z(y*z)).
For z = (a,b) € My 2(0), z* is defined as <Z* )

Cartan factlor of type 6: H3(O) := the space of all 3 x 3 hermitian matrices
over O. The triple product is defined via the Jordan product

{zyz} = (zoy*)oz+ (z0y*)oz — (xoz)oy"

The Jordan product is defined here as zoy := %(xy+y:t), and for (amn)1<m,n<s in
H3(0), (@mn)i<m,n<s is defined as (@mn)1<m,n<3-

A derwation 6 of a Jordan algebra or an associative algebra A is a linear map
§ : Dom(6) — A satisfying for all a,b € Dom(6) C A, 6(ab) = (6a)b + a(6b). An
inner derivation of a Jordan algebra A is a finite sum of the form [M,, M,], where
M,z =az and [S,T] = ST —TS.If § = Y7 | [Ma,, My,], we shall say that 6 is “a
sum of n commutators”. An inner derivation of an associative algebra A is one of
the form § = adh,h € A where adh(z) = hx — zh,z € A.

A derivation § of a JB*-triple A is defined for all a,b,¢ € Dom(é), by the
requirement that

§{abc} = {6a,b,c} + {a, b, c} + {a, b, bc}.

Examples of derivations on JB*-triples are 1zoxz and inner derivations, where by
an inner derivations we mean a finite sum of derivations of the form anb — boa.
That fact that these maps are derivations follow from the main identity, that is,
equation (2.1). The inner derivation property, abbreviated i.d.p. on a JB*-triple A
(or any algebraic system) refers to the property that every (continuous) derivation
on A is inner.
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In finite dimensions, it is known on purely algebraic grounds ([78] and [88]),
that all derivations of the relevant Jordan structures are inner.

We shall see later that examples of outer derivations come from Hilbert spaces,
spin factors, and infinite dimensional (non-square) L£(H, K).

The following known theorems related to derivations for C*-algebras and Jor-
dan C*-algebras motivated Theorem 4.3.1. The first is classical, and the second is
a key step in the proof of Theorem 4.3.1.

Theorem 4.3.3 (Sakai [98], [99], Kadison [81]). Any von Neumann algebra has
i.d.p. Derivations of C*-algebras are automatically continuous and “spatial” with
generator in the weak closure (or bidual).

Theorem 4.3.4 (Upmeier (114]). A JB*-algebra has i.d.p. if and only if all “spin
representations” have bounded finite dimensions.

We now start discussing the ingredients of the proof of Theorem 4.3.1. It is first
necessary to show that the Cartan factors of type 2 with dim H even or infinite,
and all Cartan factors of type 3 are reversible JC*-algebras (cf. Upmeier [114]).

Each JW-algebra X has a type decomposition of the form

Itin ® Lo ® 11, @ I @ I11
([110, th. 13]). We do not define the meaning of these symbols here.

Remark 4.3.5. H. Upmeier has shown that each derivation on a properly non-
modular JW-algebra, that is, its modular part If;, @ II; vanishes, is the sum of
6 commutators ([114, th. 3.8]), and each derivation on a reversible JW-algebra of
type I is the sum of 5 commutators ([114], th. 3.9]).

We now state the following theorem, implicit from [114], for completeness. Its
proof uses results of Ajupov, Fack-de la Harpe, and Stgrmer from [1], [43], [106],
(107].

Theorem 4.3.6. Let X be a reversible type II; JW-algebra. Then each derivation
of X is inner. Moreover, each inner derivation is a sum of at most 80 commuta-

tors.

By combining Remark 4.3.5 and Theorem 4.3.6, it follows that each derivation
on a reversible JW-algebra is a sum of at most 91 commutators. )

Now we go back to U, a JBW*-triple of type I. Recall that by Horn’s clas-
sification, U ~ @ C(X,,Co). If C is a reversible JC*-algebra, then C(X, C),
with pointwise algebraic operations and supremum norm, is also reversible. As
stated earlier, each derivation on a reversible JW-algebra is a sum of at most 91
commutators. Since this is stated in the real binary case, i.e., as JB-algebra, an
argument is necessary to handle the ternary complex version. Fortunately this has
been provided by Barton and Friedman in [14]. We omit the details.
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We can classify all Cartan factors as follows:

) non-square L(H, K),

) reversible unital JC*-algebras,

) antisymmetric operators in L(H), H odd finite dimensional,
) triple spin factors,

)

Now the algébraists have shown how to handle case (e). Upmeier has solved
both (b) and (c) in [114] for JW-algebras. In [70], it is shown how Upmeier’s
solution leads to a solution for JB*-triples in both (b) and (c); both (a) and
(d) are solved directly, and finally the global (non-factor) result for type I J BW?*-
triples is obtained by patching. The details are in [70]. To conclude this subsection,
we sketch the proof of (a), which is really the heart of the matter.

There are three possibilities for “non-square” infinite dimensional £(H, K). It
is either 2 x oo-matrices, finite x co-matrices, or countable x uncountable-matrices.
The first case is typical, and in fact the last case is simpler. So let {u1;, uz; }jes be
a rectangular grid of matrix units, where without loss of generality, J is countably
infinite. Set ‘

i oo Wt DUl
0._ et ¥ ndiad ¥)
6 = EI\/ 1 I

j=

Since 6° is a pointwise limit of derivations, it is a derivation. Let’s use the notation
6(a,b) for the inner derivation aob — boa, so that for any isometry (=automor-
phism) T we have T'6(a,b) = §(Ta,Tb)T. Suppose that 6° is inner, say

N
8% =" 6(ai,bi).
i=1

One can construct an isometry 7 which is a product of symmetries in such a way
that the elements Ta; and T'b; have only finitely many non-zero coordinates. Now
consider the derivation 6 = T6°T 1. If H denotes the Hilbert space which is the
closed span of {u1,} and Hy, denotes the span of u11,...,u1L, then it can be shown
that ’

Hy,y D6H DT HDTH = H,

a contradiction.
Derivations of continuous JBW?*-triples

We first describe the structure of the continuous summand of a JBW*-triple,
which is due to Horn—Neher [75]: if U is a continuous J BW*-triple, then
U~Re™® H(A, o).

Here R = pB where B is a continuous von Neumann algebra and p is a projection
in B, and H(4,a) = {a € A : a® = a} where a is a C-linear involution of
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the continuous W*-algebra A. Since 1 € H(4, «), H(A, «) is actually a reversible
unital JC*-algebra. As for R, it can be decomposed further as follows:

A JBW™-triple is called type 11§ (resp. II%, ;, 112, 1II*) if it is isomorphic to
pA, p a projection in a von Neumann algebra A, where

type II{: A is of type II; and p is (necessarily) finite,

type IIg, ;: A is of type Il and p is finite,

type II2 : A is of type Il and p is properly infinite, and
type III®: A is of type III and p is (necessarily) purely infinite.

Furthermore, Horn and Neher have shown that if U is a JBW™*-triple of type
II¢ or III* with a separable predual, then U is isomorphic to a von Neumann
algebra. Since every von Neumann algebra is a unital J B*-algebra, every derivation

here is also inner.
Here are the positive results on derivations of continuous JBW *-triples.

Proposition 4.3.7. Let M be a continuous von Neumann algebra.

(a) If M if of type III and either countably decomposable or a factor, then the
JBW*-triple pM has i.d.p.
(b) If M is of type Il and has a separable predual, then pM has i.d.p.

Here is another approach which may be successful in the remaining (open)
cases. Horn—Neher also show that if the JBW*-triple pM is of type 11, 1, I, or
III (that is, not finite), then

PM = OF By ® Hy C X By ® L(Hy)

where B,, is a von Neumann algebra of the same type, and H, are Hilbert spaces.
The property i.d.p. is then equivalent to the solvability of a system of operator
equations. For details we refer to [70]. Although this approach omits the II; case,
it is known to be true in some of the IIl and Il cases.

Weakly amenable Banach Jordan triples

We now state and discuss, without detail, the second main result of Ho’s dis-
sertation.

Theorem 4.3.8. Every derivation from a commutative JB*-triple into its dual is

inner.

A commutative JB*-triple is a JB*-triple satisfying the property that
[D(a,b), D(c,d)] = 0.

where D(a, b) is the linear operator z — {abz}. In order to define a derivation (and
inner derivation) from a JB*-triple into its dual denoted by A’, we need to show
that A’ is a module over A. We refer the interested reader to Ho’s dissertation for
these definitions and proof of the above result.
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We next state the known result for C*-algebras which motivated Theorem 4.3.8.

Theorem 4.3.9 (Haagerup [63], 1983). All derivations from any C*-algebra into
its dual are inner.

It is also shown in [70] that this result is not true for Jordan C*-algebras. The
proof involves some results on commutators of operators on a separable Hilbert

space, as in [95].

4.4. Bilinear forms

In this subsection, we give a preview of the paper [15].

For C*-algebras, the important functionals are the states, giving rise in the
commutative case to probability measures. These can be decomposed into discrete
and continuous parts, and further into absolutely continuous and singular parts. It
is this kind of phenomenon that we wish to consider in a setting in which positivity,
commutativity, associativity, and even the binary product are absent.

For von Neumann algebras, the use of the trace in the semifinite cases, and of
extreme points in the atomic cases has facilitated their study. In the purely infinite
cases, where no trace is present, the Tomita-Takesaki theory showed how to effec-
tively use non-t#acial normal states. For JBW *-triples, the Hilbertian seminorms
introduced below will be shown to be useful for obtaining structural information
on the triple and the functional.

The main theorem of [15] (Theorem 4.4.11 below) gives a fundamental relation
between two basic kinds of sesquilinear forms (called OP for operator positiv-
ity, and RN for Radon-Nikodym). To appreciate the level of abstraction in this
theorem, it is necessary to introduce the algebraic inner product arising from a
normal functional, and recall the theorems of Grothendieck type in C*-algebras

and JB*-triples.

Grothendieck’s inequality

Let A be a JBW*-triple and A, its predual. We want to consider local prop-
erties of A, A, starting from a functional ¢ € A,. Order structure plays a key
role when it exists a priori. When it does not exist, one can produce a local order
structure by means of the polar decomposition of normal functionals on a von

Neumann algebra (Proposition 2.2.4).

Definition 4.4.1. Let A be any complex vector space. A map b: A x A — Cis
called a sesquilinear form if it is linear in the first argument and conjugate linear
in the second one. A sesquilinear form is said to be positive if b(z,z) = 0 for all
z € A. Since a positive sesquilinear form is automatically hermitian, it defines
a seminorm called a Hilbertian seminorm. If b is a sesquilinear form, then b*(y)
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denotes the linear functional on A defined by b*(y) = b(-,y):
(z,b"(y)) = b(z,y).

The following proposition may be used to show that each normal functional ¢
on a JBW*-triple A gives rise to a Hilbertian seminorm, which retains much of
the information supplied by ¢.

Theorem 4.4.2 ([13]). Let A be a JBW*-triple. For ¢ € A,, let e = e(p) be the
support tripotent of . Define a sesquilinear form a, by

ap(z,y) = p({zye}) =,y € A (4.3)

Then a,, is positive on A, aj(e) = ¢ and
e
[zlly = ay(z,z)?

is a Hilbertian seminorm on A. Moreover, ||z||l, < |l¢| - ||| and e in (4.8) can be
replaced by any a € A satisfying |la]| =1 = w(a) = |||

The a in the notation a, for the form is used since it is based on the alge-
braic structure of A. One of the places where these seminorms appear is in the
Grothendieck inequality for C*-algebras.

Theorem 4.4.3 ([93], [64]). There is a universal constant K such that for any

two ‘p*—algebms A, B, and any bounded bilinear form T : A x B — C there exist

states ¢ on A and ¢ on B such that

e <KIT) o (Z52)] o (P )] forecayes

1
The Hilbertian seminorm |¢ x—*%ﬂl * is not one of the natural ones as-
sociated to C*-algebras. The natural ones are the ones that occur in the G.N.S.
construction, namely
Izl = o(*z)? and |la]l}, = p(za")?.

These “associative” seminorms were shown by Pisier to be insufficient for the
inequality of Grothendieck. The seminorm that is needed in Grothendieck’s in-
equality for C*-algebras is the one introduced above, namely

el = [so (%)] — p({zo1p)

indicating that the inequality does not rely on associativity. This also suggests that
the inequality is independent of the order structure and is related to the geometry
of the unit ball (which is a bounded symmetric domain). This was confirmed for
JB*-triples (corresponding to arbitrary bounded symmetric domains in complex
Banach spaces) in the following result.
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Theorem 4.4.4 ([14]). There is a universal constant K (> K) such that for any
two JB*-triples A, B, and any bounded bilinear form T': A x B — C, there exist
norm one functionals ¢ on A and ¢ on B such that

T(z,y)| < K| Tl Izlle llvly = € Ay eB.

Hilbertian seminorms based on algebraic structure and local order

The following Proposition is a reformulation of the Radon—Nikodym theorem
for JB*-triples. The proof is a modification of the proof for von Neumann algebras

([92)).

Proposition 4.4.5. Let A be a JBW*_triple and let ¢ € A, with support tripotent
e. If0 < ¢ < ¢ (in Az(e)s), then there is a unique y such that 0 < y < e (in
Az (e)) and

¥(z) = p({zye}) for all z € A.

Definition 4.4.6. Let A bea J BW*-triple and let e be a tripotent. We shall say
that a sesquilinear form b satisfies the Radon—Nikodym property with respect to e
(e-RN property for short) if for any 1 € Ag(e)sy with 9 < b*(e), there exists a
unique h € [0, €] such that ¢ = b*(h). In particular, [0, b*(e)] C b*[0, €.

Corollary 4.4.7. Let A be a JBW™*-triple and let ¢ € A with support tripotent
e. Then the form a, defined by Proposition 4.4.2. satisfies the e-RN property.

The complementary property to e-RN property for sesquilinear forms is the
Order Positivity property defined as follows:

Definition 4.4.8. Let A be a JBW*-triple and let e be a tripotent. We shall say
that a sesquilinear form b satisfies the Order Positivity property with respect to e
(e-OP property for short) if b* = b*Py(e) and b(z,y) > 0 for all z,y € Asx(e)t.
Recall that a sesquilinear form b (for which b* = b*Ps(e)) is e-OP if
5[0, €] € [0,5°(e)
and a sesquilinear form is e-RN if
[0,b%(e)] C b*[0, €].
A form that combines both of these properties is the so called self-polar form,
defined as follows:
Definition 4.4.9. A sesquilinear form s on a JB*-triple A is called self-polar
(resp. weakly self-polar) relative to the tripotent e if s* = s*Py(e) and

s*[0,e] = [0, " (e)]
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(resp. s*[0, €] is o(A2(e)*, A2(e))-dense in [0, s*(e)]).

Self-polar forms were introduced by Connes ([25]) and Woronowicz ([120]).
They were used by Connes to show that a von Neumann algebra can be represented
as the set of derivations of a self-dual cone in a Hilbert space, a result which was
generalized to Jordan algebras by Iochum ([76)).

In the case A is a JBW*-algebra (with unit 1 = e), or a von Neumann algebra,
a self-polar form s, with s;(e) = 9 exists and is unique for each positive faithful
normal functional ¢ on A. (See [120] for the von Neumann algebra case and [66]
for the JBW-algebra case.)

Proposition 4.4.10. Let A be a JBW™*-triple and let p € A, have support tripo-
tent e. Then there is a unique self-polar form s, relative to e such that s;,(e) = ¢.

Before stating the main theorem below, we must introduce some terminology.
As in [94], we say a sesquilinear form a on a vector space A is represented by (m,T')
if

CL(:L‘,’y) = (Tﬂ(x)lﬂ(y))Ha T,y €< A.

Here 7 is a linear map of A onto a dense subset of a Hilbert space H and T' € L(H).
Obviously, a is positive if and only if T" is a positive operator.

Obviously, any positive sesquilinear form can be represented in this way (by
thej identity operator) and in fact, by [94, Theorem 1.1], any two such forms can
be irepresented on the same Hilbert space by commuting positive operators. The
geometric mean /af of two sesquilinear forms «, 0 is defined by [94, Theorem 1.2)]
as follows: if o is represented by (m,S) and f3 is represented by (,T), then /af
is represented (unambiguously) by (m, (ST)/?).

Theorem 4.4.11. Let a and b be positive sesquilinear forms on a JBW*-triple A
and let ¢ € A, have support tripotent e. Suppose that a and b satisfy the following:

e a*(e) =b"(e) =
e a satisfies e-RN;
e b satisfies e-OP.

Then there exists a positive sesquilinear form h with h*(e) = ¢ which satisfies
e-OP, such that b is the geometric mean vVah of a and h. Moreover

b(z,z) < a(z,z) (4.4)
for any x € A.

Equation (4.4) states that the seminorm defined by any e-RN form is larger
than the seminorm defined by any e-OP form. In particular, the seminorm defined
by a self-polar form is larger than all seminorms defined by an e-OP form and is
smaller than all seminorms defined by an e-RN form.

The Cauchy-Schwarz inequality holds for any positive sesquilinear form, and
by Corollary 4.4.7, a, is e-RN. Therefore we can obtain another inequality of
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Grothendieck type for JB*-triples. Note that this version has the constant 1 and
involves one functional and one JBW™*-triple.

Corollary 4.4.12. Let b be a positive sesquilinear form on a JBW* -tﬁple A which
is e-OP and satisfies b*(e) = ¢. Then

lb(z, )| < Izllollylle

for any =,y € A, where the norm || - ||, is defined as in Proposition 4.4.2.
Schur multipliers and Hilbertian seminorms of an atomic functional

Recall (Theorems 2.2.6 and 2.2.7) that every J BW*-triple and its predual have
atomic decompositions. Let A be an atomic J BW*-triple and let ¢ be a normal
functional on A. Then

= 2 sjf55
J

where the f;’s form an orthogonal family of extreme points of the unit ball of A,

and the s;’s are nonnegative scalars with Yo s = |leoll
Recall (see subsection 2.2) the contractive conjugate linear map 7 : A, — A

defined by
(> aif;) = > @,

for each finite linear combination " a;f; of extreme points f; of the unit ball
of A., where v; = e(f;) is the support tripotent of f;. The map = is injective
and gives rise in turn to a sesquilinear form (f|g)x = (f,m(g)) which is positive

definite.
We call this inner product the tracial inner product. For z,y € m(A,), which

is known to be weak*-dense in A, define (z|y)x to be (r~1z|r~1y)x. This is well
defined since 7 is injective. A large number of Hilbertian seminorms associated to
a given functional can be obtained in the following way:

Definition 4.4.13. Let m : R x R — R be a function of two variables s,1 and
P:R xR — L(A) be a projection-valued function of the same variables. We shall

call a linear map

= Zm(s, t)P(s,t)

on A (when defined) a Schur multiplier associated to the pair (m,P). We also
define a sesquilinear form on the dense subset m(A.) of A by

(zly)e = Y m(s,t)(P(s, )zl P(s,t)y)r = (paly)x for 2,y € (AL

Note that a Schur multiplier is positive if and only if m(s,t) > 0 whenever
Pls,t) £0.
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We now consider several examples illustrating this construction. In these ex-
amples we shall have pu(m(A,)) C 7(A,) and in fact p(A) C 7(A,), which gives
rise to a map ji := 7! o u of A into A,.

Example 4.4.14. Let A be an atomic von Neumann algebra and let ¢ be a positive
normal functional on A given by a positive trace class operator a = " s;e,, . Define
P(s,t)x = esxes, where e, = es; if s = s; and e, = 0 otherwise.

a) If mi(s,t) ;= s and p corresponds to (my, P), then
(@ly)u = (zly)” = w(zy").
b) If ma(s,t) :=t and p corresponds to (myg, P), then
(ly)u = (zly)! = p(y"z).

Example 4.4.15. Let A be an atomic JBW™*-triple and let ¢ = Zj s;jf; be a
normal functional on A given by an orthogonal family f; of extreme points of the
unit ball of A, and scalars s; > 0 with ) s; = |||l = 1. Let v; denote the support
tripotent of f; and e = ) v;. Define the projection valued function P(s,t) by the

joint Peirce decomposition relative to the family {v;} as follows

PQ('UJ') ifS:t:Sj

) AW)Pi(v;) ifs=s;#s;=t
| P(s,t) = Py (e) P (vy) if s=0,t=s;

i Py(e) if s=1t=0.

Thé‘n we have three examples corresponding to the choice of m.
a) If m(s,t) = (s +t)/2 is the arithmetic mean of s and t, then
(Zv)u = p({zye}) = a,(z,y)
(where a,, is defined as in Proposition 4.4.2).
b) If m(s,t) = /st is the geometric mean of s and ¢, then
(2ly)n = so(z,y)
is the self-polar form of .
c) If m(s,t) = 2(s7* +¢~1)~1 is the harmonic mean of s and t, then
(zly)u = ho(,9)

(where h, is the sesquilinear form h defined in Theorem 4.4.11).

In Example 4.4.15, three widely used means have appeared (geometric, arith-
metic, harmonic). Two of them correspond to sesquilinear forms which can be
described intrinsically (a, by the algebraic structure, s, by the order structure).

Problem 6. Can h,, be described and constructed by some intrinsic properties?
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A positive constructive answer would lead to a constructive method of obtaining
the self-polar form.

We now indicate how to define a large family of Schur multipliers on an ar--

bitrary JBW*-triple A from a given functional ¢ € A,. We shall simply ap-
ply the functional calculus for sesquilinear forms ({94, Theorem 1.2]) to a, and
sy- That is, for each f in the class J defined in [94], we obtain, by [94, Theo-
rem 1.2], a sesquilinear form b; = f(ay,s,). We can then determine the conju-
gate linear map i : A — A, by the rule (z,iy) = bs(z,y). The class J con-
sists of all Borel measurable functions on [0, 00) x [0, 00) which are homogeneous
(f(Ar, As) = Af(r,s), A7,s€ [0,00)) and bounded on compact sets.
This definition is consistent with Definition 4.4.13.
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