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ABSTRACT. Characterizations of compactness are given for holomorphic com-
position operators on Hardy spaces of a strongly pseudoconvex domain.

1. INTRODUCTION

Let Q be a bounded domain in C* with C! boundary. Let ¢ be a holomor-
phic mapping from Q to Q. The composition operator C, is defined formally
as follows: C,(u)(z) = u(p(z)) for all z € Q and any function ¥ on Q.
The study of such holomorphic composition operators has been active since the
early 1970s (see Cowen [5] for details in the case of one variable). In the case of
several complex variables, counterexamples have been constructed by several au-
thors showing that composition operators can be unbounded on #2(B,), where
B, is the unit ball in C" (see, for example, Cima and Wogen [1], Wogen’s sur-
vey paper [24], and the references therein). In this paper, we are concerned with
compactness of composition operators. It was proved by Shapiro and Taylor
[22] that C,: #?(B,) — #P(B,) is compact for one p € (0, o) if and only
if it is compact on #?(B,) for all p € (0, co). There is a characterization of
compactness for C,: #?(B;) — #”(B;) in terms of the Nevanlinna counting
function, given by Shapiro [19]. Another characterization of compactness can
be formulated in terms of a Carleson measure condition for the pullback mea-
sure dv, (see [16] for the case of the unit ball in C”). This theorem has also
been proved for the unit polydisk in C" in [10].

More recently, Sarason [20] proved that weak compactness and norm com-
pactness for a composition operator on the Hardy space /#!(B;) are equivalent.
He found it more natural to consider real Hardy space on 9 B; rather than holo-
morphic Hardy space. Using the duality theorem of Fefferman on H!, Sarason
proved that norm compactness on H!(9B,) is equivalent to Cy(BMO(8By)) C
VMO(0B) . Later, Shapiro and Sundberg [21] proved that compactness of C,
on #2(B)) is equivalent to compactness on L!(9B,), where the composi-
tion operator is now viewed as acting on the Poisson integral of functions in
LY (0B,).
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162 SONG-YING LI AND BERNARD RUSSO

The main purpose of this paper is to generalize the above theorems of Sarason
and Shapiro-Taylor from the unit disc to strongly pseudoconvex domains Q in
C" . Some of our results are known in the case of the unit ball B, in C" [26].
Our formulation differs slightly from that of Sarason [20]. This is explained in
a remark following the statement of the main theorem in §2.

2. NOTATION AND STATEMENT OF THE MAIN THEOREM

Let Q be a bounded strongly pseudoconvex domain with C? boundary. We
define a continuous function d on 4Q as follows. For x € 8Q, let n, denote
the complex tangent plane at x. For ¢t > 0, A, , denotes the set of points in
C" at distance <t from the ball in the plane m, with center at x and radius
Vi.Let By, ;= Ay NOQ. Then set

dix,y)=inf{t >0; y€ By, x€ By }.

It is known that d defined above is a quasimetric on 0Q (see, for example,
[23, 12]), i.e., d is a continuous function from dQ x IQ to R* satisfying the
usual requirements for a topological metric except that the triangle inequality
is replaced by

dx,z)<Cd(x,y)+d(y,z), x,y,z€0Q.

Let Q be a smoothly bounded domain in C" (n > 2). We shall use r(z) to
denote the distance function of z € Q to Q. We define #7(Q) (0 < p < x)
to be the usual Hardy space of holomorphic function on Q (see [12, Chapter 8]).
We may identify it with a closed subspace of L?(9Q) by passing to the (almost
everywhere) radial limit function f on 8Q. Let d be a quasimetric on 9Q.
Then BMO(0Q) c L'(0Q) is defined in terms of the quasimetric 4 and the
surface measure ¢ on 9Q as follows. The seminorm on BMO is defined for
g€ L'(8Q) by

lgllemo = sup MO(g)(x,r),

where
1
MOE)x. 1) = ey /B 180~ gaepldo(0)

Here the balls B(x, r) (called nonisotropic) are defined using the quasimet-
ric, gg(x,r is the average of g over the ball, do is (2n — 1)-dimensional
surface measure on the boundary of Q, and |B(x,r)| = o(B(x,r)). We
say a function f € L'(0Q) belongs to YMO(8Q) if f € BMO(9Q) and
SUP,cga MO(f)(x,r) » 0 as r — 0. Now BMOA(Q) denotes the space of
functions in #!(Q) whose boundary values f are in BMO(8Q), with norm
Iflix = I fllapo; and V MOA(Q) = BMOA(Q)NV MO(8Q) . 1t is easy to prove
that BMOA(Q) is a closed subspace of BMO(8RQ), and that VMOA(Q) isa
closed subspace of VMO(0Q).

A measurable function a on 9Q is said to be an atom if either a is bounded
on 9Q and |a| does not exceed 1/|0Q| or there is a point zg € 9Q and r >0
such that a is supported on B(zg, r) and satisfies the following conditions:

1
la(z)| < Bz, |’ /aﬂ a(z)da(z) = 0.
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COMPACTNESS OF COMPOSITION OPERATORS 163

We say a function u belongs to H!(9Q) (real H') if there is a sequence of
atoms {a;} and a sequence of numbers {4;} € /' such that u =Y 7>, 4;a; in
the sense of distributions. The norm of u € H'(9Q) is defined as follows:

lullgn = inf{z \Al: u= Zlkak}.
k=1 k=1

The duality theorem of BMO and H! has been shown by Coifman and
Weiss in [2] for a general space of homogeneous type. As a special case of their
theory, we state:

Theorem A. (i) H!(9Q)* = BMO(OQ), and
(i) VMOOQ)* = H'(8Q).

Let P: L*(0Q) — #2(Q) be the orthogonal projection, that is, the Szegd
projection with Szegd kernel S(z, w). The relations between real H! and
holomorphic #!Q) are given in [13] and [14] as follows:

Theorem B. Let Q be a bounded strongly pseudoconvex domain in C* or a
pseudoconvex domain of finite type in C* with smooth boundary. Then:

(i) P(H'(0Q)=2"'(0Q);

(i) ZY(Q)* = BMOA(Q), P(BMO(9Q)) = BMOA(Q) = P(L*(0Q));
(ili) VMOA(OQ)* =#'(Q), P(VMO(OQ)) = VMOA(Q) = P(C(8Q)).
Let

Py(z, w) = S(z, 2)7"IS(z, w)]?
be the Poisson-Szegd kernel on QxdQ . The composition operator C, extends
to functions in L!(6Q) as follows: for u € L'(6Q),

Co(u) := Cyp(Po(u)) = Po(u) o 9,
where for z € Q

Po)(2) = [ utw)Rs(z, w)do(w).
Let z€0Q and r > 0. We shall use C(z, r) to denote the Carleson region:
C(z,r)={w e Q: n(w) € B(z, r), r(w)<r},

where 7(w) is the normal projection of w to 9Q. Let .# (Q) denote the

space of all complex Borel measures over Q. Corresponding to u € .#(Q), we
define the following function on (0, 1):

|B(z, | J-
Let BCM(Q) denote the space of all Carleson measures over Q, i.e., du €
BCM(Q) if du € #(Q) and g, € L*(0, 1). By definition, the measure
du € #(Q) belongs to VCM(Q) if du € BCM(Q) and lim,_¢: g,(r) = 0.
The pullback measure dv, will play an important technical role in our proofs.

Recall that to define it, one first extends ¢ to Q by passing to the radial limits
almost everywhere on dQ (see [12]). Denoting this extension by ¢ too, dv,

is the measure defined on Q by
vo(E) = a(p Y (E)NAQ).
Now we are ready to state our main theorem.

gu(r) = sup
z€0Q
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164 SONG-YING LI AND BERNARD RUSSO

Theorem 1. Let Q be a bounded strongly pseudoconvex domain in C" with
smooth boundary. Let ¢: Q — Q be a holomorphic mapping. Then the following
statements are equivalent

(i) Cp: L>(0Q)—VMO(0Q) is bounded; that is, C,: H'(8Q)— L'(9Q)
and the range of C; is contained in VMO(3Q).
(i) C,: H'(0Q) — LY(0Q) is compact.
(i) Cp: XY(Q) - Z1Q) is compact.
(iv) Cp: #P(Q) — ZP(Q) is compact for some 0 < p < cc.
(v) Cp: LP(0Q) — LP(0Q) is compact for some 1 < p < 0.
(vi) dv, e VCM(Q).
(vii) Cp: ZP(Q) — ZP(Q) is compact forall 0<p < 0.

Remark. Statement (ii) is slightly different from the compactness of C, on
H'(0Q). In the case n =1 and Q = By, a short argument using the Hilbert
transform proves that if C,: H'(9Q) — L'(8Q) is compact, then it is com-
pact on H'(8Q) (see [20] for detail). For n > 1, estimating the H'(6Q)
norm is much more complicated. A similar singular integral characterization
for H'(9B,) has been given by Christ and Geller in [3]. Although this may be
the right tool to use here, it turns out to be very technical. For simplicity, we
state and prove Theorem 1 as above.

3. PRELIMINARY RESULTS

In this section, we prove some steps in our main theorem. First, let us intro-
duce a fundamental criteria for boundedness and compactness of composition
operators. The boundedness part of the following theorem is well known (for
example, see [24]).

Theorem 3.1. Let Q be a bounded strongly pseudoconvex domain in C" with
smooth boundary. Let ¢: Q — Q be a holomorphic mapping. The following
statements hold:

(i) For 0 < p < o, Cp: ZP(Q) — ZP(Q) is bounded if and only if
dvy, € BCM(Q).
(i) For 0 < p < 0o, Cp: #P(Q) — #P(Q) is compact if and only if
dv, e VCM(Q).
(ili) Cp: H'(0Q) — L'(0Q) is compact if and only if dv, € VCM(Q).
(iv) For 1 < p < 0o, C,: LP(0Q) — LP(0Q) is compact if and only if
dv, e VCM(Q).

Remark. This theorem can be extended to a pseudoconvex domain of finite type
in C? with C* boundary by using results in [14, 7, 17].

Note that the equivalence of (ii) through (vii) in Theorem 1 is contained in
Theorem 3.1.

In order to prove Theorem 3.1, let us first record the following result, whose
statement and proof can be found in [15] for Q = By . For the general case,
the proof is still elementary, so we omit the details here.

Proposition 3.2. Let Q be a bounded domain in C", let ¢: Q — Q be a holo-
morphic mapping, and suppose 0 < p < co. Then C,: #P(Q) — #P(Q)
is compact if and only if for each bounded sequence {u,} in #P(Q) which
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COMPACTNESS OF COMPOSITION OPERATORS 165

converges to 0 on compacta on Q it follows that C,(u,) converges to 0 in
2P (Q)-metric.

We now turn to the proof of Theorem 3.1. In the rest of this section dv will
denote dv, .

Proof of Theorem 3.1. For completeness, we present a proof of (i). Let u €
#P(Q). Then, with Q, :={z € Q: d(z, Q) > €}, we have

ICo = 50 { [ IC w2 dor)

O<e<<1

1) = 5w { [ up)pdaa)}

O<e<<l1

—hmsup{/ u(p(2))? do.(z } /|uw)|”du (w).

Therefore, by the theorem of Hormander [7], C,: #7(Q) — #7(Q) is bounded
if and only if dv is a Carleson measure. This completes the proof of (i).

Next we prove (ii). Suppose that C,: #?(Q) — #P(Q) is compact. We
will show that dv € VCM(Q). Let zy € 0Q, and let C(zo, r) be a Carleson
region. Let z € Q be such that n(z) = zp and r(z) =r. Let K(-,-) be the
Bergman kernel for Q. Define a function

k. p(w) = r(2)?K(z, 2) 'K (w, 2)X0PH) (e Q),

where y = 2([1/p]+ 1) - 1/p > 0 and [x] denotes the largest integer not
exceeding x. It is easy to check that k, , € #P(Q) and that, moreover, by
using local coordinates and an estimate for the Bergman kernel in [8] for a
strongly pseudoconvex domain (and [18] for a pseudoconvex domain of finite
type in C? with smooth boundary)

Kz, pli» = ,Sup /an r(2)K(z, 2)77|K(w, 2)PU/PHD do,

<e<<l1
< Cpr(2)K(z, 2)7"K(z, z)#W/PHD=1p(2)~1 < C,.

It is clear that
kz,p(')—"o as Z—Pag

on compacta in Q. Since C,: #P(Q) — #?(Q) is compact, by Proposi-
tion 3.2,
I1Co(kz, p)llri@) = 0 as z—0Q.

Notice that, on the other hand,
1Co ko, )lr ) = /Q k. p(w)? dv(w)
=r(z)K(z, z)“’y/ |K(z, w)|2p([1/p]+l)d,,(w)
Q

r(z) / 1 /
> 7 dv(w) > ————— dv(w).
2 GIC0 M Jeon ™) 2 CTBGo, 7 Jegmy @)
Using this estimate, we shall show first that dv € BCM(Q):

1
= _ 14 p
sup 8,() sup{lB 20 7] Jeon dV} < GoliColkp, 2l < CollColl? < 00

Zo,r
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166 SONG-YING LI AND BERNARD RUSSO

Next we show that dv € VCM(Q). If this was not true, there would exist
20€0Q, r, €(0,1) with r, - 0, and € > 0 such that

dv > € forall n.

i)
IB(Zg’rn)l C(2%, )

Now choose z, € Q with n(z,) = z% and r(z,) =r,. Then

- p

€ < B2 )l Jos dv < Gp||Cy(kp,2,)IIF  forall n.
Since {kp,;,} is bounded in #7, k, ,, — 0 on compactaas n — oo, and C,
is compact on #7, there is a subsequence kp, 2 such that ||Cyp(kp, Zn, Nar —
0. This contradiction completes the proof that dv € VCM(Q).

Now we show the converse. Let dv € VCM(Q). We will show C,: #7(Q)
— #P(Q) is compact. Suppose that {u,} is a bounded sequence in #7(Q)
which converges to 0 on compacta in Q. To show that

Cy(un) — 0, in the metric of Z#7(Q),
let 6 >0 and set

dvs = Zo_q, dv.
By using the covering lemma [23, 12], it follows that dvs € BCM(Q) with
C(z,é))}
C(z,r) < gd)B(z,r), () =8 {V(———-,
vi(Clz, M) < &@)B(z, 7|, 8(8)= sup § s

forall z€dQ and r > 0.

Since dv e VCM(Q), g,(8) — 0 as § — 0. Thus for every € > 0, there is
a J >0 such that g,(d) < €. Since u, — 0 on compacta in Q, there isan N
such that for n > N,

/ lun(z)|P dv(z) <e.
Q;
By (1),

ICy ()2 = / lun(2)P dv(2)

/ lun(2)P dv(2) + / lun(2)PP dv(2)

/ lun(2)P dv(2) + /|u,, P dvs(z
< /Q 2 dv(2) + ,(0) /a ()P do(2)

<e+esup{|lualf,:n=1,2,...}

when n > N . This completes the proof of sufficiency of (ii).
Now we prove (iii) and (iv). Note first that

/ Cotu)(2)P do(2) = [ IP(w)(2)P dvi(2)
aQ Q

for all u € LP(0) and p > 1. Note next that since #7(Q) C LP(9Q) and
XYQ) c #'(6Q), compactness of C, on LP(8Q) or from H'(8Q) to
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L'(8Q) implies its compactness on #7(Q) or #'(Q), so dv, € VCM(Q),
by (ii). Thus we need only show the sufficiency of (iii) and (iv).

In order to complete our proof, we need the following lemma, which can
be obtained by using the fact that Py(z, w) € C°(Qc x Q) for any € > 0,
and the facts that VMO(AQ)* = H'(9Q) and L¥ (8Q) = (L*(9RQ))* with
1/p+1/p’ = 1. We omit the detail here.

Lemma 3.3. Let {u,} be a bounded sequence in H'(0Q) or LP(0Q) with 1 <
p < oo such that u, — 0 in the w* topology. Then the sequence {Py(un)}
converges to 0 on compacta in Q.

Now we continue our proof of sufficiency in (iii) and (iv). Here we present
a proof of (iii). The proof of (iv) is similar and uses the duality L?(0Q)* =
L*' (8Q) with p and p’ conjugate indices.

We have now reduced matters to the following lemma.
Lemma 34. Let Q be a bounded strongly pseudoconvex domain in C" with
smooth boundary. Let ¢: Q — Q be a holomorphic mapping.

(i) If dv, € BCM(Q), then C,: H'(9Q) — L'(0Q) is bounded.

(ii) If dv, e VCM(Q), then C,: H'(0Q) — L'(8Q) is compact.
Proof. Let dv, € BCM(Q) and u € H'(0Q). It suffices to show that C,(u) €
L'(0Q). Since

/ ICy(u)(2)| do(z) = / |Po(u)(2)] dvy(2)
oQ Q

and since Hérmander’s theorem holds for Py(u) with u € H'(8Q) ([25]), we
have

ICo (W1 < Cllull g a0y »
and (i) follows. Now we prove (ii). Suppose dv € VCM(QQ). We shall prove
that C,: H'(0Q) — L'(8Q) is compact. For each 0 < 6 << 1, let dy;
be defined as above. Since VMO(8Q)* = H!(0Q), it suffices to prove that
for every (bounded) sequence {u,} in H'(8Q) with u, — 0 in the weak*
topology of H'(0Q), we have
Cy(un) = 0 in L'(8Q)-norm.

Let € > 0. By Lemma 3.3, thereisan N > 1 and ¢ > 0 such thatif n > N
[ i@l dv(z) < e
Q;

and
8/(9) <e.
By Hoérmander’s theorem again and the fact that v5(C(z, r)) < g,(9)|B(z, r)|
forany z € 6Q and r > 0, we have
1Co(n)lly < € + € sup{l|ttnligioq: n=1,2,...}

when n > N . This proves Lemma 3.4, and therefore the proof of Theorem 3.1
is complete.

As a corollary of Theorem 3.1, we have the following result:
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168 SONG-YING LI AND BERNARD RUSSO

Corollary 3.5. Let Q be a bounded strongly pseudoconvex domain in C" with
smooth boundary. Let ¢: Q — Q be a holomorphic mapping. Then:

(i) Ifthereisa 0 < p < oo such that Cy,: #P(Q) — ZP(Q) is bounded,
then the measure dv,|sq is absolutely continuous with respect to surface
measure do .

(il) If Cyp: #P(Q) — #P(Q) is compact, then dvy|sqg =0.

(iil) If Cyp: #P(Q) — ZP(Q) is bounded (resp. compact) for some 0 < p <
o0, then it is bounded (resp. compact) for all 0 < p < cc.

Proof. (i) Let E be a set in 8Q such that g(E) = 0. We shall show that
v,(E) = 0. For any € > 0, there is a sequence of nonisotropic balls {B(z;, r;)}
on 9Q such that

oo oo
Ec UB(Zj,rj), and z B(zj,rj)) <e.
j=1 j=1
Let C(z;, rj) be Carleson regions for j =1,

Ve(E) < v, (U B(z;, "j)) < ZW(B(ZJ" ;) EW(C zj» 1)

j=1

2, . Then

i B(zj, rj)) < Ce.

Since € is arbltrary, (i) follows, and (ii) can be obtained by using an argu-
ment similar to the proof of (i) and the covering lemma. Since (iii) is a direct
consequence of Theorem 3.1, the proof of Corollary 3.5 is complete.

4. PROOF OF THE MAIN THEOREM

In this section, we shall complete the proof of Theorem 1. As noted earlier,
by Theorem 3.1, (ii), (iii), (iv), (v), (vi), and (vii) are equivalent. We shall
show that (i) is equivalent to (ii). Half of this statement is contained in the
next result.

Theorem 4.1. Let Q be bounded strongly pseudoconvex domain in C" with
smooth boundary. Let ¢: Q — Q be a holomorphic mapping. If C;: L*(9Q) —
VMO(0Q) is bounded, then

(a) dvylaq =0, and

(b) C,: H'(0Q) — L' (8Q) is compact.

Proof. Since C,: H'(0Q) — L!'(8Q) is bounded and ¢ is holomorphic, it
follows from Corollary 3.5 (i) that dv,|sq is absolutely continuous with respect
to o, with nonnegative Radon-Nikodym derivative g = (dv,|sq)/do € L!(0).

Suppose the assertion (a) is not true. Then there is a Borel set G C 0Q and
€ > 0 such that 0 < ¢(G) << | and el > g(z) >e¢ >0 on G. For each
0<d << 1, we choose z5 € 9Q so that |B(zs,d) N G| = a(d)|G||B(zs5, 9)|,
where a(d) is a positive constant satisfying ﬁn) < a(d) <1 and C(n) is a
constant depending only on n.

Let F = ¢~ !1(G). Then for any h € L®(0Q), we claim that

C,((ho9)2F) = hgZ;, on Q.
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To see this, let u € L'(0Q). Then
(u, Co((ho 9)2F)) = (Cy(u), (ho 9)2F) = /FPo(u)((/'(Z))h((l’(Z))dG(Z)
= [ (R0 9)Fep) % 0 p)do = [ Pouiy vy
a0 o)
=/ uh2sgdo = (u, ghZ%).
20

If we now let .
1/g(z) ifzegG,

h(z) = { 0 if z € 0O\G
then hg = 25, and from the above claim and the fact that C;: L>*(0Q) —
VMO(0Q) is bounded we conclude that 2; € VMO(0Q) .
To complete the proof, we shall show that 2% isnotin VMO(9Q). In what
follows, let B = B(zs, d). Since

L / Z:do =|Gn B|/|B| = a(5)|G],
1B] /s
we have

a1,
1Bl /s

do(z)

1
‘%(z)‘m/;%d”

_ 1 _1BNG| 1 _
- /B 24(z) - 2 | do(2) > o /B (1= a(9)161)do )
= (1 -GG Bl 2 Ja(d)IG) > 5or=1G)

Therefore, 2 ¢ VMO(Q), and the proof of (a) is complete.

Now we prove (b). Since VMO(0Q)* = H'(0Q), it suffices to prove that for
every bounded sequence {u,} C H'(0Q) which converges to 0 in the weak *
topology of H'(8Q), it follows that C,(u,) converges to 0 in L!(6Q)-norm.
Let {u,} be such a sequence. By part (a), ¢(z) € Q for g-a.e. z € 9Q, and
thus by Lemma 3.3, C,(u,)(z) — 0 for c-ae. z € 9Q. But Cy(u,) — 0
weakly in the topology of L'(0Q). To see this, note that for g € L>°(0Q)

(Co(un), 8) = (un, Cy(8)) — 0
as n — oo since C;(g) € VMO(0Q) and VMO(OQ)* = H'(8Q). Now by

[6, p. 295], |ICp(hn)llLia) — O as n — oo and (b) follows. The proof of
Theorem 4.1 is complete.

We now finish the proof of Theorem 1. As noted above, by Theorem 4.1, (i)
implies (ii). Next we show that (ii) implies (i). Let g € L*°(8Q). We show
that C;(g) € VMO(3Q). Since we are assuming C,: H'(0Q) — L'(0Q) is
compact, it is obvious that C;: L>(9Q) — BMO(0Q) is bounded, so we need
only show that C;(g) € VMO(9Q). Notice again that VMO(8Q)* = H'(6Q)
and that VM O(9Q) is a separable Banach space. So by Corollary V.12.8 in [4],
C,(8) € VMO(3Q) if for each sequence {u,} C H!(9Q) which converges to 0
in the weak * topology of H!(9Q) it follows that (Cp(8), un) — 0 as n — 0.
Now let {u,} be such a sequence in H'(8Q). By the Uniform Boundedness
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Theorem, {u,} is a bounded sequence in H'(0Q). Suppose it is not true that
(C;(8), un) — 0 as n — oo. Then there is a subsequence, we use the same
notation, {u,} and €; > 0 so that

(2) (8 s Co(un))| = (Cp(8) > un)| 2 €0

for all n. Since C,: H'(0Q) — L'(8Q) is compact, there is a subsequence
{un,} and v € LY(0Q) such that Cp(un,) — v in L!(0Q)-norm. We shall
show that v = 0, contradicting (2). Since u, — 0 in the weak* topology of
H'(0Q), Py(un) — 0 on compacta in Q by Lemma 3.3. Since (ii) implies (iv)
in Theorem 1 has already been proved, it follows from (ii) in Corollary 3.5 that

Cyp(un)(z) = Po(un)(9(z)) = 0, forae. ze€oQ

as n — oo. Therefore, v = 0. The proof of Theorem 1 is now complete.
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