
proceedings of the
american mathematical society
Volume 123, Number 1, January 1995

ON COMPACTNESS OF COMPOSITION OPERATORS
IN HARDY SPACES OF SEVERAL VARIABLES

SONG-YING LI AND BERNARD RUSSO

(Communicated by Palle E. T. Jorgensen)

Abstract. Characterizations of compactness are given for holomorphic com-

position operators on Hardy spaces of a strongly pseudoconvex domain.

1. Introduction

Let Q be a bounded domain in C" with C1 boundary. Let cp be a holomor-

phic mapping from Q to Q. The composition operator C9 is defined formally

as follows: C9(u)(z) = u(tp(z)) for all z £ Cl and any function a on Q.

The study of such holomorphic composition operators has been active since the
early 1970s (see Cowen [5] for details in the case of one variable). In the case of
several complex variables, counterexamples have been constructed by several au-

thors showing that composition operators can be unbounded on ßf2(Bn), where

B„ is the unit ball in C" (see, for example, Cima and Wogen [1], Wogen's sur-

vey paper [24], and the references therein). In this paper, we are concerned with

compactness of composition operators. It was proved by Shapiro and Taylor

[22] that Cf:ßfP(Bi) -» M7*(B\) is compact for one p £ (0, oo) if and only
if it is compact on %7p(Bx) for all p £ (0, oo). There is a characterization of
compactness for C9 : ß77v(Bx) -» %7P(BX) in terms of the Nevanlinna counting

function, given by Shapiro [19]. Another characterization of compactness can
be formulated in terms of a Carleson measure condition for the pullback mea-
sure dv9 (see [16] for the case of the unit ball in C" ). This theorem has also

been proved for the unit polydisk in C" in [10].

More recently, Sarason [20] proved that weak compactness and norm com-

pactness for a composition operator on the Hardy space %7X (Bx) are equivalent.
He found it more natural to consider real Hardy space on dBx rather than holo-
morphic Hardy space. Using the duality theorem of Feflerman on Hx, Sarason

proved that norm compactness on Hx(dBx) is equivalent to C*(BMO(dBx)) c

VMO(dBx). Later, Shapiro and Sundberg [21] proved that compactness of C9

on ß?2(Bx) is equivalent to compactness on Lx(dBx), where the composi-
tion operator is now viewed as acting on the Poisson integral of functions in
Lx(dBx).
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162 SONG-VINO LI AND BERNARD RUSSO

The main purpose of this paper is to generalize the above theorems of Sarason

and Shapiro-Taylor from the unit disc to strongly pseudoconvex domains Cl in

C" . Some of our results are known in the case of the unit ball B„ in C" [26].

Our formulation differs slightly from that of Sarason [20]. This is explained in

a remark following the statement of the main theorem in §2.

2. Notation and statement of the main theorem

Let Q be a bounded strongly pseudoconvex domain with C2 boundary. We

define a continuous function d on dCl as follows. For x £ dCl, let nx denote

the complex tangent plane at x . For t > 0, AXJ denotes the set of points in

C" at distance < t from the ball in the plane nx with center at x and radius

y/t. Let BXit = Ax>tr\dSl. Then set

d(x,y) = inf{t >0; y£BXJ, x£ByJ}.

It is known that d defined above is a quasimetric on 3Q (see, for example,

[23, 12]), i.e., ii is a continuous function from dCl x dCl to R+ satisfying the

usual requirements for a topological metric except that the triangle inequality

is replaced by

d(x, z) < C(d(x ,y) + d(y,z)),       x,y,z£ dCl.

Let Q be a smoothly bounded domain in C" (n>2). We shall use r(z) to

denote the distance function of z £ Cl to dQ. We define 7777p(&) (0 < p < co)

to be the usual Hardy space of holomorphic function on Cl (see [12, Chapter 8]).
We may identify it with a closed subspace of Lp(dCl) by passing to the (almost

everywhere) radial limit function / on dCl. Let d be a quasimetric on dCl.
Then BMO(dCl) c Lx(dCl) is defined in terms of the quasimetric d and the
surface measure a on dCl as follows. The seminorm on BMO is defined for
g£Lx(dÇl) by

\\g\\BMO = wvMO(g)(x, r),
x ,r

where

MO(g)(x,r)= i       \g(t)-gB{x,r)\do(t).
I-0!,-*' r)\ JB(x,r)

Here the balls B(x, r) (called nonisotropic) are defined using the quasimet-

ric, gB(x,r) is the average of g over the ball, do is (2n - 1 )-dimensional

surface measure on the boundary of Cl, and \B(x, r)\ = o(B(x, r)). We

say a function / 6 Lx(dCl) belongs to VMO(dCl) if / £ BMO(dCl) and
suVx€daMO(f)(x, r) -» 0 as r -» 0. Now BMOA(Cl) denotes the space of

functions in %7x(Cl) whose boundary values / are in BMO(dCl), with norm

U/H. = W/Wbmo ; and VMOA(Q) = BMOA(Q)nVMO(dQ). It is easy to prove
that BMOA(Cl) is a closed subspace of BMO(dQ), and that VMOA(Cl) is a
closed subspace of VMO(dÇï).

A measurable function a on d Cl is said to be an atom if either a is bounded

on dCl and \a\ does not exceed l/\dCl\ or there is a point zo € dCl and r > 0
such that a is supported on B(zo, r) and satisfies the following conditions:

\a(z)\<        l I  a(z)do(z) = 0.
\B(zo,r)\ Jdii
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COMPACTNESS OF COMPOSITION OPERATORS 163

We say a function u belongs to Hx(dCl) (real Hx ) if there is a sequence of

atoms {ak} and a sequence of numbers {Xk} £ lx suchthat u = J2kx=lXkak in

the sense of distributions. The norm of m G Hx(dCl) is defined as follows:

{oo oo ^

$3 141 : u = YjXkaA •
k=X k=X J

The duality theorem of BMO and Hx has been shown by Coifman and

Weiss in [2] for a general space of homogeneous type. As a special case of their
theory, we state:

Theorem A.   (i) Hx(dCl)* = BMO(dCl), and
(ii)   VMO(dCl)* =Hx(dCl).

Let P: L2(dCl) -> ¿F2(Q) be the orthogonal projection, that is, the Szegö
projection with Szegö kernel S(z, w). The relations between real Hx and

holomorphic 7777XC£) are given in [13] and [14] as follows:

Theorem B. Let Cl be a bounded strongly pseudoconvex domain in C or a

pseudoconvex domain of finite type in C2 with smooth boundary. Then :

(i)   P(Hx(dÜ))=^x(dCl);
(ii)   %7x(Ciy = BMOA(Cl), P(BMO(dCl)) = BMOA(Cl) = P(Lco(dCl));

(iii)   VMOA(dCl)* = %7X(&), P(VMO(dCl)) = VMOA(Cl) = P(C(dCl)).

Let
Po(z,w) = S(z,z)-l\S(z,w)\2

be the Poisson-Szegö kernel on ClxdCl. The composition operator C9 extends

to functions in Lx(dCl) as follows: for u £ Lx(dCl),

Cf(u) := C9(P0(u)) = P0(u) o tp,

where for z £Cl

Po(u)(z) = j   u(w)P0(z, w)do(w).
Jdii

Let z £ dCl and r > 0. We shall use C(z, r) to denote the Carleson region:

C(z, r) = {w £ Cl: n(w) £ B(z, r),  r(w) < r},

where n(w) is the normal projection of w to dCl. Let J7(Cï) denote the

space of all complex Borel measures over Cl. Corresponding to p £ J7(Cl), we

define the following function on (0, 1) :

g(r)     3upfN(C(Z'r))]
8Är)~!Z\   \B(z,r)\   j'

Let BCM(Cl) denote the space of all Carleson measures over Cl, i.e., dp £

BCM(Cl) if dp £ J7(Ci) and gß £ L°°(0, 1). By definition, the measure

dp £ ̂ (Q) belongs to VCM(Cl) if dp £ BCM(Cl) and limr_0+ gß(r) = 0.
The pullback measure dv9 will play an important technical role in our proofs.

Recall that to define it, one first extends tp to Cl by passing to the radial limits

almost everywhere on dCl (see [12]). Denoting this extension by cp too, dv9

is the measure defined on Cl by

u9(E) = o(<p~l(E)ndCl).

Now we are ready to state our main theorem.
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164 SONG-YING LI AND BERNARD RUSSO

Theorem 1. Let Cl be a bounded strongly pseudoconvex domain in C with

smooth boundary. Let <p: Cl^> Cl be a holomorphic mapping. Then the following
statements are equivalent :

(i) C;: L°°(dCl)-+VMO(dCl) is bounded; that is, C9: Hx(dCl)-+Lx(dCl)

and the range of C* is contained in VMO(dCl).

(ii) C9:Hx(dCl)^Lx(dCl) is compact.

(iii) C9:%7X(&)^%7X(&) is compact.

(iv) C9 : %7p(&) -> %7p(&) is compact for some 0 < p < oo.

(v) C9 : LP(dCi) -► LP(dCl) is compact for some 1 < p < oo.
(vi) dv9 £ VCM(Cl).

(vii) C9 : %fp(Cl) -► ̂"(Cl) is compact for all 0<p<oo.

Remark. Statement (ii) is slightly different from the compactness of C9 on

Hx(dCl). In the case n = 1 and Cl = Bx, a short argument using the Hubert

transform proves that if C9: Hx(dCl) -> Lx(dCl) is compact, then it is com-

pact on Hx(dCl) (see [20] for detail). For n > 1, estimating the Hx(dCl)

norm is much more complicated. A similar singular integral characterization
for Hx(dBn) has been given by Christ and Geller in [3]. Although this may be

the right tool to use here, it turns out to be very technical. For simplicity, we
state and prove Theorem 1 as above.

3. Preliminary results

In this section, we prove some steps in our main theorem. First, let us intro-

duce a fundamental criteria for boundedness and compactness of composition
operators. The boundedness part of the following theorem is well known (for

example, see [24]).

Theorem 3.1. Let Cl be a bounded strongly pseudoconvex domain in C with
smooth boundary. Let cp: Cl -> Cl be a holomorphic mapping. The following

statements hold:

(i) For 0 < p < oo, C9: %7p(Cl) - %7p(Cl)  is bounded if and only if
dv9 £ BCM(Cl).

(ii) For 0 < p < oo, C9: %7p(Cï) —> ß?p(Cl)  is compact if and only if
dv9 £ VCM(Cl).

(iii)   C9 : Hx (dCl) -> L1 (dCl) is compact if and only if dv9 £ VCM(Cl).
(iv) For 1 < p < oo, C9: LP(dCl) -► LP(dCl) is compact if and only if

dv9 £ VCM(Cl).

Remark. This theorem can be extended to a pseudoconvex domain of finite type

in C2 with C°° boundary by using results in [14, 7, 17].
Note that the equivalence of (ii) through (vii) in Theorem 1 is contained in

Theorem 3.1.
In order to prove Theorem 3.1, let us first record the following result, whose

statement and proof can be found in [15] for Cl = BN . For the general case,
the proof is still elementary, so we omit the details here.

Proposition 3.2. Let Cl be a bounded domain in 07 , let <p:Cl-> Cl be a holo-
morphic mapping, and suppose 0 < p < oo. Then C9: 7?77p(Cl) -* ä?p(Cl)
is compact if and only if for each bounded sequence {«„}  in %7p(Cl)  which
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converges to 0 on compacta on Cl it follows that C9(u„) converges to 0 in
J?p(Cl)-metric.

We now turn to the proof of Theorem 3.1. In the rest of this section du will
denote dv9.

Proof of Theorem 3.1. For completeness, we present a proof of (i). Let m €
%7p(Cl). Then, with Cl(:={z£Cl: d(z, dCl) > e} , we have

l|C,(«*,(0)=   SUP   {/    \C9(u)(z)\pdoe(z)\
K   '      0<e«l  UdCle )

(1) =   sup   if   \u(tp(z))\»doe(z)\
o<t«i (Jaa y

= limsup( /   \u(tp(z))\pdoc(z)\ = [ \u(w)\pdv(w).
e-»o+   yJdsi J     Ja

Therefore, by the theorem of Hormander [7], C9 : %7P(CÏ) —> %7p(d) is bounded
if and only if du is a Carleson measure. This completes the proof of (i).

Next we prove (ii). Suppose that C9: P77p(Cl) -> %7p(Cl) is compact. We

will show that dv e VCM(Cl). Let z0 £ dCl, and let C(z0, r) be a Carleson
region. Let z £ Cl be such that 7t(z) = z0 and r(z) = r. Let K(-, •) be the

Bergman kernel for Cl. Define a function

kZtP(w) = r(z)x>pK(z, z)~yK(w, z)2«1/^!)       (w£Cl),

where y = 2([l/p] + 1) - 1/p > 0 and [x] denotes the largest integer not

exceeding x. It is easy to check that kZtP £ %7p(Cl) and that, moreover, by

using local coordinates and an estimate for the Bergman kernel in [8] for a

strongly pseudoconvex domain (and [18] for a pseudoconvex domain of finite

type in C2 with smooth boundary)

\\kz^p=   sup   /    r(z)K(z,z)-yp\K(w,z)\2p^x/pX^doi
o<f«i Jan,

< Cpr(z)K(z, z)~ypK(z, z)2/>([i/p]+0-ir(z)-i < Cp.

It is clear that

kZtP(')-*0   as z-^dCl

on compacta in Cl. Since C9: %7p(Cl) -» %7p(Q7) is compact, by Proposi-
tion 3.2,

l|C,(*z,,)||;r,(o)^0   as z-ôiî.

Notice that, on the other hand,

\\C,(kp,z)\\Pr,(ü) = ja\kz>p(w)\pdv(w)

= r(z)K(z, z)~py [ \K(z,w)\2pi[x'p]+x)du(w)
Jo.

^ r xrf*     m / dt/(w) Ï r~[pT-ÏÏ / dv(w)-
C„|C(zo, r)\ JC{Zo,r) Cp\B(z0, r)\ JC{Zo,r)

Using this estimate, we shall show first that du £ BCM(Cl) :

suvgu(r) = sup ' / dv\< Cp\\C9(kp,z)\\p < CP\\C9\\" < oo.
r z0,r U#(Z0, r)\ Jc(20,r)        J
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Next we show that dv £ VCM(Cl). If this was not true, there would exist

z° e dCl, rn £ (0, 1) with r„ ->• 0, and e0 > 0 such that

\B(z°,rn)\Jc
du > e0      for all n .

C(z°„,r„)

Now choose z„ £ Cl with n(zn) = z\ and r(z„) = rn . Then

e° ̂  \itil  r\\ Í dv^ CpWCf(kp^)%       for all n .
\B\zn^ rn)\ Jc{z°n,rn)

Since {kPtZn} is bounded in 7777p , kPtZn -» 0 on compacta as « —► oo, and C9

is compact on 7?77p , there is a subsequence kp>Zn such that ||Cp(fcp>ZB )\\&P -*

0. This contradiction completes the proof that du £ VCM(Cl).

Now we show the converse. Let du £ VCM(CÍ). We will show C9: %7p(&)

-» %'p(Cï) is compact. Suppose that {u„} is a bounded sequence in ßfp(Cl)

which converges to 0 on compacta in Cl. To show that

C9(u„) -»0,    in the metric of ß?p(Cl) ,

let á > 0 and set

By using the covering lemma [23, 12], it follows that dus £ BCM(Cl) with

vd(C(z, r)) < gv(ô)\B(z, r)\,        gv(ô) = sup {^(z''3)) ) ,
xedsi I  \B(z, d)\  J

for all z £dCl and r > 0.
Since du £ VCM(Cl), g„(ô) -» 0 as á -> 0. Thus for every e > 0, there is

a ô > 0 such that &/(£) < e . Since u„ -* 0 on compacta in Q, there is an N

such that for n> N,

f  \un(z)\pdu(z)<e.
Jas

By(l),

\\C9(un)\\p = [' \un(z)\p dv(z)
Ja

= [   \un(z)\pdu(z)+ f      \un(z)\p dv(z)
Jas Ja.\as

< [  \un(z)\p du(z) + ( \un(z)\p dv5(z)
Jns Jn

<(   \un(z)\p dv(z) + g„(S) I   \un(z)\p do(z)
Jsis Jaa

<e+esup{||M„||^: «=1,2,...}

when n > N. This completes the proof of sufficiency of (ii).

Now we prove (iii) and (iv). Note first that

/   \C9(u)(z)\pdo(z)= f \Po(u)(z)\p dv(z)

for all u £ Lp(o) and p > 1. Note next that since %7p(Cl) c Lp(dCl) and
jrl(0) C X'(ÖQ), compactness of C,  on Lp(dCl)  or from  Hx(dCÏ)  to

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPACTNESS OF COMPOSITION OPERATORS 167

Lx(dCl) implies its compactness on %7P(&) or ßTx(Cl), so dv9 £ VCM(Cl),

by (ii). Thus we need only show the sufficiency of (iii) and (iv).

In order to complete our proof, we need the following lemma, which can

be obtained by using the fact that Po(z, w) £ C°°(Clt x Cl) for any e > 0,

and the facts that VMO(dCl)* = Hx(dCl) and LP'(dCl) = (L*(dQ))* with
1/p + 1/p' = 1. We omit the detail here.

Lemma 3.3. Let {«„} be a bounded sequence in Hx(dCl) or Lp(dCl) with 1 <
p < oo such that un —► 0 in the w* topology. Then the sequence {Po(u„)}

converges to 0 on compacta in Cl.

Now we continue our proof of sufficiency in (iii) and (iv). Here we present

a proof of (iii). The proof of (iv) is similar and uses the duality LP(dCl)* =

Lp'(dCl) with p and p' conjugate indices.

We have now reduced matters to the following lemma.

Lemma 3.4. Let Cl be a bounded strongly pseudoconvex domain in C" with

smooth boundary. Let <p : Cl —> Cl be a holomorphic mapping.

(i) // dv9 £ BCM(Cl), then C9: Hx(dCl) — Lx(dCl) is bounded.
(ii) // dv9 £ VCM(Cl), then C9 : Hx(dCl) — Lx(dCl) is compact.

Proof. Let dv9 £ BCM(Cl) and u £ Hx(dCl). It suffices to show that C9(u) e
Lx(dCl). Since

/   \C9(u)(z)\do(z)= [ \P0(u)(z)\du9(z)
Jaa Ja

and since Hörmander's theorem holds for P0(u) with u £ Hx(dCl) ([25]), we

have

||Q(m)||, <C||M||ff.(an),

and (i) follows. Now we prove (ii). Suppose dv £ VCM(Cl). We shall prove

that C9: Hx(dCl) -> Lx(dCl) is compact. For each 0 < ô « 1, let dvs

be defined as above. Since VMO(dCl)* = Hx(dCl), it suffices to prove that

for every (bounded) sequence {u„} in Hx(dCl) with un -> 0 in the weak*
topology of Hx(dCl), we have

C9(un)^0   in Lx(dCl)-norm.

Let e > 0. By Lemma 3.3, there is an N > 1 and S > 0 such that if n > N

f  \Po(un)(z)\dv(z) < e
Ja¡

and

gu(S) < e-

By Hörmander's theorem again and the fact that vs(C(z, r)) < gv(ô)\B(z, r)\
for any z e dCl and r > 0, we have

I|C,(m„)||i <e+€Sup{|lMB||/fi(ôn):n= 1,2,...}

when n > N. This proves Lemma 3.4, and therefore the proof of Theorem 3.1

is complete.

As a corollary of Theorem 3.1, we have the following result:
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Corollary 3.5. Let Cl be a bounded strongly pseudoconvex domain in C" with

smooth boundary. Let tp: Cl-* Cl be a holomorphic mapping. Then :

(i) If there is a 0 < p < oo such that C9: S77p(Cl) -> %7p(&) is bounded,
then the measure du9\9n is absolutely continuous with respect to surface

measure do.
(ii) // C9:^p(Cl) -> ßfp(&) is compact, then du9\m = 0.

(iii) // C9 : %7p(Cl) -+ %*"(&) is bounded (resp. compact) for some 0 < p <

oo, then it is bounded (resp. compact) for all 0 < p < co.

Proof, (i) Let E be a set in dCl such that o(E) = 0. We shall show that
v9(E) = 0. For any e > 0, there is a sequence of nonisotropic balls {B(z¡, rf)}

on dCl such that
oo oo

EC \jB(zj, rj),     and    ^cr(5(z,, r7)) < e.

7=1 j=X

Let C(zj, rj) be Carleson regions for j = 1, 2, ... . Then

(oo \ oo oo

U B(zj, rf) < £ u9(B(Zj, rj)) < £ u9(C(z¡, rf))

7=1                      / j=\ 7=1

oo

<Y/Co(B(zj,rj))<Ce.
7=1

Since e is arbitrary, (i) follows, and (ii) can be obtained by using an argu-

ment similar to the proof of (i) and the covering lemma. Since (iii) is a direct

consequence of Theorem 3.1, the proof of Corollary 3.5 is complete.

4. Proof of the main theorem

In this section, we shall complete the proof of Theorem 1. As noted earlier,

by Theorem 3.1, (ii), (iii), (iv), (v), (vi), and (vii) are equivalent. We shall

show that (i) is equivalent to (ii). Half of this statement is contained in the

next result.

Theorem 4.1. Let Cl be bounded strongly pseudoconvex domain in C with

smooth boundary. Let tp: Cl —> Cl be a holomorphic mapping. IfiC*: L°°(dCl) —►

VMO(dCl) is bounded, then

(a) dv9\aa = 0, and
(b) C9 : Hx (dCl) -* Lx(dCl) is compact.

Proof. Since C9: Hx(dCl) -* Lx(dCl) is bounded and tp is holomorphic, it
follows from Corollary 3.5 (i) that du9\dc¡ is absolutely continuous with respect

to o , with nonnegative Radon-Nikodym derivative g = (du9\dn)ldo £ Lx(o).

Suppose the assertion (a) is not true. Then there is a Borel set G cdCl and

e > 0 such that 0 < o(G) « 1 and \ > g(z) > e > 0 on G. For each

0 < S « 1, we choose zs £ dCl so that \B(zs ,S)nG\= a(S)\G\ \B(zs , S)\,
where a(3) is a positive constant satisfying -^ < a(S) < 1 and C(n) is a

constant depending only on n .
Let F = <p~x(G). Then for any h £ L°°(dCl), we claim that

C;((hocp)S7F) = hgS7G,    on dCl.
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To see this, let u£Lx(dCl). Then

(u, c;((h o cp)S7F)) = (C9(u), (h o cp)ä7F) = j Po(u)((p(z))hlMzT)do(z)

= [ (P0(u) o cp)(hVj)(%b ocp)do= \_Po(u)hS7Gdv9
Jaa Ja

-L
aa

uhS7Ggdo = (u,ghS7G).
laa

If we now let
hi \ = { l/g{2)   ifz€(7'

[Z)    \0 ifzeôQ\C7

then hg = 37G, and from the above claim and the fact that C*: L°°(dCl) ->
VMO(dCl) is bounded we conclude that S7G £ VMO(dCl).

To complete the proof, we shall show that S7G is not in VM0(dCl). In what
follows, let B = B(zs, S). Since

^ fâTGd(T = \GnB\/\B\ = a(ô)\G\,
\tí\ Jb

we have

1   /|^c(z)--l \ 37Gda
Jb \ \B\ Jb\B\

do(z)

= jL f \S7G(Z) - L^i  da(z)>±.[    (\-a(5)\G\)do(z)
\ti\ Jb I 1^1 1^1 Jb<ig

= |1(1 -a(e5)|C7|)|Gn¿?| > ¿a(S)\G\ > ftfô\G\.

Therefore, S7G $ VMO(Cl), and the proof of (a) is complete.
Now we prove (b). Since VMO(dCl)* = Hx (dCl), it suffices to prove that for

every bounded sequence {«„} c Hx(dCl) which converges to 0 in the weak*

topology of Hx(dCl), it follows that C9(u„) converges to 0 in L'(dfi)-norm.

Let {»„} be such a sequence. By part (a), cp(z) £ Cl for a-a.e. z e dCl, and
thus by Lemma 3.3, C9(un)(z) —► 0 for cr-a.e. z € dCl. But C9(u„) —» 0

weakly in the topology of Lx(dCl). To see this, note that for g £ L°°(dCl)

(c9(un),g) = (un,c;(g))^o

as « -^ oo since C*(g) £ VMO(dCl) and VMO(dCl)* = Hx(dCl). Now by
[6, p. 295], ||Cp(«B)||£,i(a£i) -> 0 as n -» oo and (b) follows. The proof of
Theorem 4.1 is complete.

We now finish the proof of Theorem 1. As noted above, by Theorem 4.1, (i)

implies (ii). Next we show that (ii) implies (i). Let g G L°°(dCl). We show

that C;(g) £ VMO(dCl). Since we are assuming C9: Hx(dCl) -► ¿'(dQ) is

compact, it is obvious that C* : L°°(dCl) -+ BMO(dCl) is bounded, so we need

only show that C*(g) € VMO(dCl). Notice again that VMO(dCl)* = Hx(dCl)
and that VMO(dCl) is a separable Banach space. So by Corollary V. 12.8 in [4],
C9(g) £ VMO(dCl) if for each sequence {«„} cHx(dCl) which converges to 0

in the weak * topology of Hx(dCl) it follows that (C*(g), un) -» 0 as n -» oo.

Now let {«„} be such a sequence in Hx(dCl). By the Uniform Boundedness
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Theorem, {«„} is a bounded sequence in Hx(dCl). Suppose it is not true that

(C*(g), u„) -> 0 as n -» oo. Then there is a subsequence, we use the same

notation, {«„} and e0 > 0 so that

(2) \(g,C9(un))\ = \(C;(g),un)\>e0

for all n. Since C9: Hx(dCl) —► Lx(dCl) is compact, there is a subsequence

{u„k} and v £ Lx(dCl) such that C9(unk) -> v in L1(9£2)-norm. We shall
show that f = 0, contradicting (2). Since u„ —► 0 in the weak* topology of

Hx(dCl), Fo(Wn) -*0 on compacta in Cl by Lemma 3.3. Since (ii) implies (iv)

in Theorem 1 has already been proved, it follows from (ii) in Corollary 3.5 that

C9(un)(z) = P0(u„)(<p(z)) -» 0,    fora.e.  z £ dCl

as n —> oo . Therefore, i> = 0. The proof of Theorem 1 is now complete.
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