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1. Introduction and background

IN this note, we wish to investigate the local theory in JB*-triples arising
from a single linear functional.

For C*-algebras, the important functionals are the states, giving rise in
the commutative case to probability measures. These can be decomposed
into discrete and continuous parts, and further into absolutely continuous
and singular parts. It is this kind of phenomenon that we wish to consider
in a setting in which positivity, commutativity, associativity, and even the
binary product are absent.

For von Neumann algebras, the use of the trace in the semifinite cases,
and of extreme points in the atomic cases has facilitated their study. In
the purely infinite cases, where no trace is present, the Tomita-Takesaki
theory showed how to effectively use non-tracial normal states. For
JBW *-triples, the Hilbertian seminorms introduced below will be shown
to be useful for obtaining structural information on the triple and the
functional.

JB*-triples have been proposed as a framework for modelling the
observables of a quantum mechanical system. In this model, states
become arbitrary unit vectors of the dual space, since no global order is
present in general. Thus our study will have relevance to the application
of JB*-triples to quantum mechanics.

Before going into the background and motivation for this paper, here is
a summary of its contents. Our main theorem (Theorem 2.13 in section 2)
gives a fundamental relation between two basic kinds of sesquilinear
forms (called OP for operator positivity, and RN for Radon-Nikodym).
To appreciate the level of abstraction in this theorem, it is necessary to
first review some basic concepts and results for JBW*-triples. These
include the polar decomposition of a normal functional, the algebraic
inner product arising from a normal functional, and theorems of
Grothendieck type in C*-algebras and JB*-triples. This section also
includes versions of the Radon-Nikodym theorem and the existence of
the self-polar form for a normal functional on a JBW*-triple, as well as a
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258 T. BARTON, Y. FRIEDMAN AND B. RUSSO

definition of a trace. One of the two corollaries of Theorem 2.13 is an
new inequality of Grothendieck type.

In Section 3 we begin by giving two examples of the sesquilinear form
and Schur multiplier arising from an atomic functional. The first example
is an associative one and is included for comparison only. The second one
involves the joint Peirce decomposition arising from the spectral decom-
position of the atomic functional and shows that the Schur multipliers
corresponding to the algebraic inner product and the self-polar form are
related to the arithmetic and geometric (numerical) means, respectively.
The section concludes with an analog of the Schur product theorem and
the construction of Schur multipliers in the non-atomic case.

We now summarize some fundamental facts about JB*-triples. A
JB*-triple is a complex Banach space A, equipped with a (Jordan) triple
product AX A X A— A denoted by (x, y, z)— {x, y, z}, with the follow-
ing properties:

(1) {x, y, z} is bilinear and symmetric in x, z and conjugate-linear in y;
@) Ix, y, M < lix|l 1y1 Iz, for any x, y, z € A;

(3) for every a € A, the operator D(a) defined by D(a)x = {ag, a, x} is
Hermitian (i.e. [|e“P?@| =1, t € R), its spectrum is non-negative and
ID@)l = liall?;

(4) for every a € A, the operator 8(a):=iD(a) is a derivation of the
triple product:

8(a)x, y, 2} ={8(a)x, y, 2} +{x, 8(a)y, z} + {x, y, 8(a)z}.

By polarizing the last identity, one obtains the so called Main Identity
of the triple product

{a’ b, {x) Y, Z}} = {{a, b, x}, Y, Z}-{x; {b» a, y}) Z} + {xr Y, {a: b, Z}}

The concrete subclass of JB*-triples are the JC*-triples, defined as
follows: A JC*-triple is a norm closed subspace U of B(H) such that
xx*x € U whenever x € U. This notion was introduced by L. Harris [11],
where the terminology “J*-algebras” was used. By polarization, we see
that a closed subspace U of B(H) is a JC*-triple if and only if it is closed
under the triple product

{x, 2 zhi=(xy*z +zy*x)/2. (1)

The JC*-triples are prccisély the JB*-subtriples of B(H) for some Hilbert
space H, i.e., properties (1)-(4) of the above definition hold for the triple
product (1). JBW*-triples are the JB*-triples which are dual spaces. A
JBW*-triple A has a unique predual, denoted by A, ([15], [2]). The
general references for JB*-triples are [27], (28], [20] and [21]. The
category of JB*-triples is equivalent to the category of bounded
symmetric domains in complex Banach spaces [20].
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HILBERTIAN SEMINORMS AND LOCAL ORDER IN JB*-TRIPLES 259

The building blocks of the algebraic structure of JB*-triples are the
tripotents (‘“‘triple idempotents’), i.e. elements u € A satisfying {u, u, u} =
u. Clearly, in a JC*-triple the tripotents are precisely the partial
isometries. Two tripotents u, v are orthogonal if u +v and u —v are
tripotents. This is denoted by u L v.

On the set of tripotents in the JB*-triple A we define a partial ordering
as follows: u = v if and only if v=u + w where w is a tripotent in A and
w Lu. Note that u<v if and only if u ={uvu}, by [8, Cor. 1.7]. A
tripotent u is minimal in A if for any tripotent v € U, v <u implies either
v=0orv=uwu

To each element x in the JB*-triple A we associate a conjugate linear
map Q(x): A— A, via

Qx)y={x,y,x}y yeA

If v € A is a tripotent, then the operator D(v) = {v, v, -} satisfies:

D@)(D(v) - N2D(w)—-1N)=0.

Thus, the spectrum of D(v) consists of eigenvalues only and is contained
in the set {0,1/2, 1}. Let A,(v) be the eigenspace of D(v) corresponding
to the eigenvalue k/2, and let P (v) be the corresponding spectral
projection onto A,(v), k=0, 1, 2. A,(v) are the Peirce subspaces of A
associated with v, and P.(v) are the corresponding Peirce projections.
Clearly, the P.(v) can be expressed as polynomials in D(v), and
P(v)= Q).

Since for every x € A, 8(x):=iD(x) is a triple derivation, it follows
that for any tripotent v € A,

{4,(v), Ak(v), Al(V)} = Ajp V) @

where A,,(v) = {0} if m ¢ {0, 1, 2}. The multiplication rules (2) are called
the Peirce calculus.
Moreover,

{Ag(v), Ay(v), A} ={A,(v), Ao(v), A} ={0}

and each of the spaces A,(v) is a JB*-subtriple, k =0, 1, 2.

The Peirce reflection associated with a tripotent v € A is the operator
S(v) = Py(v) — P,(v) + Py(v) = exp (2niD(v)). It is the symmetry (S%(v) =
I) fixing A;(v)® Aq(v) element wise and satisfying S(v)|a,w) = —1|ayy
The operator Q(v) is a conjugate-linear triple automorphism of A,(v) of
period 2, and is used to define there an involution via

**:=Qkx={v,x,v}, xeAv)
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260 T. BARTON, Y. FRIEDMAN AND B. RUSSO

Given a sequence {y;}{.,(n < ) of orthogonal tripotents in A we define
the associated joint Peirce projections {P; Joi<j<n by

P“:=P2(vl)) 1$i$n;

P,J:=P1(v,)P1(v,), 1Si<j<n;

Poyi=P@) [l P) 1sj<n

1<isn,iv]

Poo:= ﬂ Fo(vy).
1<i<n
For finite n see [21]; for infinite n see [16] or [22). The joint Peirce
decomposition of A is

A= D ®A,, whereA,;=PA.
O=/%f%n

Let e be a tripotent in a JB*-triple A. The space A,(e) is a JB*-algebra
(JBW*-algebra if A is a JBW*-triple) with identity e, Jordan product
(x, y)~> {xey}, and involution x— {exe}. In the Jordan algebra structure
of A,(e), the states of A,(e) are exactly the elements of the norm exposed
face F,:={p € A*: p(e)=1=|p|l}. The projection Py(e) is also positive
in the sense that Py(e)[A(e)*] < As(e)*, where A,(e)* denotes the set of

positive elements in the JB*-algebra A,(e), i.e.,

Az(e)" ={x e Aye): (x,p)=0,p e F}.

We close this section with a discussion of some of the motivation for
the present paper. The structure of JB*-triples (cf. [27], [28]) is now
understood by use of the “Gelfand-Naimark” theorem [9] and factor
classification of JBW *-triples [16], [5], [22], [17], [3]. Also properties of
their preduals are known 2], [8].

Let A denote a JBW*-triple and A, its predual. It is known that the
predual A, decomposes into a direct sum of atomic and purely
non-atomic parts [8]. Any norm one element f € A, belonging to the
atomic part can therefore be written as a o-convex combination of
extreme points of the unit ball of A,. But for the non-atomic case there is
no natural replacement for extreme points or “good states’. In some
cases a trace plays this role, but in general even tracial functionals may
not exist.

The space A, is a natural model for describing the states of a quantum
mechanical system. The extreme points of the unit ball play the role of
the pure states. The time evolution is expressed by a one-parameter
group of isometries. Thus it is important to know how the generators of
this group act in a neighborhood of any state f. It has been observed in
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HILBERTIAN SEMINORMS AND LOCAL ORDER IN JB*.-TRIPLES 261

several cases that these generators act like Schur multipliers with respect
to the Peirce decomposition of the spectral tripotents of f (f atomic). It is
therefore important to obtain a notion of Schur multiplier associated with
a non-atomic state. This is done at the end of Section 3.

An example of this kind of Schur multiplier was found in [13] in the
formula for the self-polar form, based on Tomita-Takesaki theory for
Jordan algebras. As mentioned there, there is no analog for the modular
automorphism group of a state in the non-associative case, but a cosine
family is shown to exist. It is possible to extend their results to JB*-triples
and to obtain Schur multipliers from non-atomic functionals.

2. Hilbertian seminorms based on algebraic structure and local order

Let A be a JBW*-triple and A, its predual. We want to consider local
properties of A, A, starting from a functional ¢ € A,. Order structure
plays a key role when it exists a priori. When it does not exist, one can
produce a local order structure by means of the following theorem, which
is the analog of the polar decomposition of normal functionals on a von
Neumann algebra.

THeOREM 2.1 ([8]) For each ¢ € A, of norm 1, there exists a unique
e € A (denoted by e(¢) and called the support tripotent of @) such that
(a) eis a tripotent;

(b) ¢(e) =1 and ¢(x) = p({exe}), for all x € A (hence ¢ = ¢° Py(e));
(c) for all tripotents u <e, ¢(u)>0.

For any ¢ € A, of norm 1, the face of ¢, denoted by Face (¢), is
defined as the collection of all 7 € A, such that there is a o € A, and
0=A=1 with

T o
p=A—+(1-A)—.
izl ol
By [6] or [19], the norm closure of Face (¢) is A,(e);, where e = e(p).
The norm exposed face F, of ¢ is defined by

Fo={d e A, ¢le)=1= ¢}

This is the smallest norm exposed face containing ¢ (cf. [7]). The cone
(Vo)« = R*F, = Ay(e); defines the local order on A, with respect to ¢
Note that (c) of Theorem 2.1 implies that ¢ is positive and faithful with
respect to this order and Face (¢) = R™[0, ¢], where [0, ¢] is the order
interval defined by {¢ € A,(e),: 0=y < ¢}.

Definition 2.2 Let A be any complex vector space. Amap b: AXA—
C is called a sesquilinear form if it is linear in the first argument and
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262 T. BARTON, Y. FRIEDMAN AND B. RUSSO

conjugate linear in the second one. A sesquilinear form is said to be
positive if b(x, x) =0 for all x € A. Since a positive sesquilinear form is
automatically hermitian, it defines a seminorm called a Hilbertian
seminorm. If b is a sesquilinear form, then b*(y) denotes the linear
functional on A defined by b*(y) = b(-, y):

&x, b*(y)) =b(x, y).

The following proposition may be used to show that each normal
functional ¢ on a JBW*-triple A gives rise to a Hilbertian seminorm,
which retains much of the information supplied by ¢.

Prorosmmion 2.3 ([1]) Let A be a JBW*-triple. For ¢ € A, of norm 1,
let e = (). Define a sesquilinear form a_ by

a,(x,y) = ¢({xye}) x,yeA. 3)
Then a, is positive on A, a}(e)= ¢ and
lxlly:= ag(x, x)'?
is a Hilbertian seminorm on A. Moreover, ||x|, < |l¢l| - ||x|| and e in (3)
can be replaced by any a € A satisfying |la|| =1 = ¢(a) = || ¢|.

The a in the notation a, for the form is used since it is based on the
algebraic structure of A. Let x = x, + x; + x, be the Peirce decomposition
of x relative to e. From (2) and (b) of Theorem 2.1, it follows that

llx |12 = pixxe} = plx,x,e} + @lxixie} = [x)12 + X111

From Theorem 2.1(c) it follows that [x,||,=0 only if x,=0; and
ix,|lo = O only if x, = 0. Thus ||-||,, is a norm on A,(e) + A,(e) turning this
space into a pre-Hilbert space. One of the places where these seminorms
appear is in the Grothendieck inequality for C*-algebras.

THEOREM 2.4 ([25], [12]) There is a universal constant K such that for
any two C*-algebras A, B, and any bounded bilinear form T: AXB—C
there exist states ¢ on A and  on B such that

x*x +xxt):|i[w(y-y +yy*

3
> 2 )] forxeA,yeB.

TG I<KATI] o

The Hilbertian seminorm [(x*x + xx*/2)]} is not one of the natural
ones associated to C*-algebras. The natural ones are the ones that occur
in the G.N.S. construction, namely

Ix|Z = p(x*x)} and |x|2= p(xx*)L

These “associative” seminorms were shown by Pisier to be insufficient
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HILBERTIAN SEMINORMS AND LOCAL ORDER IN JB*-TRIPLES 263

for the inequality of Grothendieck. The seminorm that is needed in
Grothendieck’s inequality for C*-algebras is the one introduced above,

namely
et = [ o222 - e,

indicating that the inequality does not rely on associativity. This also
suggests that the inequality is independent of the order structure and is
related to the geometry of the umit ball (which is a bounded symmetric
domain). This was confirmed for JB*-triples (corresponding to arbitrary
bounded symmetric domains in complex Banach spaces) in the following
result.

THEOREM 2.5 ([1]) There is a universal constant K (=K) such that for
any two JB*-triples A, B, and any bounded bilinear form T: AXB—C
there exist norm one functionals ¢ on A and  on B such that

ITC, M<K TN Ixlollyly xeAyeB

The following Proposition is a reformulation of the Radon-Nikodym
theorem for JB*-triples. The proof is a modification of the proof for von
Neumann algebras ([23]).

ProposITION 2.6 Let A be a JBW*-triple and let ¢ € A, with support
tripotent e. If 0<y < ¢ (in A,(e),), then there is a unique y such that
O0=<y=<e (in Aye)) and

Y (x) = ¢({xye}) for all x € A.
Proof. (cf. [23,p. 160]) Let y € As(e),., then for all x € A,(e),

(a3(y), {exe}) = of{exelye} = ple{xyele}
= plxye} = (ag(y), x).

Thus, a¥(y) is a self-adjoint functional on A,(e) when y is self-adjoint.
Also note that the map y~—>a%(y) is weak*-weak continuous. Hence,
C:={a%(y): y €[0, €]} is a weakly compact convex subset of A;(€);..-
Suppose that ¢ ¢ C. By the Hahn-Banach theorem there exist a e
Aj(e);. and t € R such that

Y(a) >t = playe} for all y € [0, e}.
Let a =a, — a_ be the Jordan decomposition of a. Then

¥(a.) = y(a) >t = pfa, supp (a,), e} = ¢(a.),

which contradicts < ¢. Thus ¢ € C, proving existence.
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264 T. BARTON, Y. FRIEDMAN AND B. RUSSO

Now let y, € [0, e] be such that ¢ =a¥(y,). Then ¢(y, —y2) = @{y: —
Y2» i, ¢} which implies that 0= ¢{y1 = y2, y1 — y2, €} and y; ~y,=0.

Definition 2.7. Let A be a JBW*-triple and let e be a tripotent. We
shall say that a sesquilinear form b satisfies the Radon-Nikodym property
with respect to e (e-RN property for short) if for any ¢ € Ay(e), . with
Yy <b*(e), there exists a unique h €[0,e] such that ¢y =>b*(h). In
particular, [0, b*(e)] = b*[0, e].

Corollary 2.8. Let A be a JBW*-triple and let ¢ € A, with support
tripotent e. Then the form a, defined by Proposition 2.3 satisfies the
e-RN property.

The complementary property to e-RN property for sesquilinear forms is
the Order Positivity property defined as follows:

Definition 2.9. Let A be a JBW*-triple and let e be a tripotent. We
shall say that a sesquilinear form b satisfies the Order Positivity property
with respect to e (e-OP property for short) if b* = b*P,(e) and b(x, y) =0
forall x, y € Ay(e)™.

Note that if b*=>b*P,(e), then b is e-OP if and only if b*[0,e]c
[0, b*(e)). Note also that if b is an e-OP form then b*(A,(e)*) = A,(e)**,
Le., b*: Ay(e)— A,(e)* is a positive map.

Remark 2.10. Let b be a sesquilinear e-OP form on a JBW *-triple A.
Then

b(x, y) = b(Py(e)x, Px(e)y)
for any x, y € A. Equivalently b = bPy(e).
Proof. Note that for any y e.Az(e) we have b*(y) € A,(e)*. Thus
b(Py(e)x, Px(e)y) = b*(Po(e)y)Px(e)x = b*(Py(e)y)x = b*(y)x = b(x, y).
Recall that a sesquiljneé’r form b (for which b* = b*P,(e)) is e-OP if
b*[0, e] = [0, b*(e)]
and a sesquilinear form is e-RN if

[0, b*(e)] = b*[0, €]
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HILBERTIAN SEMINORMS AND LOCAL ORDER IN JB*-TRIPLES 265

A form that combines both of these properties is the so called self-polar
form, defined as follows:

Definition 2.11. A sesquilinear form s on a JB*-triple A is called
self-polar (resp. weakly self-polar) relative to the tripotent e if s*=
s*P,(e) and

s*[0, e] = [0, s*(e)]

(resp. s*[0, e} is o (A,(e)*, Aj(e))-dense in [0, s*(e)]).

Self-polar forms were introduced by Connes ([4]) and Woronowicz
([29]). They were used by Connes to show that a von Neumann algebra
can be represented as the set of derivations of a self-dual cone in a
Hilbert space, a result which was generalized to Jordan algebras by
Iochum ([19]).

In the case A is a JBW*-algebra (with unit 1 =¢), or a von Neumann
algebra, a self-polar form s, with s}(e) = ¢ exists and is unique for each
positive faithful normal functional ¢ on A. (See [29] for the von
Neumann algebra case and [13] for the JBW-algebra case). For a
JBW*-triple A and ¢ € A,, let e be the support tripotent of ¢ and define
¥ = @agey By Theorem 2.1, ¢ is a positive faithful normal functional on
the unital JBW*-algebra A,(e), and so by use of Remark 2.10 (for the
uniqueness part) we have:

ProrosITION 2.12. Let A be a JBW*-triple and let ¢ € A, have support
tripotent e. Then there is a unique self-polar form s, relative to e such that

spe)=¢.

Before giving the main theorem below, we must introduce some
terminology. As in [26], we say a sesquilinear form @ on a vector space A
is represented by (m, T) if

a(x: Y)=(T77-’(x) | ”(Y))H: X,y €A

Here = is a linear map of A onto a dense subset of a Hilbert space H and
T e B(H). Obviously, a is positive if and only if T is a positive operator.

Obviously, any positive sesquilinear form can be represented in this
way (by the identity operator) and in fact, by [26, Theorem 1.1], any two
such forms can be represented on the same Hilbert space by commuting
positive operators. The geometric mean Vap of two sesquilinear forms a,
B is defined by [26, Theorem 1.2], as follows: if a is represented by (7, S)
and B is represented by (x, T), then Vap is represented (unambiguously)
by (, (ST)"?).

In the context of JBW*-triples, Woronowicz’s maximality principle
([29, Theorem 1.1)) asserts that if s is a self-polar form relative to e, and b
is an e-OP form with b*(e) <s*(e), then b(x, x) <s(x, x) for all x € A.
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266 T. BARTON, Y. FRIEDMAN AND B. RUSSO

If T e B(H) then the pseudo-inverse T* is the possibly unbounded but
densely defined operator with domain ran 7 ® (ran T)* defined by

T*(¢®n)=¢

where ¢’ is the unique vector in (ker T)* with T¢' = £ The pseudo-
inverse defined in this way has the following properties:

e TT* c P75
b T”T=P(ker1')1-
« TT*T =T

Note that if T is self-adjoint, then 77% = T#T, and if T =0 then T* =0.
We are now ready to state and prove the main theorem of this section.

THEOREM 2.13 Let a and b be positive sesquilinear forms on a
JBW*-triple A and let ¢ € A, have support tripotent e. Suppose that a and
b satisfy the following:

- a%(e)=b*(e)= @
* a satisfies e-RN;
* b satisfies e-OP.

Then there exists a positive sesquilinear form h with h*(e) = ¢ which
satisfies e-OP, such that b is the geometric mean Vah of a and h.
Moreover

b(x,x)<a(x, x) C))
forany x € A.

Equation (4) states that the seminorm defined by any e-RN form is
larger than the seminorm defined by an e-OP form. In particular, the
seminorm defined by a self-polar form is larger than all seminorms
defined by an e-OP form and is smaller than all seminorms defined by an
e-RN form.

Proof. For any x € [0, e] the functional b*(x) is positive on A,(e) and
therefore by Proposition 2.6 we can define v(x) e [0, e] such that
b*(x) = a*(v(x)). Extend v by linearity to all of A,(e) and to A by
v = vPy(e). Thus we have

b(x,y)=a(x, v(y)) for x,yeA. (5)

In particular, this implies (put x = e) that ¢(y) = ¢(v(y)). Now define

h(x, y):= a(v(x), v(y))- (6)
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HILBERTIAN SEMINORMS AND LOCAL ORDER IN JB*-TRIPLES 267

Then 4 is easily seen to be sesquilinear. For example,
h(xy +x3, y) = a(v(x1 + x2), (y)) = a(¥(y), v(x1 + x2))
=b(v(y), x1 +x2) = h(xy, y) + h(x2, y).

The positivity of h follows from the positivity of a. Since h(x,e) =
a(v(x), v(e)) = b(v(x), e) = (b*(e), v(x)) = p(v(x)) = p(x) we have
h*(e) = ¢. To show that h satisfies e-OP note first that from the definition
of h we have h* =h*Py(e). Let x, y € Ay(e)*. Then v(x) € A,(e)* and
therefore h(x, y) = a(v(x), v(y)) = b(v(x), y) =0 implying that h is e-OP.

As mentioned above, using [26], we can choose representations (r, T)

of a and (7, S) of b by commuting bounded positive operators T and S on
a Hilbert space H. From (5), we conclude

Sn = Trv and therefore S(n(A)) = T(n(A)). @)

From (7), we have TSt = Py r.%v, and the operator T*S? rep-
resents a positive sesquilinear form. This form is the one defined in (6)
since

h(x, y) = a(v(x), v(y)) = (Tav(x) | 7v(y))
= (87(x) | 7v(y)) = (S7(x) | Pier 772 TV(y) + Peer 11v(y))
= (Sn(x) | Puerr2mtv(y)) = (T*S?m(x) | n(y)),

where the last step follows by (7). Thus A is represented by T*S2 Since a
is represented by T, Vah is represented by (TT*$%)2 = P,,..S. By (7), b
is also represented by P,,,rS, implying b = Vah.

From the Woronowicz maximality principle mentioned above, it is
enough to prove (4) for the case when b=s, is the self-polar form
associated with ¢. By use of the first part of the theorem for this b we
obtain n, h, S, T as above. By the maximality principle, we have
h(x, x) <s,(x, x), which asserts that T*S?< . Since T and S are positive
commuting operators it follows that S <T. To see this, let P denote the
projection on the closure of the range of 7. Then S = PS + Py, 1S = PS
by (7). Since P corresponds to the characteristic function of the range of
the function representing T, PS<T. So s,(x,x)=(Sn(x)|n(x)) <
(Tr(x) | 7(x)) = a(x, x).

COROLLARY 2.14 Let a be a positive sesquilinear form on a JBW *-triple
A which satisfies e-RN with respect to a tripotent e. Then the seminorm
defined by a is a norm on A,(e). Hence a is non-degenerate on A,(e) and
the map v is uniquely determined by (5).

Moreover, if e = e(¢), then a*~, initially defined on [0, ¢}, extends to a
positive linear map of the complex linear span of Face (¢) into A,(e).

The Cauchy-Schwarz inequality holds for any positive sesquilinear
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form, and by Corollary 2.8, a, is e-RN. Therefore we can obtain another
inequality of Grothendieck type for JB*-triples. Note that this version
has the constant 1 and involves one functional and one JBW *-triple.

CoROLLARY 2.15 Let b be a positive sesquilinear form on a JBW *-triple
A which is e-OP and satisfies b*(e) = ¢. Then

bx, y)I<lxllsllyle
for any x, y € A, where the norm ||- ||, is defined as in Proposition 2.3.

If we interpret (5) in the case of a von Neumann algebra (resp.
JBW*-algebra), the map v emerges as the analog of the square root of
the modular operator (resp. integral of the cosine group).

Indeed, if ¢ is a normal state on a von Neumann algebra, its self-polar
form is given by (cf. [4])

Se(x,y) = (ma(x)Q | A (y)Q2) ®

where r,, is the cyclic representation associated with ¢ and Q is its cyclic
vector. In this context, a,(x, y) is given by ¢(y*x), so that by (5),

sw(x, y) = av(x’ V()’)) = ‘P(V(y)*x) = (ﬂw(v(y)*x)g I Q)
= (M (X)2 | 7, (v())Q) = (7,(x)Q | (7, (y)).

Moreover, the operator v can be identified with a positive norm 1
operator on Hj, the completion of A with respect to the inner product
a,. Writing H} for the completion of A with respect to the inner product
S, it can be shown that v'”? determines a unitary mapping of H} onto
H}, analogously to A"4.

On the other hand, if ¢ is a normal state on a JBW*-algebra, its
self-polar form is expressed in terms of a hyperbolic cosine group as

@

5663 = [ #loa)oy*)(cosh ) d, ©)

—c

where p, is the one-parameter group constructed in [13]. In this context,
az(x, y) = ofx, y*, e} = p(x o y*). By (5), v is self-adjoint with respect to
a, Thus

So(%, ¥) = ag(x, v(y)) = ag(v(x), y) = e(v(x)°y*),

and (9) suggests that v(x) = j p:(x)(cosh m) ™! dt.
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The sesquilinear form a_.P,(e) is not e-OP in general. The following
proposition gives several equivalent conditions when this holds. The
proof is a modification of the proof for Jordan algebras ([24]).

ProrosiTioN 2.16. Let A be a JBW*-triple and let ¢ € A, have norm 1
and support tripotent e. The following are equivalent, and each one serves
as the definition of a trace on a JBW*-triple.

L o(Qx){yye}) = (Q(y)({xxe}))Vx, y € Ax(e)sa;
2. for any tripotent v <e, we have P(v)¢p =0, i.e.

P(x) = o(S(w)x) = p(Po(v)x — Pi(v)x + Py(v)x), VxeA;
e({xye}) =0Vx, y € Az(e)”, ie. a Pye) is e-OP;
e(xyed) < lixll @(lyDVx, y € Ax(e),a;
e({xyz}) = @({xzy})Vx € Ay(e), Vy, z € Ay(€)s.;
P(Q(x)y) = e({xxyhVx, y € Az(e)s.a;
aPy(e) is the self-polar form associated to ¢.

Proof. 12 Let v=<e, ¥ =¢ —v. It is easily checked that Q(v — ¥)
Q(€) = S(v)| ayey Now let x =0, say x = z% Then

(0, Qv —0)x)=(p, Q(v — 1)Q(2)e) = (o, Qz v — T, v — ¥, e})
(¢, Q(2)e) = o(x).

Hence, @(S(v)x)=(p, Q(v — 7)Q(e)x) = p(x) for all x € Ay(e)", and
by linearity ¢(S(v)x) = ¢(x) for all x € A,(e). Since @(x) = ¢(Py(e)x) this

holds for all x € A.
2>3 Let p <e be a projection, x = 0. Then by 2.,

¢lxpe} = o(Py(p){xpe} + Po(pYxpe}) = o(P(pHxpe})

= @(P(p)x)=0.

Note that if v<se and x =0, then x = {zze} for some z and Py(v){zze} =
Py(vi{zzv} = {zoz0v} + {zy24v} = 0, where z; = P(v)z (cf. [8, p. 73]). There-
fore, Py(v)x =0. It follows that ¢{xye}=0 whenever y =3 ¢,p, for ;>0
and p; are orthogonal projections. By spectral theory and weak*-
continuity, ¢{xye}=0for all x =0, y =0.
3>4 Let x be self-adjoint and y positive. Then |x|le —x =0, so by 3.,
e{llx]l e —x, y, e} =0 and thus ¢{xye} =< ||x|| ¢(y). For y self-adjoint, say
y = )’+ - )’—,

plxye} = plxy,e} — plxy_e} < x| o(ys +y-) = x| @(Iy)-

4> 5 In the JB-algebra A,(e),., {xye} = {xey}, so by [24, (iv) > (vi)] we
have

Nownhsew

e(xo(yez)) = @(z°(y°x))Vx, y, z € Ax(e)sa-
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Since {xyz}=(xoy)ez+ (z°y)ox — (x°z)oy, 5. follows.
5= 6 Trivial.
6=>1 Since {xxy}=x?ey, from [24, (vii)=>(i)] we have ¢{x, y? x}=
e{y, x%, y} for all x, y € Ay(e),.. But y>={yye}, so 1. follows.
347 By Corollary 2.8, a, is a e-RN form and therefore it is self-polar if
and only if it is e-OP.

3. Schur multipliers and Hilbertian seminorms of an atomic functional

Recall ([8, Theorems 1 and 2]) that every JBW*-triple and its predual
have atomic decompositions. Let A be an atomic JBW *-triple and let ¢
be a normal functional on A. Then

p= ; Sifp

where the f’s form an orthogonal family of extreme points of the unit ball
of A, and the s;’s are nonnegative scalars with 35, = || ¢||.

There is ([8, Lemma 2.11]) a contractive conjugate linear map
n: A,— A defined by

T (E a/f}) =2 ;/v/

for each finite linear combination X a;f; of extreme points f; of the unit
ball of A,, where v; =e(f;) is the support tripotent of f. The map r is
injective and gives rise in turn to a sesquilinear form (f | g),:= (f, 7(g))
which is positive definite.

Because of the importance of the map =, we indicate the proof of the
last two statements. If f € A, then f € F, where e is the support tripotent
of f, and therefore f is the norm limit of a convex combination of extreme
points of F, (see [10, Proposition 3.4] for example). Then (f |f),=
lim(f, ¥ ae;) =0 since ¢;<e implies (f, ) =0. Thus, (- | ) Is positive
semi-definite. Because of the existence of grids (cf. [S]) generating the
atomic JBW*-triple A, (-|-), is positive definite. If m(f)=0, then
(| Pa=0s0f=0.

We shall call this inner product the tracial inner product. For x,
y € m(A,), which is known to be weak*-dense in A, define (x | y), to be
(m~'x | #7'y),. This is well defined since = is injective. A large number of
Hilbertian seminorms associated to a given functional can be obtained in
the following way:

Definition 3.1. Let m: R x R— R be a function of two variables s, ¢
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and P: RxR— %(A) be a projection-valued function of the same
variables. We shall call a linear map

p =2 m(s, )P(s, 1)

on A (when defined) a Schur multiplier associated to the pair (m, P). We
also define a sesquilinear form on the dense subset 7(A,) of A by

(x | ). = 2 m(s, XP(s, O)x | P(s, t)y)e = (x| y)s for x, y € n(A,).

Note that a Schur multiplier is positive if and only if m(s, £)=0
whenever P(s, 1) # 0.

We now consider several examples illustrating this construction. In
these examples we shall have u(n(A,))cm(A,) and in fact u(A)c
n(A,), which gives rise to a map i :=n""epu of A into A,.

Example 3.2. Let A be an atomic von Neumann algebra and let ¢ be a
positive normal functional on A given by a positive trace class operator
a=23see,. Define P(s, t)x =e,xe,, where e,=¢, if s=s5; and ¢,=0
otherwise.

a) if m,(s, t):=s and u corresponds to (m,, P), then

x|y = | )P = p(xy*);

b) if m,(s, t):=1t and u corresponds to (m,, P), then

0| yh =& 9)* = o(y*x).
Proof. We use the notation ¢; = e, and P(i, j) = P(s,, 5;). 2) Recall that
(x | y)* = ¢(xy*) and that ¢ = Tr (a-). Thus
(x| y)°" = pxy*)="Tr (Ej: SJC’M“)
= 5;Tr[exy*e] = Ej: 2 s; Tr [exe; y*e;)
= % m(sp, 1) Tr [P, Dx(P(j, i)y)*]
= E ml(s]’ S[)(P(j, I)X | P(J' l)y>r
4
Statement b) is proved similarly.

Example 3.3. Let A be an atomic JBW*-triple and let ¢ =3 5;f; be a
J
normal functional on A given by an orthogonal family f; of extreme
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points of the unit ball of A, and scalars 5,20 with X 5, = [l¢[| = 1. Let v,
denote the support tripotent of f; and e =X v, Define the projection
valued function P(s, t) by the joint Peirce decomposition relative to the

family {v;} as follows
Py(vy) ifs=t=s,

Pl(v,)Pl(v/) if s =S,?‘=s]=t
P](e)l)](vj) ifs= O, t =s!
Fo(e) ifs=t=0.
Then we have three examples corresponding to the choice of m.
a) if m(s, t) = (s + t)/2 is the arithmetic mean of s and ¢, then
|y, = e({xye}) = ag(x, y)
(where a is defined as in Proposition 2.3);
b) if m(s, ) = Vst is the geometric mean of s and ¢, then
@) =54(x, )
is the self-polar form of ¢;
¢) if m(s,£)=2(s"' +¢7')"! is the harmonic mean of s and ¢, then
X | y)u=ho(x, y)
(where A is the sesquilinear form h defined in Theorem 2.13).
Moreover, in all cases we have

(x [x), < |Ix?

P(s,t)=

(10)

and therefore the sesquilinear form defined by Definition 3.1 has a

continuous extension from m(A,) to its norm closure’.

Proof. a) If x = x, + x, + x; is the Peirce decomposition of x € n(A,)
with respect to e, then by Peirce calculus and the fact that ¢ vanishes on

Al(e) ®A0(e))
P(x, y) = (¢, {xyeh) = (@, {x2 326} + (@, {x, y1€}).
On the other hand,
x| p)u =2 m(s, P(s, )x | P(s, )y)e
= ; s (Pay(vy)x | Py(v))y).
+ 2 SI_;SI(PI(vi)Pl (vj)x l Pl(vl)Pl(vl)y>x

i<y

+ ZUBEPEX | PEOPG

! In fact, in these three examples, the sesquilinear form (x | y), extends to all of A.

(11)

(12)
(13)

(14)

(15)
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We shall show that the first term on the right side of (11) is the sum of
(13) and (14), and the second term equals (15). To do this we shall need
the following fact about spin factors (cf. [10]).

Lemma 3.4. Let u,, i, be a spin grid for a spin factor U. For x,
y € Ui(wy)
@, {xyu,}) = i(x |)’)x-

Proof. Writing x = % (xu; + £,3,) and y = 3 (y,u, + ¥.i,), we have
Il il

{xyu,} = 2 2 [xl.)—;j{ulu}ul} + ftfj{aiujul} + xlf]{ulajul} + f:}:’-j{ﬁia/u 1}]

] J]

By Peirce calculus this reduces to

1 _ _
{ryu,} =3 > [k + BaF i
i}

1 _ _
and therefore (2, {xyu,}) = 5 k§1 [xege + 2uFe] = 3x | p)w

Returning to the proof of Example 3.3, if we write x,= 3 xy for the
1<j<k

joint Peirce decomposition of x,, and similarly for y,, we have

(o, {xz)‘ze}) = 2 51< I 2 E {xjkypqvl}>'
! j<k p<q
By Peirce calculus, any nonzero term in this sum must satisfy i e {j, k}N
{P» q} Now Xy = (Ob xl)”h SO (ﬁ: {xﬂyﬂvl}) = (Ol: xzxf)n }’2) =
(Py(v)x | Py(v,)y)s- On the other hand, by Lemma 3.4, for i#k,
(i {xu yuvid) = KP1(v)Pi(vi)x | P(v))Pi(vi)y)x. This shows that the first
term on the right side of (11) is the sum of (13) and (14).
Finally, writing x; = 2 x; with x; € A,(e) N A,(v)), then

<¢; {Xl)'1e}> = 2 sp(.f;n {xjykvp}) = %sp(ﬁn {xpypvp})-

p.Jk

It suffices to verify that (f,, {x, y,u,}) = ¥x, | y,).

b) Since ¢ restricts to a faithful normal positive functional on the
atomic JBW*-algebra A,(e), from [13] we know that there is an element
h =3 s, € Ay(e)” and a faithful trace =3 f such that the self-polar
form associated with ¢ is given by

s.(a, b) = t({hiaht}ob*).

That is, s3(e) = ¢ and 53[0, e] = [0, ¢].
It is easy to verify the following by using the Peirce calculus.
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1. 7(x):=(x | e), is a faithful normal trace on the JBW*-algebra A,(e).
2. 7(x°h) = @(x).
3. 505 y) = (x| Py
¢) The proof of c) follows directly from the proof of Theorem 2.13.
By use of Theorem 2.13 and the definition of a,, for any x € A we have:

hy(x, x) < s,(x, X) < ag(x, x) < |l @]l IIx]* < x}?

proving (10).
Note that in Example 3.3, the operator v is also a Schur multiplier,

given by
2Vst
m(s, t) =—.
s+¢

Indeed, in (5)
So(x, ¥) = 2, VsUP(s, 1) | ),

) 2Vt
and setting v' = Z-_i_—stP(s, t), we have
PRI

8, v'(9) = ST PG, 0% | V(e = 5405, 3).

Now use the uniqueness of v.

In Example 3.3, three widely used means have appeared (geometric,
arithmetic, harmonic). Two of them correspond to sesquilinear forms
which can be described intrinsically (a, by the algebraic structure, s, by
the order structure).

Problem 1. Can h, be described and constructed by some intrinsic
properties?

A positive constructive answer would lead to a constructive method of
obtaining the self-polar form.
In Example 3.3, the operator u =3 m(s, t)P(s, t) acts as a Schur
5t

multiplier relative to the joint Peirce decomposition A,(e) =X @ A, of
A,(e) with respect to the orthogonal family of tripotents {v;}. In this
connection, we have the following analog of the Schur product theorem,
[18,5.2.1]. To prove it we need the following lemma.

Recall that in a JB*-algebra, if a is a self-adjoint element, then Q(a) is
a positive conjugate linear operator. For non-self-adjoint elements, we
have the following result.

LemMa 3.5. Let a be a normal element in a JB*-algebra A (meaning

1202 Yote g0 uo 1senb Aq 092596 L/252/€/9v/81o1e/yrewlb/woo dno-ojwepeoe//:sdiy wolj pepeojumod



HILBERTIAN SEMINORMS AND LOCAL ORDER IN JB*-TRIPLES 275

that a and a* operator commute). Then Q(a)’ is a positive (linear)
operator. Also, for arbitrary a, Q(a,a*) is a positive conjugate linear
operator on A.

Proof. Writing a = x + iy with x, y seif-adjoint, it follows that x and y
operator commute in the JB-algebra A,,. Identifying A,, with its
canonical image in the JBW™*-algebra A**, x, y together generate an
associative JBW-subalgebra of A** (cf. [14, page 44]). So for a given
€ >0, there exist projections e, ..., e, € A** and real numbers A;, p;
such that

Set a;= A, +iu; and b =3 aje;. As operators on A**, Q(b)*=Q(b]%),
where |b| = X |a;| ¢;. Indeed, Q(b)x = {bxb} =3 a;a,{exes}, so that

Q(bYx =1{b, Q(b)x, b} =2 aya,le,, Q(b)x, €}

t

=S apa,aade, lexe), e} = |ajoi {efexeted,
since {A,,, Ax, Ag,} =0 unless {j, k} ={p, q}.

Finally,
Q(a)zx = {a’ {axa}-' a} = l‘i‘m {bCJ {bexbl}’ b(}
=0
=lim Q(b.)x =1lim Q(Jb.|*)x =0,
«—0 «—0
if x=0.

The last statement of the lemma follows from [14,3.3.6], since with
a =x + iy, where x and y are self-adjoint, Q(a, a*) = Q(x) + Q(y).
ProrosiTiON 3.6. Let A, @, P be as in Example 3.3 and let P;= P(s,, ;).
Let [my} be a matrix (possibly infinite) such that mo;=my=0. Then
=2 my;P,;is a positive operator on the JB*-algebra A;(e), i.e.,
L]

1 (Ax(e))* = As(e)?
(equivalently, (x | y), is e-OP) if and only if [m;} is a positive semi-
definite matrix.

Proof. Let T be the operator represented by the matrix [m,]. If Tis a
one-dimensional projection, then p,=a,d with aj*<e and thus
w(Z xy) = X ajapxy. Since x; =4y, {vixy}, v}, and since {g;} is bounded,
a:= 3 a;u; converges in the weak*-topology. By joint weak*-continuity of
the triple product on bounded sets, this sum equals 4Q(e)Q(a, a*)x (cf.
[2]). Thus u is positive by Lemma 3.5.
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By the spectral theorem for positive operators, it suffices to prove the
Proposition in the case when T is a projection, and it is trivial by the
previous paragraph in case the projection is of finite rank. Now any
projection T on a separable Hilbert space is the strong limit of a sequence
of finite rank projections 7, with positive Schur multiplier u,. If
x=2x;=0, then Py(v,+ - v,)x=0 for every m=1, and so px=
lim p,x = lim lim w,Po(vy + - - - v, )x = 0.

We now prove the converse. For n=1, vy,..., v, is a finite family of
orthogonal minimal tripotents. Hence there exist elements v; with i <j
such that, setting v, = v;, the family {v,} forms a symplectic grid, that is,
the span of {v,} is isometrically isomorphic to the JBW*-triple S,(C) of
all n by n symmetric matrices. Let w:=3 v;, which corresponds to a
positive multiple of a minimal tripotent in S,(C) (namely, the matrix with
a 1 in every entry). Then uw is positive and corresponds to [m;,].

We now indicate how to define a large family of Schur multipliers on
an arbitrary JBW*-triple A from a given functional ¢ € A,. We shall
simply apply the functional calculus for sesquilinear forms ([26, Theorem
1.2]) to a, and s, That is, for each f in the class J defined in [26], we
obtain, by [26, Theorem 1.2], a sesquilinear form b, = f(a,, s,). We can
then determine the conjugate linear map i: A— A, by the rule
(x, iy) = bs(x, y). The class J consists of all Borel measurable functions
on [0, )X [0,») which are homogeneous (f(Ar, As)=Af(r,s), A, r,
5 € [0, ©)) and bounded on compact sets.

Note that this definition is consistent with Definition 3.1. Indeed, if ¢ is
an atomic functional and the P(s, t) are chosen as in Example 3.3, then
(a) and (b) of Example 3.3 give rise to Schur multipliers

s+ N
o= O %PI} and p,= ), s;5;P; where Py=P(s,;,s).
I 2y

Any f e J gives rise to a sesquilinear form b, = f(a,, s,,) as follows:

by(x, y) = (f(S, TIh(x) | h(y))u (16)

where (h, S) and (h, T') represent a, and s, respectively. It follows from
(16) and the commutativity of S and T that b, determines a Schur
multiplier of the form

S;+s
My = %f(Lz—l’ Vslsj)Pi/-

Note that any g eJ also determines a Schur multiplier of the form
g = 2 g(s, 5;)P;. This amounts to solving the pair of equations
if

20=5+1, 2 =st
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The representation (16) and the closed graph and uniform bounded-

ness theorems show that the sesquilinear form b, is bounded and thus
determines a map ;: A— A%

L

2

3

F-N

23

Problem 2. If b, is e-OP, does ji;map A into its predual?
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