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Applications of Factorization in the 
Hardy Spaces of the Polydisk 
Ing-Jer Lin Department of Mathematics, National Kaohsiung Nonna! University. Taiwan 
Bernard Russo Department of Mathematics, Un iversity of California, Irvine. Califomia 

1 I NTRODUCTION AND PRELIMINARIES 

1.1 Introduction 

It. is well known that factorization of a function in the Hardy space H I in the unit d isc into 
a product of two H2 functions fails in higher dimensions, but that for t he unit ball in e" a 
weak factorization exists and has many applications (Theorem of Coifman , Rochberg, and 
Weiss). The purpose of this paper is to give t he corresponding applications of an analogous 
factoriza tion theorem for the Hardy spaces on the polydisk (which is due to the first named 
author) . 

C lassical Hankel operators 

A Hankel matrix (fini te or infinite) is a matrix of the form 

a, a, a, a. """J (l2 (l3 ao! a~ •. . 

(akh) = a3 (I t a5 a6 .. . 
at a~ a6 ar .. . 
. . . . . 

(k = 1,2, ... , n = 0, 1, 2, .. . ). The matrix elements are constant on lines (diagonals) perpen-
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dicular to the main diagonal. A famous example is the Hilbert matrix 

Hilbert, in his lectures on integral equations (1906), showed that th is matrix is bounded 
in I'; this result was first published by Weyl in his thesis (1908), and the exact norm was 
determined by Schur (191 1) who showed it is If. 

Thus the Hi lbert matrix represents a bounded operator of norm 1r on /1 , This can 
be restated as t he well known and famous Hilhcrt inequality, S('C Hardy-Littlcwood-Polya 
(1934), 

For purposes of general izati{lIl, it is convenient to realize Hankel matrices as linear oper­
alors acting on suitable function spaces. For example, let T denote the unit circle in C , let 
p =: p ... be the Riesz projection , that is, the orthogonal projection of J}(T) onto the ~I ardy 
Space Ill: 

""" . 00. P.(L ¢(n)z") = L oi>{n )z\ 
-~ , 

and let P_ = 1 - P+. For a function f on T, define the ~I ankel operator with symbol f to 
be II! = P_MJ where 11.1, is tht~ operator of multiplication by f. 

Hankel operators are intim.(tdy rc1atc<1 to Toeplil;;' operators. A Tocplitz matrix i:; a 
matrix of the form 

«(1",-" ), 
for m, n = 0,1,2, .... \Ve Sl'C that tIll' matrix entries are constant along lines parallel to 1 he 
main diagonal. An important cxample is 

(_1_ ), 
m -11 

with the convention ~ = o. For a func t ion f on T, define the Tocplitz opcrator with symbol 
f to be TJ = PMJ, where /lfJ is multiplication by f. 

Now the unit circle T is t he Silov boundary of the uniform algebra of all continuous 
functions on the closed un it d isk "6 whidl are analytic on the open unit d isk 6; and it is 
the topological boundary of 6. Th is suggests that a fruitfu l direction of generalization lies 
in the realm of several complex variables. One can consider first the case where the "base 
space" 6 is replaced by t he unit ball 13 = Bn in C n. After that , one may ask what hapPt! lls 
if one passes to general pseudoconvex domains, to the polydisk, 10 Siegel domains, etc. 

In the case of the unit ball , the most natural cand idate for a substitute for P seems to 
be the (Cauchy-) Szego projection, that is, the orthogonal projection S of L2(fJB) onto the 
Hardy space /1 2 (08) (aB is the unit sphere in C" and the lIardy spaces arc defined below). 
Then Toeplitz and lIankel operators could be defined resptXtively by 

This definition of Tocplitz operator is as good as it can be. For tech nical reasons, a Hankel 
operator with symbol f wi ll be defined to ue the conjugate linear map 
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Hardy spaces Of the polydlsk 333 

We return to the case of the unit disc. It is natural to ask when a given Hankel operalor 
HI, intially defined on holomorphic polynomials, has an extension as a bounded operator 
from H' to Jl2l. ,where Jl2l. = ZHl = the orthogonal com plement of Hl . The answer is the 
classical theorem of NehaTi , see Nehari (1957) . 

THEOREM 1.1 (Neh ari 1957) HJ can be extended to a bou nded operalor from }fl to JI ll. 

if and only if f E U>O. Moreover, 

II H/II ~ II/IIL"I"" ~ d;,' (I, /I~I · 

The next question is: When is a Hankel operalor compact? The answer is the classical 
theorem of Hartman, see Hartman (1958). Let C denote the space of continuous functions 
on T. 

THEOREM 1.2 (Hartman 1958) H, is compact operalor from }f' to H' J.. if and on ly if 
/EC+H¢O. 

Note that, since the symbol of the Hilbert matrix is 1(0) = i(O - lf), we obtain an elegant 
proof of Hilbert 's inequality as a consequence of Nehari's t heorem: 

Ilfi/il ~ III + H~II ~ IIfl l ~ ~ , . 
The factor space LOO 

/ Jl OO can be identified with the space ~,"B"A'101'I7A (f E BMOA ..... I E 
BMO and j( n) = 0 if n < 0). T hus the theorem of Nellari can also be ex pressed by saying 
that "Il, is a bounded operator from H' to H'J.. if and only if P_I E zBM OA" (see below 
for the definition of BMO). 

To prove this identification, recall firs t t hat LOO C BMO and by a deep theorem of C. 
Fefferman, P(L OO

) = BMOA. Hence P_I = 1- PIE BMO. On the other hand , for 

~ 

P- I ~ I - PI ~ 2>-"'" ~ 9(,1, 

where 9 is analytic and g(O) = O. Thus P_I E zBMOA. 
Similarly, t he factor space (C + H""')/ JI "'" can be identified with the space zVMOA 

(f E VM OA ..... IE VA/O and j(n) = 0 if n < 0). Thus the t heorem of Hartman admits 
t he following for mulation: wHi is compact as an operator from H' to H1 1. if and only if 
P_/E zV M OA" . 

As a consequence of a new factorization theorem in Il l, sec Lin (1994a, 1994b), in th is 
note, we shatl extend Theorems 1.I and \.2 to the bidisc in C'. 

For more information along t hese lines, see t he interesting survey article of Pectre, Pcetre 
(1983), from which t he above was borrowed . 

Harmonic analysis on the unit ball of C" 

For com pa rison to Ollr work on the unit bidisc, we present here the known results on the 
un it ball . 

Let B = B" = {z = (Zl>""zn): Zj E C,L:lzjl' < I} be the uni t ball in complex 
n-space. Denote Lebesgue area measure on aB by u. For Z E B, let Z/:::: z/Izl. The Hardy 
space HP(8B), 1 "5 p < 00 is defined to be the space of functions F which are holomorphic 
on B and for which 

IIF I I~ = sup (r IF(rz'JIP du( z/l) lip < 00. 
«I J8B 
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334 Lin and Russo 

For z,( € all, let d(z,() = II - (". =1 1/1 and let S( .• denote the sphere on all of radius r in 
the d-metric. An atom is a fun ction a(O, defined on oB, which is either identically I or is 
supported on a sphere S and satisfies 

1 
1"(015 jSj' ( adcr=O. J,. 

A holomorphic alom is a func t ion of the form A = Pta), where (I is an atom and P tem­
porarily denotes 1I1c projection of Ll(fJB) onto !-I2({)B). r.,-Iorc precisely, 

1101 < I). 

The space B1IJO consists of all functions bon aB such that 

IIbllHMO = sup f Ib(y) - ms(h)ldq < 00, 
rES Js 

where the supremum is taken over all spheres 5, 151 denotes the O'-InCasU fC of $, and 

11I5(b) = 1 ~1 Is b. 

Finally, we let BMOA be t he subspace of BMO consisting of those L2-functions which have 
holomorphic extensions to 13, t hat is DMOA = 1/ 2 n BMO. 

\Vith all t hese definitions, lI"e can now state a basic and standard theorem in the theory, 
sec Coifrnan.Rochberg·Wciss (1 976) , Coifman (197,1), and F'efft ~rman ·Stein (19 72). 

THEOREM 1.3 The following statements arc true: 

(a) Every F E /l1 {fJB) can be written as F :=; L:i"" A;A;, where the A, arc holomorphic 
atoms and A; arc com plex scalars with L: lAd :<:::: cllF'lh. 

(b) The dual space of JI I (fJ8) is BMOA. 

(c) P is a continnous map of L""' (;)8) onto B iHOA . 

To show the importance of the alol1lic Jecom position (pari (a) of Theorem 1.3), we lise 
it to prove that lJ."fOA C ( III) •. LeI. 6 E BMOA and tet F = L: A;(I; E Ill. Then 

If F_I = 12:>,1,,.,-1 
= II=', 1,,.,(- - ",,(.;»1 
5 L: 1\11;,11" I'; - m,,(oll 

5 (L: 1\1) 1I_IIBMo ~ '1I¢1I."oIIFII" .. 

It is well known and easy to prove that on the unit disk, every Hl ·function is t he product 
of two 1I1·functions. For the unit hall the following is the analogous factorization theorem, 
see Coi fman· Rochherg. Weiss (1976). 
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THEOREM 1.4 Given FE 1/1(08), there are Gi , Hi E }{'(o8) such that 

,nd 
00 

L IIG;II,IIH; lb S ,IIFI!.. , 
Th is theorem is proved by combining part (a) of Theorem 1.3 with the following proposition , 
as in Coifman-Rochberg-Weiss (1976). 

PROPOSIT ION \ .5 Every holomorphic atom A can be written as 

N 

A = LB;C;, , 
with Bi,e; E H'(fJ8) and L: IIB;1i211Ci 1l 2 '5 C, where C and N depend only on the d imension 
n. 

Let bE }{2(fJ8) and let Kb be defined in }{2(8B ) formally by 1\6(/) = P(bf). As noted 
above, such operators will he called Hankel operators. 

The next two theorems are generalizations of thc theorems of Nehari and Hartman to 
the unit ball in en, see Coifman- Rochberg-Weiss (1976). 

THEOREM 1.6 For b E }('(fJ8), the following are equivalent: 

(a) Kb is a bounded map from }{'(&8) into 1I2(&B). 

(b) b :::: P(F) for some F E Loo(&8) 

(e) bE BMOA 

For b E BMO define 

M,(b) == sup IS'I r Ib(z) - ms(b)1 dO'(z). 
lSI!::' Js 

Here, the S are spheres on all and lSI is the measure of S. We say that b belongs to the 
spa.ce V AlO (vanishing mean oscillation) if lim._o A1r(b) == O. 

THEOREM 1.7 For b E Hl(oB), the following are equivalent: 

(a) l(~ is a compact map from H2(08) into 112(08). 

(b) b:::: P(F) for some F E e(08) 

(c) b is an analytic function in VMO 

Here is a related duality theorem, see Coifman-Weiss (1977). 

THEOREM 1.8 Let V MOA = H2 n V MO. Then the dual of VMOA is H'(08). 

The material in this subsection is taken primari ly from Coifman- Rochberg-Weiss (1976). 
As notc<i above, in this note, we shall obtain analogs of Theorems 1.6 and 1.7 in the context 
of the bidisc, as well as for Theorem 1.8. 
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1.2 P reli min aries on Hard y spaces 

Hardy spaces of t he bid isc 

The following notation will be used: R denotes the real numb(~r s; C denotes the complcJC 
numbers; !:::. denotes the open unit disk , T denotes the unit circle. 

We shall have occasion in t his paper to use some standard concepts from the classical 
function theory of several complex variables, such as (Cauchy.) Szego kernel, (Cauchy-) 
Szego projection (in poiydisc), .... A standard reference is the book by Krantz, see Krantz 
(1992). 

The Hardy spaces IlP , for 0 < 1) < co arc defined by 

JJP(6") ::: If is holorllorphic in 6": 11/1111. < co}, 

where 

and I > r = (rl,r1 , ... r,,) > 0 means I > rj > 0 for j = 1,2, ... ,11. 

Forp==, 

/1 "'(6") = {f is holomorphic in 6" :s~'plfl == IIi!!}/< .. < oo} . 

A fundamental result ill the theory of lI ardy spaces is that if f E }{"(L:::."), ° < p:5 co, 
then the limit 

exists for a.c., OJ E [O,2Jr), for j = 1,2, ... ,n, where r = (r l ,···,r .. ) ...... 1- means TJ --+ 

1- ,j = 1,2, ... , n .. For I :5 P :5 00, tile function f can be recovered from j by way of the 
Cauchy or Poisson integral formulas. 

Although we have stated the (Iefinilion for the poly(lisk, we abo need to consider Ha rdy 
spaces in the bi.upper half plane R~ x R!. Har(ly spaces can he defined in any reasonable 
domain in e", see Chapter 8 of Krant? (I992). 

Discussion of th e real variabl e H a rdy spaces 

T he theory of Hardy spaces that we are using will consist of holomorphic fu nctions on 
L:::.1 or, ahernatively, their boundary values , which arc measurable functions on T1. There 
is a parallel theory of lI ardy spaces, which is described entirely by real variable metllods. 
Although we do not make usc of th is theory explicitly, we summarize it here because of its 
importance in the development of the suhject. 

For the lIardy ..,paces H"{R~+ ' ), we consider first the case n = 1. For 0 < P < 00, an 
liP-function is a complex analytic function F( z) in the upper hal f- plane R!, such that the 
LP-norms 

(j- )'" _00 IF(x + iy)jPdx 

arc bounded independent of y > O. 
T here is an extension of the theory of Hardy spaces, due to £ .M.Stein and Guido Weiss 

(Stein-Weiss (1960)). We denote by R ;+! the upper-space in R~+ I , that is, ((x , y) E R,,+I : 
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x E R" ,y > OJ. Whereas Hardy spaces in R ! arc just analytic functions, or pairs of 
conj ugate harmonic fun ctions, Stein and Weiss consider HP( R~+I) functions as a system of 
n + 1 harmonic functions, F(x,y) = {u; (x,y)},i = 0, 1, 2, ... ,0, defined on R~+', which are 
conjugate in the sense t hat they satisfy the generalized Cauchy-Riemann equations: 

and such that 

Here 

au; au] " au; 
- ~ - and L - == 0 (y = :Eo) 
aXj ax; ;",0 ax; 

, up ( [ IF(x,Y)I,,)IIP < 00 
~>o JR" 

IF(x,y)1 = (t, I";(X,Y)I') 'I' 

This theory is explained in the book Stein (1970), and in the fundamental paper Fefferman­
Stein (1972) , the latter con taining the result that BMO is t he dual of lJ l. 

1.3 Harmonic Analysis on the bi-upper half plane 

The purpose of this subsection is to discuss the analog, for the bi-upper half plane, of 
Theorem 1.3, t hat is, the atomic decomposition for HI and t he duality of t hat space wi t h 
BAlO, which is due to Chang and R. Fefferman. 

Atomic decomposition for Ifl 

Recall that, in one variable (Coifman (1974», if / E Ifl (R I) then / (x) can be written 

f(x) = L Akak(X) 

where L IAkl :5 CU/UII' and ak(x) are particularly simple functions called "atoms" . 
An analogous decomposition holds fo r functions / defined on R 2 whicb are boundary 

values of functions in HI(R! x R! ), where R! is the upper-hal f plane. Such an / is wri tten 
as L Akak(X, y) where again L IAkl :5 CUfUHl and ak is an atom. But in the product case, 
an atom is supported not in a rectangle, as one might expect, but in an open set n ;; Rl 
such that Uall .... :5 1/I!lP/2, and other conditions are satisfied, see below. 

In what follows, we sh all deal exclusively with the domain R! x R! and its ~ilov boundary 
Rl. A point of R! x R! will be denoted by Z = (Z],Z1) where z, = Xi + iYi and Xi E R , 
Yi > O,j= I , 2. 

Now, we shall introdu ce some notat ion: let'" E Cl(R) be supported on [- I , I] with 
t/J even and f~1 t/J(x)dx = 0; if Y > O,I,b~(x) = (l/y)l,b(x/y) an d if Y = (YhYl) and x = 
(X I,3:2) E Rl then I,b~(x) = 1,b~,(Xd"'Vl(Xl ) . If f is a function defined on R then we define 
f (x,y): = f' I,b~ (x); if x = (XI,X2) E R 2, we denote r(x):= r(xd x f (x2), where f( xj ):= 
{(thYj) E R 2 : IXj - t jl < Yj } , j = 1,2 . 

Given a function / on R 2 we define its double Square funct ion by 

Q' J 1 ,d,dy (i)(x) ,= If(t,y)l --,--,. 
nr) YIY2 

There are alternative definitions of HI (R ! x R!). Although we consider this at first 
as the set of boundary value funct ions on R 2 of biholomorphic functions on R ! x R!, t he 
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work of Gundy-Stein shows that the various definitions via. area. integrals and nontangential 
maxima] functions are equivalent. For example, we can define HI (R! x R!) as the class of 
functions on R1 for which AU) E Ll(R1) where 

A~(f)(x):= J f 1V'1V'1U(t,yWdtdy, 
Jr(r) 

and u is the multiple Poisson integral of f. 
Also, if f E I/I (R!)( R!l , then QU) E LI(R2) (sceCundy-Stein (1978) and Fefferman­

Stein (1972)). On the polydisc Chang and Fefferillan (see Chang-Fefferman (1980» make 
the following definition. 

DEF INITION 1.9 An alom is a fUllction a(r),x = (2:1,2:1) E R1 defined on R1 and sup­
ported in some open set n of finite measure, such that 

2. h a(x)dxj = 0, j = I, 2, where I) is any component interval of a set of the form 
{Xj E R l : x = (X\,X2) E n} (Where Xt is fixed k == 1, 2, k I- il, i.e., a has mean 0 
over every component iuterval of every xj-cross section of O. 

3. a can be further decomposed into "'elementary partidesn aR as follows: 

(a) a = LnaR, where an is supported in a rectangle R ~ 0 (say R = II x h) and 
the R in the sum have the property that no one R is contained in t he triple of any 
other. (When convenient, we shall write a = LRE;R. aR. Note that t he condition on 
the rectangles implies LIIER. IRI ~ 21111·) 

(b) I, an(x)dxj ;;;: 0, j = 1,2. , 
(c) an is G I with 

lIanll.,., ~ cn/IRI'12· 
lIaulIlOxJ II.,., ~ cn/I /JIIRI I /l,j = ),2 

and Ln ck ~ A/lI1\, where A i~ an ahsolute constant. 

With this definition, Chang and fcffcnnan have shown following result: 

THEOREM J.JO Let f E /l1 (R! x R! ). Then (identifying f with its boundary values) f 
can be written as f = L ).kak where Uk arc atoms and ).. ;?: 0 satisfy 

The Chang-Fefferman duality for t he bi-upper half p lane 

Recall that, if ¢ is a locally integrable function on R, it is said to be of bQundt!d mean 
oscillat ion (abbreviated as BAtO( R)) if 

11911~;= Sl? m!' I¢ - ofl1dx < 00, 

where the supremum ranges over all finite intervals I in R , and ¢, = mIl ¢(x)dx. In 
this case, C.Fclferman and E.Stein pro\'cd in Pefferman -Stein (1972) that BMO(R) is the 
dual space of H' {R ). Chang and felferman gave two kinds of definitions for BMO functions 
defined on R' , and proved that both definitions characterize the dual space of HI (R! x R!). 

We now state these two defin itions and the Chang- Fefferman theorem. 
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DEFINITION 1.11 BMO(a) is the space of locally integrable functions 1jJ defined on R2 , 
satisfying: 

I 
II;,II~ ,~ ,up -10 111 L "',,"~ < 00, 

n Reo 

where the supremum ranges over all open sets n of finite measure in R 2, and for each dyadic 
rectangle n, TfR is defined with respect to I/J as 

where I/Jv is defined above, and if R = J x J, 

R+ = {(t,y) E R! x R! : t E R, 1/ 1/2 < y. Si l l. IJI/2 < Y2 :S IJI}· 

Recall that R! x R! is the disjoint union of all the R+_ The second definition of Chang 
and Feffcrman is motivated by their work on atomic decomposition of HI described above. 

DEFINITION 1.12 BMO(b) is the space of locally integrable fu nctions I/J defined on R 1 
such that given any open set!1 C R2 , there exists a func t ion ;Po so t hat 

I~I In 1;'(1) - ~n( I)I'dl ~ M, 

for some M independent of fl. The fu nctions J>o satisfy the fo llowing three conditions. 

1. ~ = l;. ~;, where ~ach J; is s~pported on the triple Hi of d istinct dyadic rectangles R; 
with 1R; n 01 < 11l,1/2, and 1/;; has mean value zero over each horizontal and vertical 
segment of k . 

2. Furthermore, if Hi = I; x J;, 

for some C /t,' 

3. LIR:nOI-'(ln"lIR:1 CA, s: c2*klOI for each k = 1,2" .. and some absolute constant c. 

In Chang·Fefferman (1980), the following theorem is proved. 

T HEO REM 1.13 Assume I/; E Ll( R l) satisfies 

J I/;(XhX~)d.rl =0= J "'(Xl,Xl)dx~ 
for all (X I , X2) E R2. Then the following condit ions arc equivalent: 

1. I/; E BMO(,,); 

2. I/; E BMO(b). 
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3. sup l/iOILRcn 5k(t,b) < 00, where the supremum ranges over all fini te open sets n in 
R ', and for each dyadic rectangle R, 

Shl ",)~j I I~("y)l'd'dy; 
lR+ Y1Y' 

4. !/J is in the dual of HI(R~ x R!l, that is, If wil:S canst II JIIHI for all f E HI , 

Denote the space of functions defined by Theorem 1. 13 by BMO(R') and denote a norm 
in this space by 11911 •. Each condition defines a norm, all equivalent . 

REMARK 1.14 The integral in the fourth condi tion exists than ks to the argument on pages 
192- 193 of Chang· Feffcrman ( 1980). 

1.4 Factorization Theorem 

We now state the factorization theorem of Lin (1994a,1994b), that we shall usc in the next 
section. We stale several versions of it. We shall use the version for p = 1 [or the bidisc in 
our appl ications. 

The hi-upper half plane, p = I 

THEOREM 1.IS Let a be an atom (see DEFINITION 1.9), a = LRaR, A = Sea) a nd AR = 
StaR), where 5 denotes the Szego projection. TheIL there exist Bj.R , Ci.R E H1(R~ x R~) 
(j = 1,2,3,4) such t hat 

• 
A = L L Bj.RCj,R 

ReR .. , 

Theorem 1.10, US imply the following. 

THEOREM 1.l6 (Factorization Theorem for R~ x R~) If f E fl L( R! x R~), then there 
exist gj, hj E H2 (R~ x R~ ), such t hat 

) ", L 

in the sense of d istr ibutions, and L: j)gJj),f>j)hJ IIH' $. cllflllll . 

The bidisc (0 < pS I ) 

The following is proved first for the bi-upper half plane, and then transferred to the bidisc 
via the Cayley transform. See Lin (1994a,1994b) for details. 

THEOREM 1.I7 (Factorization Theorem for 6') If f E HP( 6 ') for 0 < p $. I then there 
exist gj,h j E H2P(6'), ~uch that 
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2 DUALITY OF HARDY SPACES AND APPLICATIONS 

In t his section we begin by transferring the duality theorem of Chang and Fefferman from the 
hi-upper half plane to the bidisc. Then we use this duality, together with the factorization 
theorem to prove the analogue of Nehari 's theorem for Hankel operators on the Hardy spaces 
of the hi disc. We also consider duali ty of V M O with H I and compactness of Hankel operators 
(Hartman's theorem). 

2.1 Duality of BAlD and HI 

In this subsection , as an application of the Ch ang-Fefferman resul t, we shall prove that the 
dual of Hl (L:'l') is BMO(T') . Chang and Feffetrnan have shown that the d ual of HI (R~ x 
R !) is BMO(R2). We now use the Cayley transform to t ransfer this result to the hidisc. 

DEFI NITIO N 2,\ The Cayley Trans/o rm from D." onto (R~)" is defined by 

where 

T : 6 n -+(R! )" , T = (Tl1T2, ... , T .. ), 

i(t - w.il . '7-,---=, ) = l, 2, .. " n. 
1 + Wj 

If n = 1 we write for shorl t hat: 

i( l - w) 
where T( W) = , 

1 +w 

and we note t hat T- 1(Z) == (i - z)/(i +z). The si ngle variable version of the next two lemmas 
come from pages 51- 52 of Garnett (l9B I ). 

LEMMA 2.2 For a < p < 00, if / E H~(R! x R! l then 9 = f 0 T E H~(D.') and 
119I1w(6'J:5 7T-ll1/IIHP{R~ ~ R~J ' 
Proof: Fubini 's theorem implies 

iT" 1(10 T)(e iS
" ei', WdO\ d02 = h h II(Tl (e"'), Tl(e i"lWdO,dO\ 

= hilI( Tl (e '" ), T,(. ))1I~f'(6)dOI 

:5 (I/lf)" r II f(Td e;")")II~/'lR,)dO, iT , 

= (1/11')" h (!R lf(T!Cei"),x,Wdx2)dOl 

= (1/lI'y iRhlf(Tdei9'l ,xll!PdO\dX2 

= (i/II'? 1n, lIf( T' (')'X2)II~f'(6)dx, 
< (1/1I')2~ in IIn,X2)1I~.{n~)dx2 

= {l /1T)'P iniR If(xlox,) IPdx 1dx, 
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LEMMA 2.3 For 0 < p < 00, if 9 E 11"(1).1) then 

F (z) = (/I"(ZI + i)lt L/p( JT(Zl + i)l)-I/Pg{r- l (t)) E H"( R! x R!) 

and tlg!! 1/.(ll.~) = I IFIIH~IR~xR! )' 
Proof: We use the fact that if you fix one variable in an H"-{unction , the resulting functiou 
of the other variables is also an IJ"-function. 

Identifying functions wilh thei r boundary values, hy Fubini's theorem, 

JR. IF(XWdx = JR(1f(x1 + 1)1)- 1 fa 1(Ir{IL + l )lr l/Pg(Tl- l(xd,Tl- I(Xl)1"dxldxl 

= In'<1f(I2 + l )lt l 1r Ig(wit T1-
1(X2Wdw\ dx l 

::; 1r fn (1I"(l'1 + I ?r l'''g(w" T1-
1(X ll)IPdx1dw . 

= 1rfrI9(WI ,Wl)IPdwldwl 

::; fr, lg(w)IPdw. 

DEFINITION 2.4 We define BMO(Tl ) to be the space of integrable functions 9 defined (In 
T2 such that go r - I E BMO(Rl), with norm 

For notational sim plicity, we shall d('llote t ile norms in BMO(T2) and BMO(R2 ) by 

11·11 . 

LEMMA 2.5 Let 9 be analytic on R~ x R~. Then 9 E Hl( Rl) if and only if 

, 
G(w) =: ( TI ( 1 + wJ)lrlg(T(W» E 1/ 1(1'1). 

J= l 

Moreover, 4I1GHtl' (Tl) = IIglI'I'( 1l1). 
Proof: 

IT'IG(w)ldw 

THEOREM 2.6 BtHO(]'l) is tht' dual of Ifl(,6.2). 
Proof: Let 9 E DMO(]'l). We shall prove that 

II 911 ~ 11911 .llfll",. I E 11' (1"). 
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By definition , 9 0 r- I E BAlO(R'). For any f E //I (f',.l) we have from Lemma 2.3 that 

F(z) = !(T-1(Z))[1f(Zj + i)(Z2 + i)]-' E HI ( R~ x R~ ) 

and IIFUH' (Rl) = 1I/lIuI{T1). 
Thus 

IIg!l. lIfUH'(L>l ) = 119 0 T-Il! . j!FIIH I(R~ ~ Rt) 

?: I r g(T- 1(x))f(r-1(x)){lI"(XI + i)(X2 + i )]-'dxl 
la' 

/, . -, J, (1 + w,)'( -2i) 
= c! (Xl + I) g(Wj,7,l!(W1,:l'1) ( .)'( )1 dw1dx,1 

It T 211+w\ 

= cl In(z, + ij-' h 9(WZ,X2l!(wJ,X2)dwtdx21 

= cl h. fit (X2 + irlg{wt, x,l!(W j, x,)dx,dwli 

= c! [ ( g(w!, Wl)!(W\, w,)dw,dwd Jrlr 
= cl f g{w)f(w)dwl. 

IT' 
This proves th at 9 E (l/ 1{,61»* . 

To prove the converse, note first that by the Hahn -Banach and Riesz representation 
theorems, every bounded functional on (HI(.61» is given by some bounded measurable 
function . So, let 9 E ( H I(.6?» ' , We have to prove that 9 E BAlO(T') , that is, 9 0 r- I E 
BMO(R'). 

If F E HI (R' ), we know from Lemma 2.2 that For E HI(61) ,and 

Moreover, 

Put f(w) = F( r(w))(I+"'II;(~I+~)1. By Lemma 2.5, f E HI (61
) and U!lllll(~') = 

4 11FII Hl (R! "R~)· Hence we obtain 

I/R, (gor- l )(x)F(x)dxl = 1/ gIl 

< 11911 .11111"'1"'1 
:5 IIgll . IIFIlI/'( R!~R!)· 

Note that t he integral fR,(g 0 r- I )(x)F(x)dx exists by Remark \.14 . 
Thi s implies 

Thus 9 E BMO(Tl). 
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2.2 Bounded ness of Han kel operators 

Here we shall prove the analog of Nchari's theorem (Theorems I.l and 1.6) for the bidisc. 
Before defining the Hankel operator formally, we give a proposition . 

PROPOS IT ION 2.7 For 9 E 112
, the foHowing two properties are equivalent. 

1. 9 E BMO(T'). 

2. 9 = S(J), for some f E LOO(1"). 
Proof: Fi rst we prove "(2) implies (l)~. 

Suppose 9 E If' is such that 9 "" SU) for some f E //00 and Jet k E If' with !) k!h = 1. 
Then 

(9,k) ~ (S(f),k) ~ ([,S(k)) ~ ([,k), 

so we have 

1(9,k)1 ~ J,., Ilkl 511/11~lIklh ~ Ilfll~, 
that is, 9 E (Jlt) . , Hcnce, 9 E 8MO(1'2) (and 11911 . 'S 11 /1100 )' 

Now we show that "( 1) implies (2)". 
Suppose 9 E BMO(T'). Since l/2 is uense in HI , 19 defined by 

ex tends to a bounded linear fUli ctional on HI. By the Hahn-Banach Theorem, we can 
extend it further to a bounded linear functional/~ on L1(T 2 ). 

By the Riesz Representation Theorem, there exists fin LOO( T1) such that 

For all u E H2, 

(u,9) ~ I,(u) ~ I;(u) ~ (u,f) ~ (S(ul'/ ) ~ (u,S([)). 

Since }{2 is dense in HI , we see that 

(Il,g) = (u,S(f)),'iu E HI . 

If u E £2 then 

(U,9) ~ (U,S(9)) ~ (5(u),g) ~ (S(u), 5(1)) ~ (u,S'(I)) ~ (u,S([)). 

Hence 9 = S(f), because £2 is dense in LI . 

DEFI NITION 2.8 For fixed f E H2(!:::.1), the lIankei operator h'J on Jl2(!:::.?) is the conjugate­
linear densely defined operator given by 

where 5 is the Szego projection. 
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Thus, 

KJ(u)(z) = f S(l,w)f(w)u(w)dw. Jr, 

THEOREM 2.9 For 9 E ill , the following are equivalent. 

1. Kg maps H' continuously into iI' 

2. 9 E BMO(T') . 

3. 9 = S(f), for some f E LOO(T'). 

Moreover, IIK,il:::::: 1[911. 
Proof: Owing to Proposition 2.7, we on ly need to prove (I) is equivalent to (2). 

Suppose 9 E BMO(T') and k E H', Then for f E Hoo(e H'), we obtain 

(I',f,k) = (S(g7),k) = (g7,S(k)) = (g7,k) = (g,fk). 

Since fk E HI and II/kllll> :5l1flllll!(~'UIf)' we have 

Since HOI> is dense in H', IIK,II s 11911 . , thereby proving that K, is cont inuous. 

To prove the converse, suppose H, is continuous. 
For / E HI , by Theorem 1.17 there exists Fi> G) E 1/' such that 

00 

f = 2:.F;G;, 
j=1 

and 
00 

L II F;II", IIG,II", $ '11111"" 
';=1 

for some absolute constant c. 
Note that 

00 00 00 

L(/(,F;,G;) = D S(gl'j),G;) = Dgl'j,S(G,)) 
';=1 ): 1 

00 00 

= Dgl'j,G;) = Dg, F;G;) = (g,f). 
j:l 

Since Kg is bounded, we obtain 

00 

I(g, f)1 $ II K, II L IIF;II",IIG;II", $ '1II',lIl1fll,," 
j:' 

34S 
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2.3 Duality of VMO and 1/ 1 

A space VMO was introduced in the classical selting by $arason (1975). It is somewhat 
different from ours; we adopt a modified version for which the 31laJog of theorem 2.6 holds. 
By using the Cayley transform , we shall prolle that the dual of V MO( b.') is fll (!::.'). 

DEFIN IT ION 2.10 The space V MO(T') is the subspace of BMO{T' ) which is the DlfO{T' )­
closure of the analytic poly nomials. 

To prove that 

we need the following lemmas. 

LEr..lMA 2.11 The Szego projection S : U (Tl) ..... 111 (6,') restricts to a bounded map of 
U"'(T') into BAlO(Tl). 
Proof: If f E I,""' , then Sf E 1/ 1 , ~o to prove that Sf E BMO(T') we must show 
that it determines a bounded [inear functional on HI , To t his end, note that for 9 E Ifl, 
(S(f),9) ~ (f, 5(9)) ~ (f,9) ., 1(5(1),9)1 S 11,11",1111100 ,," tho, 

115/11. ~ '"P 1(5(1),,)1 S 11/1100' 
IIgIIH,$I.gEII' 

LEfl.IMA 2. 12 S( L""' ) = BMO. 
Proof: For f E BAlO(1'l), there is a linear fun ctional 1/ on /l'( A l ), defined by 

I,{II) = J Ill. for all analytic polynomials II E Hl(61). 

Since Hl(61
) C L I(T1) , we have from Hahn-Banach Theorem that there exists a bounded 

linear functional I on LI(T1) with (IHI = 11' Then by Riesz Representation Theorem there 
exists 9 E L""'(T1) such that I defined by 

/(u) = (g, II) = J gil, "E L' (T1) 

is a bounded linear funct ional 011 {.I (Tl) satisfying, for all analytic polynomials II E 1l1(6.1), 

JIll = 1,(11) = /(11) = (g,lI) = (g,S(u)) = (S(g),u). 

So U - S(9), tI) = 0, V analytic polynomials u E Hl(61 ) and thus f - S(9) = 0, i.e., 
I ~ S(g). 

LEMM A 2.13 The Szego projection 5: C(Tl) -> VMO(Tl) is bounded wi th dense range. 
Proof: Since V M O{Tl) is the BIlfO(T1)-closu re of the analytic polynom ials and the space 
of polynomials in z, z is dense in C(T1), we get our result from Lemma 2. 11. 

The analog of t he following theorem was proved by Coifman and Wei ss (see Coi fman­
Weiss (1977)) whcn n is the unit ball in C" and by Krantz and Li (Krantz- Li (J992)), 
if n is a smoothly boundCf.! strongly pseudoconvex domain in C" or a smoothly bounded 
pseudoconvex domain of finitc type in C1. 
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THEOREM 2.14 

VMO(T')" = 1/ 1 (6,2 ). 
Proof: Since HI {6. ')" = BMO(T2

), it follows by restriction t hat 

For the converse, take I E V MO(T')" . Then we define a linear funct ional Lon C(T') as 
follows: 

L(f) ~ I(S(f) ), IE CIT'). 

Lemma 2.13 implies that L is a bounded linear functional on C(Tl) . By another Riesz 
Representation Theorem , t here is a finite complex Borel measure /J on T' such that 

L(f) ~ ( Idp 
iT' 

IE C(T') . 

( Id/. ~ I(S(f)) ~ 1(0) ~ O. 
IT' 

So, if we take f = z<>zo, then S(f) = 0 if there exists j E {I , 2} such that OJ - Pi < O. Thus, 
by the F. and M. Ricsz Theorem (p. 201 of Rudin (1962)) d/I = hdm , for some conjugate 
holomorphic function h, where m is Lebesgue mea~lIrc on T'. 

Now for 9 E C(T'), we have 

1(5(9)) 

By Lemma 2.13, 

= [ghdm = { /Kdm JT> iT> 
(9, h) ~ (9, S(h)) 

~ (S(9), X) ~ ( 5 (g)hdm. Jr. 

I(~ ) = J o,ph '1'.; E VMO , 

that is, I = III. and 

2.4 Compactness or Hankel operators 

The Hart man theorem holds if the unit disk is replaced by the unit ball in C" (see Theo­
rem 1. 7 of Coifman , Rochberg, and Weiss) . In t his section we show t hat Hartman 's theorem 
holds on the bidisc. 

THEOREM 2.15 For 9 E H'(6') , the Hankel operator 

Kg; II l (!:::.') -> 1/ 2(6. 2
) 

is compact if and onl y if 9 E V MO(T'). 
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Proof: 
verified: 

Suppose f{9 is compact. We shall use the followi ng two facts, which are easily 

• For f E Hl(61), 0 < r < I, set (1~f)(;:) = f(n). The operator norm of T, as a map 
from H2(61) into U(T2) is one . 

• For f E H'(6.2) , 
/{T.9! = 7~f{9T,f. 

Using these two fact s and the compactness of Kg . it follows that 

lim UK, - KT•9U = lim II Kg_Trill = O . 
• _1 r_L 

By Theorem 2.9, we have lim,_1 119 - T.9 11 . = O. Since T,g is continuous, it belongs to 
V M O(T'). Hence the limit 9 E VMO{T'). 

Suppose 9 E V MO(T') . By Lemma 2.13 there exists a sequence Un} in efT') such that 

5(1 .. ) --> 9 in 81'110. 

Since the space of the polynomials in z and z is dense in efT') , for each In there exists 
a sequence of such polynomials (p!:)} such that 

p!.:' l ..... In uniformly Oil T' , 

For (> 0, there exists a positive integer N = N( i ) such that 

thus 

and by Theorem 2.9 
Ill\g - h's(J,dll < c{. 

For this N, there also exists an illteger /If '" .M(i, N(l)) > 0 such that 

IIIN - 1)~l lIc(T') < (, 'v'm::: M. 

From (2) and Lemma 2.11, we obtain 

I!S(h;) - S(p!:")lIl. < ee, for some constant c. 

Equation (3) and Theorem 2.9 imply 

II l\ s(f,,d - I<S(p!.:"))!! . < ce'e, for some constant e' . 

Since 
I\g - I\Sb':: l) = /\'g - K S(lH) + K SUH ) - 1<5(p'::())' 

we have from equations (I ) and (4) that 

II /\g - Ksfp!:" , 11 :s 11 1\9 - 1\'SI1,d ll + III\S(fHl- 1(S(p!:,')U < Cc 

(I I 

(21 

(31 

(41 

Since S(p!,;"l) is an analy tic polynomial , K St,,!:,J) has finite dimensional range and hence 

I( S(,<,:I) is compact. 
Since f( Sfp!:')) ..... Kg and the norm limit of compact operators is compact, Kg is compact. 

Acknowledgment: Both authors wish to thank Dr. Song-Ying Li {or many stimu lating 
discussions on the su bject matter of this paper. 
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