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Applications of Factorization in the

Hardy Spaces of the Polydisk

Ing-Jer Lin Department of Mathematics, National Kaohsiung Normal University, Taiwan
Bernard Russo Department of Mathematics, University of California, Irvine. California

1 INTRODUCTION AND PRELIMINARIES

1.1 Introduction

It is well known that factorization of a function in the Hardy space H' in the unit disc into
a product of two H? functions fails in higher dimensions, but that for the unit ball in C" a
weak factorization exists and has many applications (Theorem of Coifman, Rochberg, and
Weiss). The purpose of this paper is to give the corresponding applications of an analogous
factorization theorem for the Hardy spaces on the polydisk (which is due to the first named

author).

Classical Hankel operators

A Hankel matrix (finite or infinite) is a matrix of the form

a; a;
a; ajy
(@k4n) = | a3 a4
a4 s

as
ay
s
ag

ay
as
ag
a7

(k=1,2,..,n =0,1,2,...). The matrix elements are constant on lines (diagonals) perpen-

331

EBSCO Publ i shing : eBook Col | ection (EBSCOhost) - printed on 3/13/2021 7:29 PMvia UNIV OF COLORADO AT BOULDER

AN: 43669 ; Montgonery-Smith, Stephen, Saab, E., Kalton, Nigel J..; Interaction Between Functional Analysis,

Account: s8860338. nai n. ehost

Har moni ¢ Anal ysi s,

and Probability



EBSCChost -

332 Lin and Russo

dicular to the main diagonal. A famous example is the Hilbert matrix

|
{J'c+nJ'

Hilbert, in his lectures on integral equations (1906), showed that this matrix is bounded
in [?; this result was first published by Weyl in his thesis (1908), and the exact norm was
determined by Schur (1911) who showed it is 7.

Thus the Hilbert matrix represents a bounded operator of norm 7 on {*. This can
be restated as the well known and famous Hilbert inequality, see Hardy-Littlewood-Polya

(1934):
a,a
Y —F— <) al.
mas0 M +n+1
For purposes of generalization, it is convenient to realize Hankel matrices as linear oper-
ators acting on suitable function spaces. For example, let T' denote the unit circle in C, let

P = P, be the Riesz projection, that is, the orthogonal projection of L2(T) onto the Hardy
Space H?:

Pi(Y d(n)z") =3 d(n)2",
-0 0

and let P = I — P,. For a function f on T, define the Hankel operator with symbol f to
be Hy = P_M; where M; is the operator of multiplication by f.
Hankel operators are intimately related to Toeplitz operators. A Toeplitz matrix is a
matrix of the form
(@m—n),
for m,n =0,1,2,.... We see that the matrix entries are constant along lines parallel to the
main diagonal. An important example is

1

m-—=rn

)s

with the convention % = 0. For a function f on T, define the Toeplitz operator with symbol
f to be Ty = PM;, where M; is multiplication by f.

Now the unit circle T' is the Silov boundary of the uniform algebra of all continuous
functions on the closed unit disk A which are analytic on the open unit disk A; and it is
the topological boundary of A. This suggests that a fruitful direction of generalization lies
in the realm of several complex variables. One can consider first the case where the “base
space” A is replaced by the unit ball B = B, in C". After that, one may ask what happens
if one passes to general pseudoconvex domains, to the polydisk, to Siegel domains, etc.

In the case of the unit ball, the most natural candidate for a substitute for P seems to
be the (Cauchy-) Szegd projection, that is, the orthogonal projection S of L?(8B) onto the
Hardy space H2(OB) (9B is the unit sphere in C" and the Hardy spaces are defined below).
Then Toeplitz and Hankel operators could be defined respectively by

T[: Sﬂf! and HJr Z(]—S)M;.

This definition of Toeplitz operator is as good as it can be. For technical reasons, a Hankel
operator with symbol f will be defined to be the conjugate linear map

K;é=S([4).
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We return to the case of the unit disc. It is natural to ask when a given Hankel operator
Hy, intially defined on holomorphic polynomials, has an extension as a bounded operator
from H? to H** where H?** = zH? = the orthogonal complement of H2. The answer is the
classical theorem of Nehari, see Nehari (1957).

THEOREM 1.1 (Nehari 1957) Hj can be extended to a bounded operator from H? to H**
if and only if f € L*. Moreover,

NHill = | fllLoeymee = dist (f, H*).

The next question is: When is a Hankel operator compact? The answer is the classical
theorem of Hartman, see Hartman (1958). Let C' denote the space of continuous functions
on T.

THEOREM 1.2 (Hartman 1958) H, is compact operator from H? to H?*' if and only if
feC+ H=,

Note that, since the symbol of the Hilbert matrix is f(#) = i(§ — ), we obtain an elegant
proof of Hilbert’s inequality as a consequence of Nehari’s theorem:

Hsll = N1f + HZ| £ [[flloo = 7.

The factor space L*/H® can be identified with the space zZBMOA (f € BMOA « f €
BMO and f(n) = 0 if n < 0). Thus the theorem of Nehari can also be expressed by saying
that “H; is a bounded operator from H? to H?* if and only if P_f € zBMOA" (see below
for the definition of BMO).

To prove this identification, recall first that L C BMO and by a deep theorem of C.
Fefferman, P(L*) = BMOA. Hence P_.f = f — Pf € BMO. On the other hand, for
[ =% an2",

P.f=f-Pf=Y a,z =g0(2),
1

where g is analytic and ¢(0) = 0. Thus P_f € zBMOA.

Similarly, the factor space (C + H*)/H> can be identified with the space zZVMOA
(f € VMOA & f € VMO and f(n) = 0 if n < 0). Thus the theorem of Hartman admits
the following formulation: “H; is compact as an operator from H? to H** if and only if
P_fezVMOA".

As a consequence of a new factorization theorem in H', see Lin (1994a, 1994b), in this
note, we shall extend Theorems 1.1 and 1.2 to the bidisc in C2.

For more information along these lines, see the interesting survey article of Peetre, Peetre
(1983), from which the above was borrowed.

Harmonic analysis on the unit ball of C?

For comparison to our work on the unit bidisc, we present here the known results on the
unit ball.

Let B = B, = {z = (21,...,2a) : z; € C, T |2;]* < 1} be the unit ball in complex
n-space. Denote Lebesgue area measure on 8B by o. For z € B, let 2/ = z/|z|. The Hardy
space H?(0B), 1 < p < oo is defined to be the space of functions F which are holomorphic
on B and for which

Il = sup ([ 1P o))" < oo
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For z,{ € B, let d(z,{) = |1 — (- z|"/? and let S, denote the sphere on dB of radius r in
the d-metric. An atom is a function a((), defined on @B, which is either identically 1 or is
supported on a sphere S and satisfies

1
|ﬂ[C)l£t—S—i. fwada=0‘

A holomorphic atom is a function of the form A = P(a), where a is an atom and P tem-
porarily denotes the projection of L*(98) onto H*(3B). More precisely,

_f a0 .
AR =c [ =gramde0) (1<)

The space BMO consists of all functions b on 8B such that
Ibllrio = sup [ 16(y) — ms(b)] dor < oo,
reESJS

where the supremum is taken over all spheres S, |S| denotes the g-measure of S, and

mg(b) = ]_;Tlfsb

Finally, we let BMOA be the subspace of BMO consisting of those L?-functions which have
holomorphic extensions to B, that is BMOA = H* N BMO.

With all these definitions, we can now state a basic and standard theorem in the theory,
see Coifman-Rochberg-Weiss (1976), Coifman (1974), and Fefferman-Stein (1972).

THEOREM 1.3 The following statements are true:

(a) Every F € H'(0B) can be written as F' = ¥7° M\;A;, where the A, are holomorphic
atoms and A; are complex scalars with 3 [A;| < ¢|| F|l.

(b) The dual space of H'(dB) is BMOA.
(c) P is a continuous map of L=(dB) onto BMOA.

To show the importance of the atomic decomposition (part (a) of Theorem 1.3), we use
it to prove that BMOA C (I1')*. Let ¢ € BMOA and let F =Y M\a; € H'. Then

U F‘él |Z A [3 a;¢
|Z;\‘ La‘-(cb—rr:s.{¢))|

gy [, 18- ms (@)
(X IAl) liéllsaro < cllgliBaroll Fllan-

It

IA

It is well known and easy to prove that on the unit disk, every H'-function is the product
of two H?-functions. For the unit ball the following is the analogous factorization theorem,
see Coifman-Rochberg-Weiss (1976).
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Hardy Spaces of the Polydisk 335
THEOREM 1.4 Given F € H'(3B), there are G;, H; € H*(dB) such that
F =Y G:H;
1

and

2 NGillallHillz < cll Flla.
1

This theorem is proved by combining part (a) of Theorem 1.3 with the following proposition,
as in Coifman-Rochberg-Weiss (1976).

PROPOSITION 1.5 Every holomorphic atom A can be written as
N
A=) B,
1

with B;,C; € H*(@B) and T || Bi||2||Ci|l2 € C, where C and N depend only on the dimension
n.

Let b € H*(9B) and let K, be defined in H*(B) formally by K(f) = P(bf). As noted
above, such operators will be called Hankel operators.

The next two theorems are generalizations of the theorems of Nehari and Hartman to
the unit ball in C™, see Coifman-Rochberg-Weiss (1976).

THEOREM 1.6 For b€ H?(9B), the following are equivalent:
(a) K, is a bounded map from H2(9B) into H*(9B).
(b) b= P(F) for some F € L*(dB)
(c) be BMOA
For b € BMO define

M,(b) = sup ﬁjsw(z) — ms(b)| do(z).

Isi<r

Here, the S are spheres on dB and |S| is the measure of S. We say that b belongs to the
space VMO (vanishing mean oscillation) if lim,_o M,(b) = 0.

THEOREM 1.7 For b € H*(0B), the following are equivalent:
(a) K, is a compact map from H?*(8B) into H*(3B).
(b) b= P(F) for some F € C(9B)
(c) bis an analytic function in VMO
Here is a related duality theorem, see Coifman-Weiss (1977).

THEOREM 1.8 Let VMOA = H*NVMO. Then the dual of VMOA is H'(dB).

The material in this subsection is taken primarily from Coifman-Rochberg-Weiss (1976).
As noted above, in this note, we shall obtain analogs of Theorems 1.6 and 1.7 in the context
of the bidisc, as well as for Theorem 1.8.
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1.2 Preliminaries on Hardy spaces

Hardy spaces of the bidisc

The following notation will be used: R denotes the real numbers; C denotes the complex
numbers; A denotes the open unit disk, T denotes the unit circle.

We shall have occasion in this paper to use some standard concepts from the classical
function theory of several complex variables, such as (Cauchy-) Szegd kernel, (Cauchy-)
Szegd projection (in polydisc),.... A standard reference is the book by Krantz, see Krantz
(1992).

The Hardy spaces H?, for 0 < p < oo are defined by

HP(A) = {f is holomorphic in A" : || f]|g» < o0},

where y
= s _-1.-_- = Saa 1 LU iny|p ’
1l = sup, [{2«)" L [ e ) da]

and 1 >r = (r1,ry,..7q) >0means 1 >r; >0forj=1,2,...,n
For p = o0,

H=(A") = {f is holomorphic in A" :S.{l:.? Ifl = | fllie= < oo}

A fundamental result in the theory of Hardy spaces is that if f € HP(A"), 0 < p < o0,
then the limit _ _ o _
lirln_ flrie®, o rae'®) = f(e®, .-, ")

exists for a.e., 8, € [0,2r), for j = 1,2,...,n, where r = (ry,--+,7,) = 17 means r, —
17,7 =1,2,...,n.. For 1 < p < oo, the function f can be recovered from f by way of the
Cauchy or Poisson integral formulas.

Although we have stated the definition for the polydisk, we also need to consider Hardy
spaces in the bi-upper half plane R% x R2. Hardy spaces can be defined in any reasonable
domain in C", see Chapter 8 of Krantz (1992).

Discussion of the real variable Hardy spaces

The theory of Hardy spaces that we are using will consist of holomorphic functions on
A? or, alternatively, their boundary values, which are measurable functions on T?. There
is a parallel theory of Hardy spaces, which is described entirely by real variable methods.
Although we do not make usc of this theory explicitly, we summarize it here because of its
importance in the development of the subject.

For the Hardy spaces HP(R}*'), we consider first the case n = 1. For 0 < p < oo, an
HP-function is a complex analytic function F(z) in the upper half-plane R2, such that the

LP-norms s
U |F(z + z‘y)|”d:r)
]

are bounded independent of y > 0.
There is an extension of the theory of Hardy spaces, due to E.M.Stein and Guido Weiss
(Stein-Weiss (1960)). We denote by R*' the upper-space in R™", that is, {(z,y) € R™*":
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z € Ry > 0}. Whereas Hardy spaces in R2 are just analytic functions, or pairs of
conjugate harmonic functions, Stein and Weiss consider H?(R}*') functions as a system of
n + 1 harmonic functions, F(z,y) = {ui(z,y)},7 =0,1,2,...,n, defined on R}*', which are
conjugate in the sense that they satisfy the generalized Cauchy-Riemann equations:

au,- Ou; 314,

= and 7. = 0 (y = xo)

dz;  0x;, C &0

1/p
sup (f |F(:r,y)|”) < oo
y>0 R

n 1/2
|F(z,y)| = (E Iu.-(r‘y}lz) .
=0

This theory is explained in the book Stein (1970), and in the fundamental paper Fefferman-
Stein (1972), the latter containing the result that BMQ is the dual of H'.

and such that

Here

1.3 Harmonic Analysis on the bi-upper half plane

The purpose of this subsection is to discuss the analog, for the bi-upper half plane, of
Theorem 1.3, that is, the atomic decomposition for /! and the duality of that space with
BMO, which is due to Chang and R. Fefferman.

Atomic decomposition for H!

Recall that, in one variable (Coifman (1974)), if f € H'(R') then f(z) can be written

flz) =3 Meag(z)
where 3~ |Ak| < C||fllm and ax(z) are particularly simple functions called “atoms”.

An analogous decomposition holds for functions f defined on R? which are boundary
values of functions in H'(R2 x R2), where R? is the upper-half plane. Such an f is written
as ) Agax(z,y) where again 3 I)\k| < C|Ifll# and ax is an atom. But in the product case,
an atom is supported not in a rectangle, as one might expect, but in an open set  C R?
such that ||a||zz < 1/|2]'/2, and other conditions are satisfied, see below.

In what follows, we shall deal exclusively with the domain R% xR and its Silov boundary
R?. A point of R% x R% will be denoted by z = (21, 22) where z; = z; +1y; and z; € R,

as

y; >0,7=1,2
Now, we shall introduce some notation: let 1 € C'(R) be supported on [—1,1] with
3 even and [iv(z)de = 0; if y > 0,9,(z) = (1/y)¥(z/y) and if y = (y1,y2) and = =

(z1,22) € R? then y(z) = ¥y, (21)¥y,(x2). If [ is a function defined on R then we define
f(z,y) := f*¢y(2); if 2 = (z1,22) € R?, we denote I'(z) := I'(z;) x I'(z2), where I'(z;) :=
{(tiy;) e R?: [z — 5] < yil, =12

Given a function f on R? we define its double Square function by

Q)= [ [ 1P,

There are alternative definitions of H'(RZ x R}). Although we consider this at first
as the set of boundary value functions on R? of b:holomorphic functions on Ri x R2, the
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work of Gundy-Stein shows that the various definitions via area integrals and nontangential
maximal functions are equivalent. For example, we can define H'(R% x R?%) as the class of
functions on R? for which A(f) € L'(R?) where

A)&) = [ [ 193t gy,

and u is the multiple Poisson integral of f.

Also, if f € H'(R% x R2), then Q(f) € L'(R?) (see Gundy-Stein (1978) and Fefferman-
Stein (1972)). On the polydisc Chang and Fefferman (see Chang-Fefferman (1980)) make
the following definition.

DEFINITION 1.9 An atom is a function a(z),z = (z;,z2) € R? defined on R? and sup-
ported in some open set  of finite measure, such that

L flallz: < (9712

2. [ja(z)dz; = 0,5 = 1,2, where [; is any component interval of a set of the form
{z; € R': 2 = (z1,22) € 01} (Where z is fixed k = 1,2, k # j), i.e., a has mean 0
over every component interval of every z;—cross section of (2.

3. a can be further decomposed into “elementary particles” ag as follows:

(a) @ = Y_pag, where ag is supported in a rectangle £ C  (say R = I, x I) and
the R in the sum have the property that no one R is contained in the triple of any
other. (When convenient, we shall write @ = ¥_gpen, ar. Note that the condition on
the rectangles implies 3" per, |R| < 2|0].)

(b) f;, ap(z)dz; =0,5 = 1,2
(c) ag is C! with

19ar/0z,llos < en/ILIRIM?,j =1,2

and Y pck < A/|Q, where A is an absolute constant.

larlles < er/|RI".

With this definition, Chang and Fefferman have shown following result:

THEOREM 1.10 Let f € H'(R% x R%). Then (identifying f with its boundary values) f
can be written as f = A.a; where a; are atoms and A; > 0 satisfy

A < Al fllmn

The Chang-Fefferman duality for the bi-upper half plane

Recall that, if ¢ is a locally integrable function on R, it is said to be of bounded mean
oscillation (abbreviated as BMO(R)) if

912 = sup - [ 16 = dil*dz < oo,

RS

where the supremum ranges over all finite intervals [ in R, and ¢; = T}’TL’ d(z)dz. In

this case, C.Fefferman and E.Stein proved in Fefferman-Stein (1972) that BMO(R) is the

dual space of H'(R). Chang and Fefferman gave two kinds of definitions for BM O functions

defined on R?, and proved that both definitions characterize the dual space of H'(R? x R%).
We now state these two definitions and the Chang-Fefferman theorem.
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DEFINITION 1.11 BMOy,, is the space of locally integrable functions ¥ defined on R?,
satisfying:

ﬂ Y ¥rll} < oo,

| RcCQ

)12 := sup
11}

where the supremum ranges over all open sets Q of finite measure in R?, and for each dyadic
rectangle R, ¥r is defined with respect to 4 as

dtdy
t, -1
va@)= [ [ e -0k,
where 1, is defined above, and if R =1 x J,
Ry ={(t,y) e Ry xRy teR|I|/2<y < |I|,|J|/2 < y2 < ||}

Recall that R} x R2 is the disjoint union of all the R;. The second definition of Chang
and Fefferman is motivated by their work on atomic decomposition of H' described above.

DEFINITION 1.12 BMOy is the space of locally integrable functions ¢ defined on R?
such that given any open set {2 C R2, there exists a function g so that

Iﬂ[/ [o(t) — dalt)?dt < M,

for some M independent of 2. The functions ¥q satisfly the following three conditions.

1. tf:n = Z'j"" where each U, is supported on the triple R; of distinct dyadic rectangles R;
with |R; N Q| < |R;|/2, and ¢; has mean value zero over each horizontal and vertical
segment of R;.

2. Furthermore, if R; = I; x J;,

& CR. 81\,, CR
"u:'t”oc S |R,"ll2‘ " ”00 —_ rR |1}2|] I
A Ch, ™, Cr
o St
1oz, = Ry 2" oz, oz, 1= = TR

for some Chg,.

3. Zirraj~a/atyiry Ch, < c2¥k|Q| for each k = 1,2, and some absolute constant c.

In Chang-Fefferman (1980), the following theorem is proved.

THEOREM 1.13 Assume ¢ € L*(R?) satisfies
f‘ﬁ'(l‘hl‘z)dh =0 =f¢’(‘1‘111‘2)d1‘2

for all (z;,2;) € R% Then the following conditions are equivalent:
1. ¥ € BMO,;
2. » € BMOy,.
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3. sup 1/|Q T ren Sh(¥) < 0o, where the supremum ranges over all finite open sets 2 in
R?, and for each dyadic rectangle R,

S = [ [ Weyr

4. 1 is in the dual of H'(R} x R%), that is, | J ¥ f| < const ||f]|g for all f € H'.

dtdy
Yiy2’

Denote the space of functions defined by Theorem 1.13 by BMO(R?) and denote a norm
in this space by ||g||.. Each condition defines a norm, all equivalent.

REMARK 1.14 The integral in the fourth condition exists thanks to the argument on pages
192-193 of Chang-Fefferman (1980).
1.4 Factorization Theorem

We now state the factorization theorem of Lin (1994a,1994b), that we shall use in the next
section. We state several versions of it. We shall use the version for p = 1 for the bidisc in
our applications.

The bi-upper half plane, p = 1
THEOREM 1.15 Let a be an atom (see DEFINITION 1.9),a = Y gagr, A = S(a) and Ag =

S(ag), where S denotes the Szegd projection. Then there exist Bjr,Cjr € H*(R% x R%)
(7 =1,2,3,4) such that

4
A = Z Z BJ.1RerR
RER, 1
and S 21 | Bsrllzl|Csrll2 < ¢, where ¢ is an absolute constant.

Theorem 1.10, 1.15 imply the following.

THEOREM 1.16 (Factorization Theorem for R2 x R2) 1If f € H'(RZ x RY), then there
exist g;, h; € H*(R% x R%), such that

[= E g;h;
J=1

in the sense of distributions, and ¥ ||g;| g2 ||h;)| w2 < || fllan.

The bidisc (0 <p <1)

The following is proved first for the bi-upper half plane, and then transferred to the bidisc
via the Cayley transform. See Lin (1994a,1994b) for details.

THEOREM 1.17 (Factorization Theorem for A2) If f € HP(A?) for 0 < p < 1 then there
exist g;, h; € H?(A?), such that

=3 gih;
J=1
and 3 ||g;l w2 || 2o < cll fllnw
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2 DUALITY OF HARDY SPACES AND APPLICATIONS

In this section we begin by transferring the duality theorem of Chang and Fefferman from the
bi-upper half plane to the bidisc. Then we use this duality, together with the factorization
theorem to prove the analogue of Nehari’s theorem for Hankel operators on the Hardy spaces
of the bidisc. We also consider duality of VMO with H! and compactness of Hankel operators
(Hartman’s theorem).

2.1 Duality of BMO and H!

In this subsection, as an application of the Chang-Fefferman result, we shall prove that the
dual of H'(A?) is BMO(T?). Chang and Fefferman have shown that the dual of H'(R3 x
R?) is BMO(R?). We now use the Cayley transform to transfer this result to the bidisc.

DEFINITION 2.1 The Cayley Transform from A" onto (R%)" is defined by
T A" = {Ri)ns T = {Tll'T?!"“Tﬂ}v

where

J

P (5

If n =1 we write for short that:

(1 —w)
l1+w

7: A — R%, where 7(w) = :

and we note that 771(z) = (¢ —z)/(i+2). The single variable version of the next two lemmas
come from pages 51-52 of Garnett (1981).

LEMMA 22 For 0 < p < oo, if f € H?(R2 x R2) then g = fo1 € H?(A?) and

lgllzra2y < 72| fllmerz xr2)-
Proof: Fubini's theorem implies

[ e, epads, = [ [ 1f(n(e), ra(e®))Pdosdo,
FATCACOR IO AN

(/7P L), Wi 40
= W/ [ [ 1f(r(e®),z)Pdas)doy
= W/rp [ [ 1), z2)Pdordz,
= (/P [ 10D, 2) pncaydea

< (/) [5G dea

= (/m [ [ 1z, 20)Pdardes

IA
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342 Lin and Russo
LEMMA 2.3 For 0 < p < oo, if g € H?(A?) then
F(z) = (n(21+1)*) "z (22 + )*)"/?g(r7"(2)) € H?(R] x R})
and ||gllme(a?) = | Flluemrz xr2)-
Proof: We use the fact that if you fix one variable in an H?-function, the resulting function

of the other variables is also an HP-function.
Identifying functions with their boundary values, by Fubini's theorem,

Jo \F@Pde = [ (m(za+ 1) [ I(xlas+ 1) og(r (@1), 75" (22)Pdzrdas
Jumaa+ 197 [lg(wn, 77 (@) Pdwndas
[ [ (xlaa + D2 Pg(wn, 757 (22) Pdaaduy

[r./r]g[w;.w;)?’dwgdw]
[, latw)pdw.
r!

Il

DEFINITION 2.4 We define BMO(T?) to be the space of integrable functions g defined on
T? such that go r~' € BMO(R?), with norm

lgllsaroy = llg o 77 lBmo(R2),
where 7 = (7,,72) is the Cayley transform from A? onto R x R2.

For notational simplicity, we shall denote the norms in BMQO(T?) and BMO(R?) by

01l
LEMMA 2.5 Let g be analytic on R% x R}. Then g € H'(R?) if and only if
2
G(w) = (JT(1 +w,)*) "g(r(w)) € HY(T?).
1=1

Moreover, 4"0“”1(72) = ”g“”l([{j}.

Proof:
[ 1Gwlde = [ 1g(r@)((+w)(1 +w)] | dw
T2 T?
1
= 3 Jes lg(z)] dz.

THEOREM 2.6 BMO(T?) is the dual of H'(A?).
Proof: Let g € BMO(T?). We shall prove that

[ o] < Nghelistn, 1 € H'@?).

EBSCChost - printed on 3/13/2021 7:29 PMvia UNIV OF COLORADO AT BOULDER. Al l use subject to https://ww.ebsco.conlterns-of-use



Hardy Spaces of the Polydisk 343
By definition, g o 7! € BMO(R?). For any f € H'(A?) we have from Lemma 2.3 that
F(z) = f(r~'(2))[m(z1 + i)(22 +4)] 7> € H'(R] x RY)

and || Fllgr2) = | fllmz2)-
hus

lglllfleany = llg o 7 1Pl
> | [, 9 @) @)+ i)(aa+ 0] dal
A fy(aat i [ alonsza) 2 I
el [ (za+)7 [ glwr,22)f (w1, 2)duwrdzs|
= [ [ @2+ i) glwr, 22) (wr, 22)dradon|
= ol [ [ gtwwa)f(wr, wr)dwsdun]

= d [, gw)f(w)du].

This proves that g € (H'(A?)) .

To prove the converse, note first that by the Hahn-Banach and Riesz representation
theorems, every bounded functional on (H'(A?)) is given by some bounded measurable
function. So, let g € (H'(A?))". We have to prove that ¢ € BMO(T?), that is, gor~! €
BMO(R?).

If F € H'(R?), we know from Lemma 2.2 that Fo7 € H'(A?) , and

| F o rllmaz < 1/ fllarz)-

Moreover,
—4
(14 wi)*(1 + wy)?

| fealoo T )@ F(@)dal = | [ g(w)F(r(w)) dul.

Put f(w) = F(T(wnm—w—;j—;ﬁ-m By Lemma 25, f € Hl(&z} and ”f"”’(ﬂ:"] =

4)|F|l (2 xRz ). Hence we obtain
| [ a1

Ngll«llfller a2)
||9|I-|IF||H‘{R=+><I11}-

I

| foulg 07 )@ F(x)dal

IA A

Note that the integral [ga(g o 77')(z) F(z)dz exists by Remark 1.14.
This implies
got ' € (H'(R*)" = BMO(R?).

Thus g € BMO(T?).
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2.2 Boundedness of Hankel operators

Here we shall prove the analog of Nehari’s theorem (Theorems 1.1 and 1.6) for the bidisc.
Before defining the Hankel operator formally, we give a proposition.

PROPOSITION 2.7 For g € H?, the following two properties are equivalent.
1. g € BMO(T?).
2. g = S(f), for some f € L=(T?).

Proof: First we prove “(2) implies (1)".
Suppose g € H? is such that g = S(f) for some f € H*® and let k € H? with ||k||; = 1.

Then
(9,k) = (S(f), k) = (f,5(k)) = ([, k),
so we have

g, k)l < sz IR < W oolllls = 1S Nleos

that is, g € (H')*. Hence, g € BMO(T?) (and ||g|l. < || flles)-

Now we show that “(1) implies (2)".
Suppose g € BMO(T?). Since H? is dense in H', [, defined by

e - - y2
Lw = (ug) = [ g ueH
extends to a bounded linear functional on H!'. By the Hahn-Banach Theorem , we can

extend it further to a bounded linear functional ;, on L'(T?).
By the Riesz Representation Theorem, there exists f in L*(T?) such that

l(u) = '[:N Fu, Vue L\(TY).
For all u € H?,
(uyg) = ly(u) = () = (u, f) = (S(u), f) = (u,S(f)).
Since H? is dense in H', we see that
(u,9) = (u, S(),Yu € H'.
If u € L? then
(u,9) = (u,5(9)) = (S(u), ) = (S(u), S(f)) = (u, S*(f)) = (u, S(f)).

Hence g = S(f), because L? is dense in L'.

DEFINITION 2.8 For fixed f € H*(A?), the Hankel operator Ky on H*(A?) is the conjugate-
linear densely defined operator given by

Ky(u) = S(fu), ue H*AY).

where S is the Szego projection.
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Thus,
Ky(w)(z) = [ S(w)f(w)ifw) du.
THEOREM 2.9 For g € H?, the following are equivalent.
1. K, maps H? continuously into H?
2. g € BMO(T?).
3. g = 8(f), for some f € L>=(T?).

Moreover, || K| % ||g].
Proof: Owing to Proposition 2.7, we only need to prove (1) is equivalent to (2).
Suppose g € BMO(T?) and k € H2. Then for f € H*(C H?), we obtain

(Kof, k) = (S(gf), k) = (¢f,S(K)) = (¢, k) = (9, [k).
Since fk € H' and |[fk|lm < ||fll2|lk|ls2, we have

(Ko f B < Nlgllll fll 2 llkllrz Vf € H.

Since H* is dense in H?, | K,|| < ||g||., thereby proving that K, is continuous.

To prove the converse, suppose I, is continuous.
For f € H', by Theorem 1.17 there exists F;, G; € H? such that

f =23 FGj,
i=1
and -
Y NF a2 lIGs e < ell fllan-
1=1
for some absolute constant c.
Note that
Y (K F;,Gy) = Y (S(gF;),G5) = Y (9F;, S(G)))
i=1 i=1 J=1
= Y {¢F;,G;) = Y (9, F;G;) = (9, /).
J=1 i=1

Since K, is bounded, we obtain

(g, AN < WEGH 2 NF 2 1Gillare < ell KGN N

=1

Thus |lgfl. < cf|K,|l-
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2.3 Duality of VMO and H'

A space VMO was introduced in the classical setting by Sarason (1975). It is somewhat
different from ours; we adopt a modified version for which the analog of theorem 2.6 holds.
By using the Cayley transform, we shall prove that the dual of VMO(A?) is H'(A?).

DEFINITION 2.10 The space VMO(T?) is the subspace of BMQ(T?) which is the BMO(T?)-

closure of the analytic polynomials.

To prove that
VMO(T?) = H'(AY),

we need the following lemmas.

LEMMA 2.11 The Szegd projection S : L?(T?) — H?*(A?) restricts to a bounded map of
L=(T?) into BMO(T?).

Proof: If f € L*, then Sf € H?, so to prove that Sf € BMO(T?) we must show
that it determines a bounded linear functional on H'. To this end, note that for g € H?,

(S(N).9) = (£, 5(9)) = (f.9) 50 (S(f)9)| < llgllsr /]l and thus
ISSll.=  sup e 1(S(f), )] < Nfllo-

llgllgr €1.9€

LEMMA 2.12 S5(L=)= BMO.
Proof: For f € BAMO(T?), there is a lincar functional {; on H'(A?), defined by

ly(u) = ffn. for all analytic polynomials u € H*(A?).

Since H'(A?) c LY(T?), we have from Hahn-Banach Theorem that there exists a bounded
linear functional { on L'(T?) with Iy = l;. Then by Riesz Representation Theorem there
exists g € L=(T?) such that { defined by

l(w) = (g.u) = [ gu, we L'(T?)
is a bounded linear functional on L'(T?) satisfying, for all analytic polynomials u € H?(A?),
[ fu=tytw) = () = (g,u) = (9, S(w)) = (S(g), w)-
?_0 (é(—)S(g),u) = 0,V analytic polynomials u € H*(A?) and thus f — S(g) = 0, ie.,
= 'S(g).

LEMMA 2.13 The Szegd projection S : C(T?) — VMO(T?) is bounded with dense range.
Proof: Since VMO(T?) is the BMO(T?)-closure of the analytic polynomials and the space
of polynomials in z,% is dense in C(T?), we get our result from Lemma 2.11.

The analog of the following theorem was proved by Coifman and Weiss (see Coifman-
Weiss (1977)) when 2 is the unit ball in C" and by Krantz and Li (Krantz-Li (1992)),
if €2 is a smoothly bounded strongly pseudoconvex domain in C" or a smoothly bounded
pseudoconvex domain of finite type in C%.
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THEOREM 2.14

VMO(T?) = H'(AY).
Proof: Since H'(A?)* = BMO(T?), it follows by restriction that

HY(AY) CVMO(T?)".
For the converse, take [ € VMO(T?)*. Then we define a linear functional L on C(T?) as

follows:
L(f) =U(S(f)), feC(T?.

Lemma 2.13 implies that L is a bounded linear functional on C(7?). By another Riesz
Representation Theorem, there is a finite complex Borel measure g on 7% such that

= 2
L= [, fdu  fecr.
Thus Vf € C(T?) N H*(A?)* we have
J Fdu =S =10 =o.
So, if we take f = z°%P, then S(f) = 0 if there exists j € {1,2} such that a; — 8; < 0. Thus,
by the F. and M. Riesz Theorem (p. 201 of Rudin (1962)) du = hdm, for some conjugate

holomorphic function h, where m is Lebesgue measure on T?,
Now for g € C(T?), we have

1(5(9))

|

L}ghdm = ]T} gﬁdm
(9,h) = (g, S(R))
(S(9).) = [, S(g)hdm.

I

By Lemma 2.13,
Hip) = ]m Ve € VMO,

that is, | = [}, and
VMO(T?)" ¢ HY(AY).

2.4 Compactness of Hankel operators

The Hartman theorem holds if the unit disk is replaced by the unit ball in C" (see Theo-
rem 1.7 of Coifman, Rochberg, and Weiss). In this section we show that Hartman's theorem
holds on the bidisc.

THEOREM 2.15 For g € H*(A\?), the Hankel operator
K, : H}(A?) — HY(AY)

is compact if and only if g € VMO(T?).
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Proof:  Suppose K, is compact. We shall use the following two facts, which are easily
verified:

e For f e H*A?%),0 <r <1, set (T.f)(z) = f(rz). The operator norm of T, as a map
from H*(A?) into L*(T?) is one.

e For f € H}(AY),
Kr1,of = T.K,T.f.
Using these two facts and the compactness of K, it follows that
lim 1K, — Kr.qll = lim | Ky-r,oll = 0.

By Theorem 2.9, we have lim,_, ||g — T:g||]. = 0. Since T,g is continuous, it belongs to
VMO(T?). Hence the limit g € VMO(T?).

Suppose g € VMQO(T?). By Lemma 2.13 there exists a sequence {f,} in C(T?) such that

S(fn) = gin BMO.

Since the space of the polynomials in z and % is dense in C(T?), for each f, there exists
a sequence of such polynomials {p{™} such that

p™ s £ uniformly on T2
For € > 0, there exists a positive integer N = N(¢) such that
llg = S(falll. <& ¥n2 N,

thus

llg — SUNIl. < €
and by Theorem 2.9

1Ky = Ksgpll < ce. (1)
For this N, there also exists an integer M = M(¢, N(¢)) > 0 such that
Ifx = PR Mlers) < €, Ym 2 M. (2)

From (2) and Lemma 2.11, we obtain
1S(fn) = S|l < ce, for some constant c. (3)

Equation (3) and Theorem 2.9 imply
1 Kssn) = Kgmnlle < cc’e, for some constant c'. (4)

Since
K, - !\’S{p{...m] =K, - KSUN) + KSUN} - I\’S(p{.,.ml‘
we have from equations (1) and (4) that
1Ky = Kgomll S 1Ky = Ksgrll + 1 Kssn) = Kgpmyll < Ce.
Since S(p!N) is an analytic polynomial, K

1(5[1":.-”}} is compact.
Since K

S has finite dimensional range and hence

Sy = K, and the norm limit of compact operators is compact, K, is compact.
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