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Schatten Class Composition Operators
on Weighted Bergman Spaces
of Bounded Symmetric Domains (*).

SoNG-YING L1 - BERNARD RUSSO

Summary. - We obtain trace ideal criteria for 0 < p < « for holomorphic composition opera-
tors acting on the weighted Bergman spaces AZ(Q) of a bounded symmetric domain £
im C".

1. - Introduction.

In this paper we obtain trace ideal criteria for all possible values of p for composi-
tion operators acting on the weighted Bergman spaces AZ(£2) of a bounded symmetric
domain £ in C". For the unweighted Bergman space of a bounded strongly pseudo-
convex domains in C* with smooth boundary, this has been done recently by S.-Y.
LI[11].

For the unit disc in C, D. Luecking [13] initiated a systematic study of trace ideal
criteria (0 < p < o) for Toeplitz operators with measures as symbols on some stan-
dard Hilbert spaces of holomorphic functions. His condition is expressed in terms of a
dyadic hyperbolic decomposition of the unit disc. By an appropriate choice of measure
and weight, his result applies to composition operators on the Hardy space and the
weighted Bergman spaces.

For values of p =1, ZHU[21] extended Luecking’s result to the weighted
Bergman spaces of a bounded symmetric domain. Although this special case of our
main result can be derived from Zhu’s work, our methods are different, being based
on ideas from [11] and [13], and out result covers all possible values of p.

In another direction, for the Hardy space H? and the weighted Bergman (Hilbert)
spaces of the unit dise, and for 0 < p < », LUECKING and ZHU [14] characterized com-
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position operators belonging to the Schatten class in terms of the Nevanlinna count-
ing function, Shapiro’s criteria for compactness [18] appearing as a limiting case.

Earlier work on holomorphic composition operators in one and several variables
was concerned primarily with compactness. Compactness on the Hardy and Bergman
spaces of the unit dise have been studied extensively in the past two decades ([19],
[16], [18], [7]), and boundedness ([5], [20]) and compactness ([15], [16], [20]) have been
studied in the context of the unit ball B, in C", as well as for bounded symmetric do-
mains [21],{9], and strongly pseudoconvex domains [12].

We now introduce some notation and state our main result. .

Let Q be a bounded symmetric domain in C*. Let L2(£) be the usual Lebesgue
space over £ with respeet to the Lebesgue volume measure dv of R%". Let A2(R2) be
the holomorphic subspace of L%(2) and let P: L%(Q) — A?(Q) be the Bergman pro-
jection with Bergman kernel K(z, w). It is well-know that K can be written as
K(z, w) = h(z, w)™N for some positive integer N =N, and polynomial h(z, w) =
= hgo(z, w) in both 2z and w.

By[8], if we let 1/2= a,=Ng!> 0 then C, = [ K(z, 2)*dv(z) < = for all real

numbers a < a . Then we may define the weighted n%rmalized measures dv® on Q as
follows: dv®(z) = C; ' K(z, 2)*dv(z). We consider the Lebesgue space L2(Q, dv®) over
Q with respect to the normalized weighted measure dv®, and let A2(£2) be its holo-
morphic subspace. Let P,: L%(RQ, dv®) — A2(Q) be the orthogonal projection with
reproducing kernel denoted K*(z, w). It is known that K*(z, w) = K(z, w)! ~°. For
any holomorphic mapping ¢: 2 — 2, we define the Berezin transform of @ to be the
function B defined by

Bo(2) = JK"‘(z, 2)71 | K (2, w) |2 dv (w) = K°(z, z)—lj | K4 (2, @(w)) |2 dv® (w).

2 Q

Here v;, or dvg is the pull-back measure defined as follows: for each Borel set £ c 2,
we let v3(E) = v*(¢ "1(E)).

Let 5(z, w) be the Bergman metric on 2. For any z € £ and r > 0 we let E(z, r) =
= {we Q: Bz, w) <r}. Then we let b (z, r) = v} (E(z, 1) |E(z, )|* 1, |E| = [dv.

Let ¢@: Q — Q be a holomorphic mapping. The composition operator of ¢ is thbé op-
erator C,u(z) = u(@(z)) for any function 4 on Q. Let dA(z) = C,K%(z, 2)dv®(z) =
= K(z, z) dv(z). We denote the Schatten p-class of compact operators on the Hilbert
space H by S,(H), 0 <p < . We propose to prove

THEOREM 1.1. — Let 2 be a bounded symmetric domain in C". Let ¢: Q - 2 be a
holomorphic mapping. Then for each a <ag,

@) if0<p< o, then C,e Sz,,(Af,(Q)) if and only if by (z, r) € LP(R, di) for
all (or some) 0 <r < »;

@ if 201-ag)/(1-a)<p<w®, then C,eS,(A2(Q)) if and only if
BE e LP(Q, di).
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Before going any further, let us make a remark on the number 2(1 - ag)/(1 —a)
for the case Q = B,,, the unit ball in C". Since ap, =1/(n + 1), 2(1 — ag)/(1 ~ a) =
=2n/(n + 1)1 — a). In particular, when a =0, we have 2(1 - ap)/(1-a)=
=2n/(n + 1). Note also that if Q is the polydisk, ao =1/2.

We refer to[2],[4], and[21] for the following (asymptotic) properties of the
Bergman kernel and metric in bounded symmetric domains. These properties will be
used repeatedly in the estimates below in Sections 3 and 4.

® ([4, Proposition 2]). If ¢, denotes the unique automorphism of £ satisfying
@q.(a) =0 and ¢, @, = Id, then for the complex Jacobian

[(J.9.)@)| = |k (2)] ,
where k,(2) = K(z, a)/K(a, a)*'?, and |J,9,(0)| = K(a, a)"/2.
® ([4, p. 927]). K(0, w) = K(z,0) =1, and K(z, w) = 0 for all z, we Q.

¢ ([4, Lemma 6]). For a, b € 2 with (a, b) € R, and r, 8 > 0, there is a constant
C depending on R, r, and s such that

0<C'< |E(, )| |E®,s)| 'sC< .

® ([4, Lemma 8]). For r > 0 there is a constant C depending on » such that
Vz € E(a, 1),

(D) 0<C'< |K(z, )| |E(a, )| Kla,a) '<sC< .
® ([2, Lemmas 5 and 6]). For fixed r > 0, there is a sequence {w;} in 2 such
that
(2) ‘UIE(w]-,'r) =Q
j=
and

(i) There is a positive integer C, such that, for any z € 2, 2 belongs to at most C,
of the sets E(wj, 2r), where C, is independent of r.

(i) If m is any positive Borel measure on 2 and F = 0,

o]

S [ Fam<c,|Fam.
]=1E(wj,r) 2

® ([21, Lemma 5]). For r > 0 there is a constant C depending on 7 such that for
pell, ©), a e Q2 and f holomorphic,
| f@)|” < C|E(a, 1] ! j | A2)|Pdutz).
Ea, 7)

® ([21, Lemma 6]). For » > 0 there is a constant C depending on 7 such that for
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any positive Borel measure 4 on 2 and a e 2,

w(B(a, 1)) < C|E(a, r)| J wW(B(z, M)idnz) (0<g<1).

E(a, )

We note the following consequences of eq. (1):

(3) K(z,2)= |E(z, )| !,
(4) K(z, w)=K(z,2), (wekE(, 1),
(5) K(z,2) = |E(a, )|, (zeE(a,r)).

2. — Preliminaries.

In this section, we shall prove some preliminary results we shall use later. First
let us recall a lemma which can be found in many places, we refer to [1] and references
therein.

Let K*(w) = K*(w, 2), k2 (w) = K°(z, 2) 2 K2 (w). It is clear that k% is a unit
veetor in AZ(£2). We denote the inner product in L%(Q, dv®) by (-, ‘).

LEMMA 2.1. — Let T be a positive, compact operator on L%(R, dv®) with range con-
taine in AZ(RQ). Then

trace T = J (TK#, K&, dv®(2) = j(Tkg, k2 K (2, 2) du(z).
Movreover, for any 1 <p < =,
J(Tk;‘, kK (2, 2) dv® (2) < J(Tpk;‘, k&) K (2, 2)dv® (2) = trace T? ;
and, for any 0 <p <1,
J(Tkz"‘, 2V K (2, 2)dv®(z) 2 f{T”k;’, EZYK*(2, 2)dv(z) = traceT? .
We next start proving some identities.

LEMMA 22. - Let Q, @, C,, BS be as defined above. Then
Bg (2)2 = <C(;I= C(pk:7 kza >a ’
and for 0 <p< »,

[ 1Bz @I dae) = [(cx Coke, ke daGa).
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ProoF.
(CiCoked, ko Yo = (Cy(Kf), Co (K)o K (2, 2) 7 =

= JK;’ o @(w) K o q(w) dv* (w) K*(2, 2)~! =

= ng(w) KZ(w) dvs (w) K*(z, 2)} =j |K%(z, w)|2dvg () K® (2, 2) ' =B2(2)?. W
As a consequence of Lemmas 2.1 and 2.2, we have

COROLLARY 2.3. ~ Let Q be a bounded symmetric domain in C" and let ¢: 2 — Q
be a holomorphic map. Then

(@) if2<p< o and C,eS,(A2(2)), then By e L?(dA);
(b) if 0<p<2and BfeL?(A, d}), then C,e S,(A2(Q)).

PrOOF. - If p/2 = 1, then by Lemmas 2.1 and 2.2,
IC, I8, az) = trace (CEC,P2) = f (C£C, ke, k8 )y dA) = J |BE(2)|?diz),

so (a) follows.
If p/2 <1, applying Lemmas 2.1 and 2.2 again, we have

j |B2(2)|PdAz) = j (CEC, k2, ke W2dAz) = trace (CF C,)P2) = C, B, a2y
and (b) follows., =

Next we shall connect the operator C; C, to a Toeplitz operator associated to a
symbol which is our pull-back measure v; . For any measure x on £ define the opera-
tor 7, by the formula

T, (f)w) = [ Fw) K (2, w) du(w)
2
for fe A2(2) and z € Q.

LEMMA 2.4. - Let 2 be a bounded symmetric domain in C*. Let ¢: Q— Q be a
holomorphic map such that C, is bounded on AZ(RQ). With the notation above,
C5Cy=Ty.

PROOF. — Let fe AZ(Q). Then
C3 Co(f)2) = (Cg Co (), Kf )u = (Cp (f), Cy(KS))o =

= [ptw) B Gw)) dve w) = [ fa) K*(z, w) dvg (w) = Tog (o).
2 Q

Thus CJ C,(f) = Tye(y (f) and the proof is complete. =



384 SoNG-YING L1 - BERNARD Russo: Schatten class composition operators, ete.

COROLLARY 2.5. - Let 0 < p < w0, let £ be a bounded symmetric domain in C*, and
let @: Q-2 be a holomorphic map. Then C,eS, (AZ(Q2)) if and only if
Tyz € Spp(A2(Q)).

Combining Lemma 2.2, Corollaries 2.3 and 2.5, and {21, Theorem C], we ob-
tain

COROLLARY 2.6. — Let 2 be a bounded symmetric domain in C*,let ¢: 2 — Q be a
holomorphic map, and let 2 < p < «. The following are equivalent:

® C,e8,(A2(Q)),
® B2eLP(Q,dd),
® b2e LP(Q, dA).

3. - Equivalence of two conditions.

In this section we shall prove a part of our main theorem. For p = 2, the following
theorem was proved by ZHU ([21]; see Corollary 2.6 above).

THEOREM 3.1. — Let 2 be o bounded symmetric domain in C* and a < ag. Let
2(1 —ap)/(1~a)<p< ». Then By e LP(R, dA) if and only if by e LP2(Q, dA).

ProOF. - Suppose first that BJ(z)eLP(2,dl). We shall show that
bé(z) e LP*(Q). By Lemma 2.2, we have

Be(2Ff = fKa(z, 2)71 | K9(2, w) |2 dog (w) =
Q

> IK“(z,z)'l|K“(z,w)|2dv§(w)ZC[‘K“(z,z) I dve(w) = by eq. @)
E(z, ) E(z, 1)

= C 1 K%(2, 2)vg (E(z, 7)) 2 C7 1 |E(z, r)| " " %0y (B(z, 7)) = Dby eq. (3)
* = CbE ().
Therefore ||b7 |20, ay < C’rnt 1270, an-

Next we shall prove the converse. To achieve this goal, we need the following
Forelli-Rudin type inequality from [8]. The notation we use is not exactly the same as
it is in[8]. For a < ag, we let

I..(2) = fK(w, wy* | K(z, w)| = dv(w).
Q
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Let 7, be the rank of 2, and K(z, w) = h(z, w) Y. It is known that if Q is an irre-
ducible bounded symmetric domain, then N = a(ro — 1) + b + 2 where a, b are non-
negative integers defined in [8]. Then [8, Theorem 4.1] implies the following proposi-
tion.

ProOPOSITION 3.2. — Let a < ag. Then
@ If c < —alr - 1)/2N, then I, ,(2) is bounded.
(i) If ¢ > a(r — a)/2N then I, .(2) = K(z, 2)°, 2z € Q.

We now come back to the proof of Theorem 3.1. We may assume, by Corollary 2.6
that p <2. Since (1 -ag)/(1-a)<p/2<1, we have 1 - p(l —a)/2<a, and
therefore [ K(z, z)™"**~“*1du(z) < ©. Moreover, by Proposition 3.2,

Q

JK“(z, )P | K? (2, w)|? K(z, 2) do(z) = fK(é, 2 PO | R ) [P du(e) =
e o )

= IK(z’ z)l - p(l - a)/2 IK(z, w)ll~(1 - p(1 - a)/2) +p(1 _")/2d'u(z) -
P}

=1 - 1 -y, p1 -y (W) = Kw, wp =92,
since
c=p(1-a)/2>[2(1 - agp)/(1-a)l(1-a)/2=
=l-ag=1-1/N>1/2—(b+2)/2N = a(ry — 1)/2N.
Thus, choosing {z;} so that = iile(zi, ),

JBg(szl(z) < j( JK“(z, 7Kz, w) |2dog (w))p/zdl(z) <
2 Q2 \Q

E(z;, )

S /
sCJ(El | K“(z,z)‘llKa(z,w)|2dvg(w))pzd,1(z)s

scfél( f K“<z,z)"1IK“(z,w)lzdvg(w))"/2dz(z)=
E(z;, )

I
Q
[N\

Q

lf( f K“(z,z)‘lIK“(z,w)[zdvg(w))p/zdl(z)s
E(z;, r)

<C 21 Kz,2) "2 | K“z,w;) | Pvg (E(z;,1))P? K(z,2) d(z) (w; € E(z;,7) depends on z) <
Q
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=)

< CZI K% (wi, wy) P2 K (w;, w; Vg (Ez;, )P = C,; K (wy, w PPog(B(zr)y <

sC '21 J [ve (E(z, 7)) K(z, 2)' "¢ P* K(z, 2) di(z) (by subharmonicity) <
Bz, 1)

3]

<cy j (bg ()P dAz) < C,C j (bE@PRAAR) = Cy, b2 20, a -
Q2

i=1
Ez;, )
Therefore | BS ||1r0, a1 < Cy, |63 | /20, 419> and combining the above two steps, the
proof of Theorem 3.1 is complete. ®

Note that the first implication in the preceding proof may be obtained from Corol-
lary 2.3 and Theorem 4.1 in the next section. Here we have given a direct
proof.

4. — Proof of main theorem.

In this section, we shall complete the proof of our main theorem, that is, the case
0 <p < 2. By Corollary 2.5 and Theorem 3.1, it suffices to prove the following
theorem.

THEOREM 4.1. — Let Q be a bounded symmetric domain in C*. Let ¢: Q — Q be a
holomorphic mapping. Then for each a < ag, if 0 <p <2, then C, e S,,(AZ(RQ)) if
and only if by (z, v) e L? (L, dA) for all (or some) 0 <r < o,

We shall break the proof of Theorem 4.1 into several lemmas.

LEMMA 4.2. — Let 2 be a bounded symmetric domain in C" and ¢: Q — Q be a
holomorphic mapping. If 0<p<1, a<ap and bjeLP(R,dA%), then T =
= vg € Sp (Ag (9))

PRrOOF. — Since 0 < p < 2, it suffices to prove (cf.[13, Lemma 5]) there is an or-
thonormal basis {&,}s- of AZ(£2) such that Zk [{TE,, E;)|P < =. Actually, we shall

prove this for an operator L*TL on an abstract Hilbert space, and appropriate L;
then it will follow that T € S,(A2(Q)).
Let {z,};i=1 be a sequence of points in 2, and let

bi(2) = K (2, 2) ™M V2K (2, ) M

where M is a positive number to be determined later.
We interrupt the proof to state a proposition which is a comsequence of the proof
of Theorems 1 and 2 in[6], and explains the significance of b;(z).
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PROPOSITION 4.3. — There is a sequence of points {2, }i—1C Q2 so that fe AZ(Q) if
and only if there is a sequence of numbers {1,}; € 1? such that

f(z)=%;{.kbk(2), ze

and

1f laz = {25 Hle -

The authors wish to thank R. ROCHBERG for showing them how Proposition 4.3 can
be proved using Proposition 3.2 and the following two hypotheses.

(H1) The operator T, j defined as:

T, ufz) = f 1K= (2, )|+ Y K2 (w, )M f(w) dv® (w),
o]

is bounded on LZ(Q).
(H2) b (2) = by(2;) on (E;, 7).

(H1) follows from Proposition 3.2 for sufficiently large M and Schur’s lemma; and
(H2) is true on any bounded symmetric domain by (4) (see [21]). We omit the details
here.

In connection with Proposition 3.2, we should point out that whether the Forelli-
Rudin type inequality holds or not when —a(ry — 1)/2N < ¢ < a(ro — 1)/2N is not
completely known. Our definition of b, with large M avoids this uncertainty. In a gen-
eral bounded symmetric domain, the Bergman projection may not be bounded on L?
for all 1 < p < « (for example, see[3]).

We now continue with the proof of Lemma 4.2 by caleulating the following
quantity:

3 |(Tby, 5017 = 3 |(Zugh,, b)]7 < Ek( [1Bu@1 18] dvqf:(z))”s
" n, n, P

< ank( 2 j |6, (2) b, (2)] dvg(z))p <C Ek( S0 (E(z;, 7)) ]bn(zi)bk(zi)l)p <

1
Bz, 1)

sC Ek Z(Wq?(E(zi, T))K(Zi, Z@))p(K(Z@', zi)_l |bn(zi)bk(zi)|)p =

= C[E(v«?(E(zi, K (z;, zi))”” 2 (K*(zi, )™ !bn(zi)bk(zi)l)p:‘-

Since 2 (vg (E(z;, M) K*(2i, 2))° < C|b&|Br (0, a1y, Wwe would like to prove
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> (K2, 2) 7 b, (2) b (z) | )P < C, for all 1 =1, 2, 3, .... However
n, k

2
Ek(K“(zi, 2:) 710, (2) by, (2:) | ) = K*(, zz-)“”(% Ibk(zi)ip) =
2
= K%(z;, Zi)_p(%Ka(zk, 2) PR MR | KO (g, zk)lp(1+M)) <

2
< CK*(z, zi)”’( IK“(z, 2) TP MPEL| K (g, z)l”‘”M)dv“(z)) <

Q
< CK(z;, ;) P (K%(y, 2;) P2 Mp |K%(z;, Zi)lp(HM))z =
= CK(z1, )P (|K® (21, 2)| ") = Cyy
if we choose M such that Mp > 1. Thus we have shown that
3 1, bl < b g

Now we let H be any Hilbert space with {e,} as its orthonormal basis. Let L: H —
— AZ(2) be defined as follows: L ( > ¢ ek) = Y ¢, bp(2). Itis clear from Proposition 4.3
k=1

that L: H — AZ(R) is a bounded and onto linear map. Since L is onto, it has a bounded
right inverse, that is, there is a bounded linear operator R: AZ(Q)— H such that
LR=1: A2(Q)— A%(Q). For our T: AZ(Q)—>AZ(Q), we have T = (LR)*TLR =
=R*L*TLR: A2(Q)— AZ(Q). Since L*TL: H— H is a bounded linear operator
and

E (L * TL(ex), €q)|? = Z |(TLey, L(e,))|” = 2 (Tt b,)|? < Clbg [Erco, any »

it follows that L*TLeS,(H) and |L*TLl|s,uz < Clbg|%r @, w. Since R*: H—
—A%2(Q) and L: H —>A2(Q) are bounded linear operators, we have T =
=R*L*TLReS,(A2)Q) and |T|suz < [IR*IIRIC|bglEr @ an < ClIbg 20, an-
Therefore, the proof of Lemma 4.2 is complete =

The proof of Theorem 4.1 is now reduced to proving the following lemma. The idea
of the proof is similar to one in[13].

LEMMA 4.4. — Let Q be a bounded symmetric domain in C". Let a < ag and let
0<p<1l If : 2> Q2 is a holomorphic map such that TvgeSp(Ag(Q)), then
bg (S LP(Q, dﬂ,).

PrOOF. — Again let {z;}i-, be a sequence satisfying the density and separation

properties’ of Coifman and Rochberg, that is, B(z;, ) > r and Q = .UIE(zj, ),
=
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Cr
For B> r, partition this sequence {z;}/>; = ktle{zj(")}jil so that
ﬂ(zj(k), zl(k)) > R, ] # l, 1sk< CR.

As before, define operators L and L, from a Hilbert space H into A; by
L(Z clel) = Ellclbl(z), and L, (2 clel) =65 (2),
1 1 1

where
bl(k) (Z) =Ka(zl(k)’ zl(k))—M— 1/2Ka (z, zl(k))l +M and bl(Z) =K° (zl’ zl)_M_ 1/2Ka(z, zl)l +M

for some positive number M to be chosen later.

Note that |L,| < |L], write 2, = U E(z®, r), and let y; be the characteristic
function of . =t

Since we are assuming that Ty, € 8,(42), we have T, a2 € S, (A2) and || T, 4
s “Td'u.‘,?‘ ”Sp' Thus

ls, <

LT, aelye 8, (A2)  and Ly T avs L lls, < e [P [T aals, -
Fix k and for notation’s sake, let w; = 2P, a,(2) = b (2), and T}, = L T, auey, L -
Write T,=D+E where D =2(T,a;, a,X-, e))e; and E = 3 (T, )", €)e;.
Then 7 nel
IDIE &y < T lls, c + 1BNS, o < ILIPP T g e, oy + BN, oy -
To complete the proof of Lemma 4.4 requires three claims:
Cram 1. - [D|} = €71 [ (b3 ()Y K(z, 2) dw(z).
25
CLAM 2. - For each 1 <k < Cp, we have
Sll}P ngl @, (w)[? |a;,.(wi)|pK(wiy w;) P <ep

where e — 0 as B — «. (Thus is stated as Lemma 4.5 below.)

CraM 3. - |E[§ < Cep [ (b7 (2))P K(z, 2) dv(2).
Qp

Let us assume these three claims and proceed to finish the proof of Lemma 4.4. We
have

f(b;f Y di < CIIDIE, < CUIT,, e I, + BN, ) < ClIT a0 |5, a2y + €2C I(bq‘;)”dll.
Q Qr
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Therefore, for large enough R,

[@grar|a-encry < ATusl
24
and hence
Cr
J (bprdi< 3 j (BEP A < CoOlTas B ) »
Q Qp

which completes the proof of Lemma 4.4.

4.1. Proof of Claim 1.

“Dkugp(m = ;(Tkal: @) = ;( I lfll(z)|2d'v§;‘(z))‘1J =

2

= 2}( JK“(M, w) MK (2, wz)l“szvq‘i‘(z))p >
2y

sCﬂ;( j b;‘(z)lE(wl,r)l“ldv(z))pa

E(wy, 7)

2% [ Gi@Y (B, | d@ 2 60S [ 6P KE, D) 2
Ewy, v) ' E(wy, 1)

>c J (b ()P K(z, ) dv(z) = C;1 J (b2 () K(z, 2) do(2)

U B, 7) 2
where Q, = LlJE('wl, 7).
4.2. Proof of Claim 2.

LEMMA 4.5. — For each 1<k < Cg, we have

sup Ez |, (w;) |P L@y (w; Y|P Ky, wi) ™ < gp
i n #
where e —0 as B — .

ProoF. — Recall that K*(w,, w,) = K*(w, w) for we E(w,, r) and that since



SONG-YING L1 - BERNARD RuUSS0: Schaiten class composition operators, etc. 391

| K% (w;, w)|* M7 is subharmonie, we have

| K* (w;, w,)| 7P < |E(w,, r)| ! f | K2 (w;, w) |+ 20P du(w).
By,

Thus

[a, (w;)|P < K*(w,w,,)" M 129 | B(w,, r)| ! f | K (w;, w) |+ P do(w) <
E(w,r)

<C I Kw, w)~ M+ 120 | K (5, 5)| M+ 0P K(ap, ) du(aw)
E(wy, 7)

For v > 0, let Q(y) = {(2, w) € 2 X Q: B(z, w) > y}. Then

E(uy, 7)

lean(wi)lplaz(wi)lng Zl[ f K*(z,2) ™M~ P2K(z, 2)| K*(w;, 2)|? " M7 du(z) X

X j K*(w, w)™MP =P K(w, w) | K*(w;, w) [P * ¥ dv(w) | <
E(wy, 1)

<c3 f Ko(z, 2) ™M P2 K(z, 2)| K (w;, 2)|P* MP x
#
" E(wy, v) X E(wy,, 1)

XK (w, w) M~ P2 K(w, w) | K* (w;w) [P+ M du(z) dv(w) <

<C f K(z,2) ™M~ P2K(2, 2) | K*(w;, 2)|P TP X
2R/

X K® (w, w) ™M ~P2 K(w, w) | K* (w;, w) |P M dv X dw(z, w).

Now we shall make a change of variables as follows: let @; be the automorphism of
£2 interchanging 0 and w;. Then, since |J.@;(2)|%= |k, (2)|*= |K(z, w,)|*/K(w;, w;),

(6) f Koz, 2) MR K(z, 2)| K% (w;, 2)|P P duz) =
(o]

= j K%(9;(2), 9;(2) "M P2 K(p,(2), ¢:(2)) X

2

XK (w;, @; NP TP | K(z, w;) |2 K(w;w;) " do(z) .
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Let us calculate each of the factors in the last integral, using the formula
K(g(2), p(w)) . @(2) J,p(w) = K(z, w).
® Kp;(2), 9;(2)) = (K(z, 2)| Jo;(2)] 2 ™%
® K(p:(2), () = |J,0:(2)| 2K(z, ) = | K(z, w;)| ~2 K(w;w;) K(z, 2);
® K*(w;, 9:(2) = K*(9;(0), 9;(2)) = K*(0, 2)[ J,9;(0) J,0;(2)]"*;
o |Kw;, 92| =[(| Lo O] | J.@:i()|) 1T~ = K®(wy, wy) | K* (2, w;)| 7.
The integrand in question is thus equal to
{K*(z, 2)(| K (2, w;) | K (wyw;)"V/2) "2} ~Mp - 9/2 x
X {(| K(z, w;) | K(w;, w;) ") 2 K(z, 2)} X
X { Kz, w)| 7P MK (w;, w; )P TP M| K(z, w;) |2 K(w;w;) ™'}

and therefore eq. (6) becomes

JK“(z, 2) M -P2K(z, 2) | K® (w;, 2)|P T PM du(z) =

Q

=K (w;, w;) " Mp-p/Ere+Mp J K%(z, 2) M PR K(z, 2)| K (2, w;) |2MPP/2=2~Mp gy z),
2

Using the identical calculation in the variable w and noting that for any automor-
phism ¢, B(z, w) = B(@(z), p(w)), we now have

K(w;, w;)™? 21|05n(7f0i)’°|051(’wi)|ps

< j J K%(z,2) M ~P2K(z, 2)| K* (w;z) | 1P X
QR/o)

X K% (w, w) ™M ~P/2 K(w, w)| K (w;, w)| P dv X dw(z, w) =: I(R, w;) say.

Since —Mp — p/2 + Mp = —p/2 <0 and Mp is big enough, for any fixed w’, the
function

K%(z,2) M~ P2K(z, 2)|K*(w', 2)|M2 X K*(w, w) P~ P2 K(w, w)|K*(w', )|

is integrable on 2 X Q. In fact, by [8, Theorem 4.1}, for big 5, we have

JK“‘(z, 2) P K(z, 2)|K*(w', 2)|P "¢ dv(z) = K(w', w')* .

Q

The function |K*(-, w)|P is subharmonic and thus by the maximum principle
there is a point w, on the boundary of 2 such that I(R, w;) < I(R, w,). Since Q(R/c) —



SoNG-YING LI - BERNARD RUSS0: Schatten class composition operators, etc. 393

— 0 as R — o, it follows that I(R, w;) — 0 uniformly in i as B — «, completing the
proof of Lemma 4.5.

4.3. Proof of Claim 3.

2k

B < 2 KTpa,, a)|P < 2 la, (2) ()| dog(2) "<
B n#l n=l

s 2 ?)zg(E(wi’ ,r.))pKa(wi’ wz‘)p Zl laﬂn(wz)lp lal(wi)'pK(wi, wi)ﬂp <
< 2 (b (w)) Zl [, (w;) |P | @y (w;) |P Koy, w;) ™ <

< epd (b w)P < exC f (B2 ()P K(z, ) do().

Q

Combining the all estimates, the proof of Theorem 4.1 is complete. =
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