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Holomorphic Composition Operators 
in Several Complex Variables 

BERNARD RUSSO 

Abstract: A survey of known results and open problems concern-
ing boundedness, compactness, and trace ideal membership of composi-
tion operators over the Bergman and Hardy spaces in several complex 
variables, with special attention to strongly pseudo convex domains and 
bounded symmetric domains. 

This expository paper attempts to give the state of the art of holomorphic com-
position operators in several complex variables insofar as it is concerned with certain 
basic problems for operators associated with a symbol. Although it is exclusively 
concerned with composition operators (which is a relatively new concept), also men-
tioned are Toeplitz and Hankel operators (which are each much older and have much 
wider scope and applicability). These three types of operators are at the center of 
the study of certain aspects of contemporary operator theory in function spaces and 
the relations between them cannot be ignored. 

As the author is relatively new to several complex variables, the exposition 
will be influenced strongly by his affinity and bias for a special type of domain (a 
bounded symmetric domain) and a special approach to their study (Jordan alge-
bras). 

Another tool, besides Jordan theory, that is dear to the author is harmonic 
analysis on Euclidean spaces, for which the book of Stein [43] is an excellent source 
of information. Of greater impact is multiparameter harmonic analysis, as utilized 
in the context of the unit polydisk in several complex variables. I quote from the 
preface of the book by Stein: 

The subject of harmonic analysis has undergone a vast development 
in the last 25 years which has transformed the whole field. This has 
had not only a profound effect on Fourier analysis itself, but has had 
a major influence in such areas as partial differential equations, several 
complex variables, and analysis on symmetric spaces (emphasis mine). 

The unitpolydisk and the unit ball are examples of bounded symmetric domains, 
and a bounded symmetric domain is of course a special case of a symmetric space. 
The above quotation indicates that any study of operator theory on function spaces 
over bounded symmetric domains in several complex variables must rely heavily on 
harmonic analysis. 
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192 BERNARD RUSSO 

Although there are a large number of works on operator theory over symmetric 
domains, most of them (including the author's) have not used the Jordan theory. 
Notable exceptions are the study of Toeplitz operators by Upmeier [44],[47], and 
the study of Hankel operators by Arazy [1]. An underlying theme of this paper is to 
suggest that the two tools: multiparameter harmonic analysis, and Jordan algebra 
theory, should be exploited in order to obtain results for composition operators over 
the unit polydisk and more generally, over bounded symmetric domains. 

This paper contains four main sections. Section 1 gives the background on 
the types of function spaces, domains, and operators of interest, and poses the 
problems to be discussed in later sections. It includes a rather heavy dose of Jordan 
theory. In Section 2, the known results for what I call the classical domains (unit 
disk, unit ball, unit polydisk) are given. All of these results are developed fully in 
the recent monograph [12] so they are only mentioned briefly here without much 
discussion. Sections 3 and 4 are concerned with two topics in which the author 
had a hand in developing, namely, weak compactness of composition operators on 
the Hardy spaces over a strongly pseudo convex domain; and trace ideal criteria 
for composition operators on the Bergman spaces of a bounded symmetric domain. 
Some suggestions for further study are summarized in Section 5. 

This paper follows closely the format of my talk at the Rocky Mountain Mathe-
matics Consortium Conference to which this volume is devoted. Details and discus-
sion are not always given, but references are provided for the reader (this includes 
the author) who wishes to learn more about a particular topic. 

Acknowledgements. The author thanks Don Sarason for introducing him to 
composition operators, and Song-Ying Li for encouraging him to study them. The 
author also thanks the editors for the invitation to contribute this paper. 

1 Preliminaries 

1.1 Function Spaces 
1.1.1 Bergman and Hardy spaces 

Let n be a domain in en. The Bergman space is the set of all holomorphic functions 
on n which are p-integrable with respect to Lebesgue volume measure dV on en = 
R2n : 

AP(n) c £P(n, dV) o <p < 00. 

AP(n) is a closed subspace of £P(n, dV). When n = 1, we use the notation dA for 
dV. The Hardy space 1tP(n), 0 < p < 00, as well as the embedding 1tP(n) c LP(8n) 
is a little more complicated. We begin with three familiar case. For any function f 
and r > 0, let fr(z) = f(rz). 

• n = the unit disk: for a holomorphic function f on the unit disk ~ = {z E 
e: Izl < 1} c e and 0 < p < 00, f E 1tP(~) if 
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HOLOMORPHIC COMPOSITION OPERATORS 193 

• 0 = the unit ball: for a holomorphic function f on the unit ball B = {z = 
(Zl,'" ,zn) E Cn : L: IZjl2 < I} C Cn and 0 < p < 00, f E JiP(B) if 

Ilfll1-tp = sup ( Ifr(()IP da(() < 00. 
O<r<l JaB 

• 0 = the unit polydisk: for a holomorphic function f on the unit polydisk 
An C Cn and 0 < p < 00, f E JiP(A n) if 

IIfll1-tp = sup ( Ifr(ei9 )JP dlh ... d()n/(2rr)n < 00. 
O<r<l JTn 

In the above, d() /2rr denotes normalized Lebesgue measure on the unit circle T, 
a denotes a unique rotation invariant measure on the unit sphere S = aB, and in 
the case of the unit polydisk, r = (rb"" rn) and () = (()b"" ()n), with obvious 
meanings for 0 < r < 1 and ei9 in this case. 

In each of the above cases, any JiP function f has nontangential boundary values 
f* E V(aO) almost everywhere, and the map 

JiP :3 f t-+ f* E U(aO) 

is norm preserving. In fact, for any bounded domain in C n with C2-boundary, 
f* exists, see [26, Ch. 8]. Moreover, in the two cases considered below, that is, 
bounded symmetric domains and strongly pseudoconvex domains, the embedding 
JiP(O) C LP(aO) is an isometry. 

1.2 Domains of Interest 

We shall limit our attention in this paper to two types of domains, namely, bounded 
symmetric domains and strongly pseudoconvex domains. Before giving the precise 
definitions, we show how the Hardy spaces are defined in each case. Then we shall 
say a little more about each type of domain. 

A bounded symmetric domain can be defined as a domain in C n which is the 
open unit ball of a Banach space structure on Cn and which also carries a cer-
tain type of algebraic structure known as a Jordan triple system. This approach is 
followed in finite and infinite dimensions in [25], [34], and [24]. In the infinite dimen-
sional case, C n is replaced by any complex Banach space. In finite dimensions, the 
bounded symmetric domains have been completely classified, first using Lie theory 
[3], and afterwards using Jordan theory [25]. The latter method extends to the 
infinite dimensional case [24],[45],[46]. 

The underlying Banach spaces of all bounded symmetric domains are obtained 
by taking £00 direct sums of spaces in the following list. We shall not specify the 
norms in the last three cases. 

• Mm,n(C): rectangular m by n complex matrices with the operator norm 

• Sn (C): symmetric n by n complex matrices with the operator norm 

• An (C): anti-symmetric n by n complex matrices with the operator norm 

• Spinn: the complex "spin factor" of dimension n 
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194 BERNARD RUSSO 

• h6: the "exceptional" complex Jordan triple system of dimension 16 

• h7: the "exceptional" complex Jordan algebra of dimension 27 

In particular, we obtain the unit disk, unit ball, and unit polydisk, from M1,1, 
M1,n, and M1,1 x M1,1 X ... x Ml,l, respectively. 

An important tool in the above mentioned classification, which remains true 
in infinite dimensions, is that the connected component G of the group Aut 0 of 
all holomorphic automorphisms of 0 is a (Banach) Lie group, and as such has a 
Cartan decomposition G = K P, where K is the compact subgroup of all linear 
isometries (called "rotations") and P is the set (not a group) of automorphisms 
(called "translations") analogous to the Mobius transformations on the unit disk. 
Indeed, in the case of the unit disk, the Cartan decomposition of an automorphism 
a of ~ has the form 

where a E ~ and 

ZE~, 

z+a 
<Pa(z) = -1 -' +az 

(1) 

For any bounded symmetric domain, there is a unique probability measure a on 
the Silov boundary a*o, which is invariant under the action of K. For a holomorphic 
function f on the bounded symmetric domain 0, 0 is the open unit ball for a norm 
on en, so the following definition makes sense. For 0 < p < 00, f E 'H.P(O) if 

IlfllHP = sup [ Ifr(()IP da(() < 00. 
O<r<l Ja-O 

A strongly pseudoconvex domain 0 is given by a defining function p : en --+ 

(0,00) with certain properties which will be mentioned in section 1.2.2: 0 = {z E 
en : p(z) < a}. With 0, defined by {p < -f}, the conditions on p guarantee 
the existence of a surface area probability measure a, on a~, so the the following 
definition makes sense. For 0 < p < 00, f E 'HP(O) if 

IlfllHP = sup [ If(z)IP da,(z) < 00. 
,>0 Jao, 

The unit ball is an example of a bounded symmetric domain and of a strongly 
pseudo convex domain, the defining function given by p(z) = Izl2 - 1. 

1.2.1 Bounded Symmetric Domains 

We now take a closer look at bounded symmetric domains. Because it doesn't 
cost anything, we will work occasionally in arbitrary dimensions, specializing to en 
when convenient or necessary. 

An open connected subset 0 of a complex Banach space E is said to be a bounded 
symmetric domain if for each a E 0 there exists a unique element a = a a E Aut 0 
such that a(a) = a and a 2 = Id. It is known that this is equivalent to 0 being 
homogeneous, that is, the group Aut 0 acts transitively on 0, and symmetric at a 
single point. 
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HOLOMORPHIC COMPOSITION OPERATORS 195 

For example, in the case of the unit disk ~, aa = 'Pa 0 s 0 'Pa is involutive and 
fixes a, where s(z) = -z and 'Pa is the element of Autf! given by (1), that is, with 
'Pa(O) = a and 'Pa = 'Pa -1. 

A great number of finite and infinite dimensional examples of bounded symmet-
ric domains are provided by the algebraic structure known as a J C* -triple. These 
are defined as the open unit ball, in the operator norm, denoted ball (M) = {z E 
M : IlzlI < I}, of those norm closed subspaces M of 'c(H, K) which are stable for 
the triple product 

{abc} := (ab*c + cb*a)j2. 

Since {abc} is the quadratization and linearization of {aaa} = aa* a, it is enough 
to consider subspaces stable under the map a ~ aa*a. These objects were first 
studied in [20J under the name "J* -algebra". With hindsight, the "J" in JC* -triple 
stands for Jordan as in Jordan algebra, and the "C" stands for "concrete". The 
following formula (from [20]), valid for JC* -triples, is a far reaching generalization 
of the Mobius automorphisms of the unit disk: 

'Pa(b) = (1 - aa*)-1/2(b + a) (I + a*b)(1 - a*a)1/2. 

For a E ball (M), 'Pa E Aut (ball (M)) satisfies, 'Pa(O) = a and 'Pa = 'Pa -1. 
This work of Harris [20J was an outgrowth of his thesis, which contained a version 

of the Schwarz lemma in normed linear spaces [19]. 
I want to mention two watershed results from the generalization of Harris's work 

carried out by the Tiibingen school of infinite dimensional holomorphy. The first is 
"Kaup's Riemann Mapping Theorem", from [24], which states that every bounded 
symmetric domain in a complex Banach space is holomorphically equivalent to 
the open unit ball of a Banach space carrying the structure of a J B* -triple. The 
latter are the appropriate abstract generalization of JC* -triple, the "B" standing 
for Banach, as in Banach Jordan algebra. 

The second is U pmeier's structure theorem for the Toeplitz C* -algebra, that 
is, the C* -algebra A generated by all Toeplitz operators with continuous symbol, 
defined on the Hardy space H2(f!) of a bounded symmetric domain. In [44], see 
also the book by Upmeier [47], it is shown that this C* -algebra is solvable in the 
sense that there is a sequence of norm closed ideals I j , j = 0,1, ... , r + 1, where r 
is the rank of the bounded symmetric domain, such that 

o = 10 cIte· .. C Ir+l = A, 

and h+d h = C(Sk) 0 K. Here K is the compact operators, and Sk certain 
compact Hausdorff spaces defined using the Jordan triple structure associated with 
the bounded symmetric domain in question. Moreover, the spectrum of A, that 
is, the space of irreducible strongly continuous representations on Hilbert space are 
in one-to-one correspondence with the set of tripotents of that Jordan structure, 
which are the appropriate analog of the idempotents in binary algebras. 

For a survey and history of some of the topics in this section, see [38]. 

1.2.2 Strongly pseudoconvex domains 

We now take a closer look at strongly pseudoconvex domains. A domain f! = {z E 
en : p(z) < O} C en with C 2 boundary is said to be pseudoconvex if there is a 
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196 BERNARD RUSSO 

defining function p which satisfies 

for all P E an and for all wEen which satisfy 2:j apjazj(p)Wj = O. 
You get a strongly pseudo convex domain if this last expression is positive for 

every non-zero W (which implies that it is not less than ClwI 2 for some constant 
C > 0 and all (P, w) E an x en). 

The following domain is pseudoconvex: 

n = {(Zl, Z2) E e2 : IZll2 + IZ214 < I}. 

Its defining function is p(z) = IZll2 + IZ214 - 1. The domain in e 2 with defining 
function p( z) = 1 zll2 + 1 z21 2 + 1 - 21 zll - r2 is strongly pseudo convex if 0 < r < 1. 

The pseudo convex domains coincide with domains of holomorphy, that is, those 
domains n which admit a holomorphic function which cannot be continued ana-
lytically to any domain n' properly containing n. The proof of this fact in one 
direction uses H6rmander's solution to the a-problem on pseudoconvex domains 
(See for example [37, p226]). 

For the material in this subsection, as well as "22 equivalent characterizations of 
the principal domains that are studied in several complex variables", see the book 
by Krantz, [26]. 

1.3 Operators of Interest 

1.3.1 Toeplitz and Hankel operators 

The Bergman space A2(n) is a closed subspace of the Hilbert space L2(n) and 
its orthogonal projection (the Bergman projection) is given as an integral operator 
with kernel K(z, w) (the Bergman kernel). We shall denote this projection by P, 

PJ(Z) = In J(w)K(z, w) dV(w) 

Similarly, the Hardy space 1-£2(n) is a closed subspace of the Hilbert space 
L2(an) and its orthogonal projection (the Szeg6 projection) is given as an integral 
operator with kernel S(z, w) (the Szeg6 kernel). We shall denote this projection by 
S, 

SJ(Z) = ( J(w)S(z, w) d(]'(w), J E L2(an). Jan 
Although our main interest is in composition operators, we first define the other 

two types of operators which are of interest in the field of operator theory in function 
spaces. All three operators of interest are defined both for the Bergman spaces and 
for the Hardy spaces, as well as many other holomorphic functions spaces. 

Let J : n -; e and define formally the following: 

Toeplitz Tf : A2 -; A2; Tf9 = P(fg), 9 E A2, Jg E L2 

Hankel Hf : A2 -; A21-; Hfg = (I - P)(fg), 9 E A2, Jg E L2 
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Small Hankel hf : A2 --t A2; hf9 = PUg), 9 E A2, f9 E £2 

We make several remarks in connection with these definitions. The definitions 
above are for the operators on the Bergman space. There is a corresponding Hardy 
space operator in each case; simply replace A2 by 1{2 and P by S. All of these 
operators are densely defined, and the small Hankel operators are conjugate linear. 
The small Hankel operator is essentially the same as the Hankel operator only in the 
case of1{2(~), because 1{2(~)1. is one dimension away from 1{2(~). It is sometimes 
convenient to consider these operators as acting from £2 into £2. 

1.3.2 The Bergman and Szego projections 

The Bergman and Szego projections are important tools in the study of operator 
theory in function spaces, and indeed are instrumental in the very definition of 
Toeplitz and Hankel operators. 

Let's give some explicit formulas for the Bergman kernel in the cases of interest 
to us. Similar formulas hold for the Szego projections in each case. 

unit ball In this case, 
K( ) n! 1 

zw---:--------:---:-::-
, - 7rn (1 - z· w)n+1 

strongly pseudo convex domain In this case, there is no explicit formula, but 
an asymptotic expansion due to C. Fefi'erman [18] allows one to transfer tech-
niques for the unit ball to this setting. 

unit polydisk In this case, 

1 n 1 
K(z, w) = - II (1 -)2 7rn - Z'W' j=l J J 

bounded symmetric domain In this case, the Bergman kernel can be expressed 
in terms of the Jordan algebraic structure associated with bounded symmetric 
domains as follows: 

K(z,w) = cdetB(z,w)-l 

where B(x, y) is the "Bergman operator" (see the next subsection). This 
description of the Bergman kernel can be found in [34] and [14]. 

1.3.3 The Bergman operator of a JB*-triple 

Recall that except for the two exceptional ones, all finite dimensional bounded 
symmetric domains, as well as a great number of infinite dimensional ones, occur 
as the open unit balls of norm closed subspaces M of £(H, K) which are stable for 
the triple product 

{abc} := (ab*c + cb*a)j2. (2) 

It is not difficult to check the following properties of the symmetrized triple 
product (2). 

1. {xyz} is jointly continuous, symmetric and bilinear in x, z, and conjugate 
linear in y 

Licensed to Univ of Calif, Irvine.  Prepared on Tue Mar  2 14:41:56 EST 2021for download from IP 128.195.75.100.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



198 BERNARD RUSSO 

2. Let 8(x) be the map y t-t {xxy}. Then exp[it8(x)] is a surjective isometry of 
M for each t E R, (T C(M)(8(x)) ~ 0, and i8(x) is a derivation of the Jordan 
triple product, that is, with 8 = 8(x), 

8{abc} = {8a,b,c} - {a,8b,c} + {a,b,8c} 

3. II {xxx} II = IIxl1 3 (or 118(x)11 = Ilx11 2) 

(3) 

Note that (3) is the "Leibniz rule", and that 8(x) = Lxx' + R x ' x , where La for 
example denotes left multiplication by a 

The above three properties becomes the definition of a J B* -triple, that is, of 
an abstract JC*-triple. More precisely, if A, { ... }, 11·11 is a complex Banach space 
equipped with a triple product which satisfies the above three properties, we call A 
a J B* -triple. The analogy with this concept and that of the theory of C* -algebras, 
B* -algebras, and W* -algebras cannot be resisted. In fact, a theory parallel to the 
theory of operator algebras on Hilbert space has been developed, culminating in 
a Gelfand-Naimark Theorem for JB*-triples, [17], see also [38]. What made this 
ternary product theory difficult to develop is the complete lack of a global order 
structure, which was a key tool in the case of a binary product. 

We can now define the Bergman operator of a J B* -triple A. For x, yEA: 

B(x, y) = 1 - 2D(x, y) + Q(x)Q(y), 

where D(x,y) is the linear operator z t-t {xyz} and Q(a) is the conjugate linear 
operator z t-t {aza}. In the case of JC* -triples, B(x, y)z = (1 - xy*)z(1 - y*x), or 
B(x, y) = LI-xy.RI-y'x, 

As a reality check, if A is the complex numbers, where {xyz} = xzy, then 
B(x, y) = (1 - Xy)2 so that K(x, y) = det B(x, y)-l = (1 - Xy)-2. 

1.3.4 Composition operators 

For a function <p : n -+ n, the composition operator Ctp is defined by 

CtpJ = J 0 <p. 

We will always be interested in the case that the symbol <p is a holomorphic mapping 
(transformation) and the operator Ctp will always be acting on spaces of hoI om orphic 
functions. 

Composition operators are not only of great intrinsic interest in pure operator 
theory. They appear in the following contexts: 

• commutants of multiplication operators 

• dynamical systems 

• deBranges-Bieberbach conjecture 

• ergodic transformations 

• isometries of Banach function spaces 

• homomorphisms of algebras 
The main references for the theory of composition operators are the three recent 

monographs [12], [41],[42], and the two survey articles (11),[48]. 
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1.4 Problems of Interest 

For holomorphic composition operators on the Hardy space H.p(n) or the Bergman 
space AP(n) we shall be interested in the following natural questions. 

1. For 0 < p:S 00, for which symbols <p is C<p bounded? 

2. For 0 < p :S 00, for which symbols <p is C<p compact? 

3. For p = 2, for which symbols <p does C<p belong to some Schatten-von Neu-
mann class Sq, 0 < q < oo? (A compact operator T on a Hilbert space belongs 
to Sq if its sequence of singular numbers, that is, the eigenvalues of (T*T) 1/2, 
belongs to the sequence space £q) 

4. For p = 1, for which symbols <p is C<p weakly compact? (An operator T on a 
Banach space is weakly compact if it is bounded and maps bounded sets to 
relatively weakly compact sets) 

For a given domain, the above list implies that there are eight questions of 
interest, 4 for the Hardy space and 4 for the Bergman space. As will be discussed in 
the rest of this survey, in the case of the Bergman space, all of these problems have 
been solved except for the boundedness and compactness criteria in the case of a 
strongly pseudoconvex domain, see 1.4.2. In particular, all problems are solved for 
the Bergman space of a bounded symmetric domain and therefore for the Bergman 
space of the unit ball. 

On the contrary, all 4 problems are completely open in the case of the Hardy 
space of a bounded symmetric domain, and two of them (3. and 4.) are open in the 
particular case of the unit polydisk. In addition, Problem 3 for the Hardy space is 
still open in the case of the unit ball, or more generally, a strongly pseudoconvex 
domain. 

The above discussion is summarized in the following two tables, whose entries 
are the appropriate literature references for the solution of the problem associated 
with the entry. The author apologizes if there are some other references that should 
have been included here which have been overlooked. 

Although these tables demonstrate that serious progress haas been made on 
the specified problems, many of the results present analytic conditions, such as 
Carleson measure criteria, integrability criteria, growth of reproducing kernels, etc. 
in terms of the symbol, for the operator to be of a specific type. However, it remains 
to obtain more explicit geometric criteria, power series criteria, angular derivative 
criteria, etc. for many of these settings. 
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1.4.1 Problems on the Hardy space 

bounded compact Schatten weak compact 
unit disk Littlewood26 Shapiro Luecking87 Sarason92 

& Taylor73 Luecking 
& Zhu92 

unit ball MacCluer & MacCluer85 OPEN (Li-Russo95) 
Shapiro86 

MacCluer85 
Cima-Wogen87 

Wogen88 
unit polydisk Jafari90 Jafari90 OPEN OPEN 

SPCD Li-Russo95 Li-Russo95 OPEN Li-Russo95 
BSD OPEN OPEN OPEN OPEN 

1.4.2 Problems on the Bergman space 

bounded compact Schatten weak compact 
unit disk MacCluer & MacCluer & Luecking87 (Chen96) 

Shapiro86 Shapiro86 Luecking 
& Zhu92 

unit ball MacCluer & MacCluer85 (Li95) (Chen96) 
Shapiro86 

MacCluer85 
MacCluer 

& Mercer93 
unit polydisk Jafari90 Jafari90 (Zhu88, (Chen96) 

Li-Russo96) 
SPCD OPEN OPEN Li95 Chen96 
BSD Jafari92 Jafari92 Zhu88, Chen96 

Li-Russo96 

2 The State of affairs for the Classical domains 
The material in subsections 2.1.1 to 2.1.3 and 2.2.1 to 2.2.3 are from [12], to which 
the reader is referred for discussion, precise statements and proofs. 

2.1 Operators on the Hardy and Bergman spaces of the Unit 
Disk 

This seems like a good place to introduce the weighted Bergman spaces A~(~) C 
LP(~, (1 - IzI2)QdA(z)) with 0 < p < 00 and a > -1: 

A~(~) = {J holomorphic on ~: J~ If(z)IP(1-lzI2)Q dA(z) < oo}. 

Licensed to Univ of Calif, Irvine.  Prepared on Tue Mar  2 14:41:56 EST 2021for download from IP 128.195.75.100.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



HOLOMORPHIC COMPOSITION OPERATORS 201 

2.1.1 Automatic Continuity 

[12, Corollary 3.7,p.123] As a consequence of the Littlewood subordination 
principle, Ccp is automatically bounded on 'H.P(t::.) for p ~ l. 

[12, Exercise 3.1.3,p.127] Discussion of when Ccp is automatically bounded on 
the weighted Bergman space A 2 0: (t::.), a > -1 

2.1.2 Boundedness and Compactness Criteria 

For a function <p : t::. ---+ t::., let f..L be the pull-back measure defined as follows: 
f..L(E) = a(<p*-l(E)), where E c t::. and a denotes the normalized Lebesgue measure 
on T: a = d() /2rr. In the following two results, S( (, h) denotes the Carleson region 
defined below in subsection 2.2.1 for the unit ball in C n . 

[12, Theorem 3.12,p.129] Ccp is bounded on 1iP(t::.) 0 < p < 00 if and only if 
f..L(S((, h)) = O(h) for all ( E T and 0 < h < l. 

[12, Theorem 3.12,p.129] Ccp is compact on 1iP(t::.) 0 < p < 00 if and only if 
f..L(S((, h)) = o(h) as h ---+ 0 uniformly for ( E T. 

[12, Exercise 3.2.6,p.142] The analog of the previous two results holds for the 
weighted Bergman spaces AP a (t::.). 

The boundedness or compactness of Ccp on 1iP(t::.) or on AP(t::.) is thus indepen-
dent of p. Moreover, in the case of the Hardy space, the 'big 0' Carleson measure 
condition automatically holds. 

2.1.3 More on compactness 

Compactness can be described in terms of angular derivatives as well as the Nevan-
linna counting function Ncp(z). We refer to [12) for the definitions. However, see 
the next subsection. 

[12, Corollary 3.14,p.132] If Ccp is compact on 1iP(t::.) or AP a (t::.), 0 < p < 00 

then <p has no finite angular derivative on T. 

[12, Theorem 3.20,p.139] Ccp is compact on 1i2(t::.) if and only if 

limsup Ncp(w) = 0 
Iwl->l -log Iwl 

[12, Theorem 3.22,p.141] Ccp is compact on AP a(t::.) if and only if <p has no 
finite angular derivative on T. 

2.1.4 Trace Ideal Criteria 

There are two main results that deal with the membership of a composition operator 
on the unit disk in a Schatten-von Neumann class Spo They appear in [35) and [36). 
For the case of the Hardy space, this problem has not yet been extended beyond 
the unit disk. 
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202 BERNARD RUSSO 

For the unit disc in C, D. Luecking [35] initiated a systematic study of trace ideal 
criteria (0 < p < 00) for Toeplitz operators Til with measures as symbols on some 
standard Hilbert spaces of holomorphic functions. His conditions are expressed in 
terms of a dyadic hyperbolic decomposition of the unit disc. By an appropriate 
choice of measure and weight, his result applies to composition operators on the 
Hardy space and the weighted Bergman spaces. See section 4.1 for a discussion of 
Til on the weighted Bergman spaces of bounded symmetric domains. 

In order to describe the main result of [35] we need to introduce some notation 
from that paper. For 0: < 1, Ho: will denote the space of analytic functions J(z) = 
E~ anzn on b. satisfying E(n + 1)0:Ianl2 < 00. The parameter values 0: = ° and 
0: = -1 correspond, respectively, to the Hardy space H2 and the Bergman space 
A 2. The norm is chosen so that the reproducing kernel k~ (z) = kO: (z, w) for H 0: has 
the form kO:(z, w) = (1 - zw)O:-l. For 0: < 0, Ho: is the weighted Bergman space 
A=-l-o:' 

The dyadic hyperbolic decomposition is basically a decomposition of b. into 
disjoint sets of roughly equal (hyperbolic) size. A dyadic arc is an arc I c ab. of 
the form 

1= {eiO : 27rk < () < 27r(k + I)} 
2n - 2n ' 

k = 0,1, ... ,2n - 1, n = 0, 1, .... 

Given an arc I, let £(I) denote its length and let 8(I) denote the corresponding 
Carleson "square": 8(I) = {z E b. : z/Izl E 1,1- Izl :::; £(1)/27r}. Also, let R(1) 
denote the half of 8(1) nearest the origin, that is R(I) = {z E 8(I) : £(I)/47r < 
1-lzl :::; £(I)/27r}. The family {R(In where I runs over all dyadic arcs is pairwise 
disjoint and covers b.. Fix an enumeration of this family and call it {RJ. 

[35] Let p > ° and 0: < 1 be such that po: < 1, and let J-L be a measure on b.. In 
order that the Toeplitz operator 

TIlJ(w) = J J(z)(l - ZW)O:-l dJ-L(z), J E Ho: 

belong to the Schatten class Sp(Ho:) it suffices that 

I)iJ-LI(Ri)£(Rit-1]P < 00. 

In this case IITlllls :::; CEUp,I(Ri)£(Ri)o:-l]p. If J-L is a positive measure, this 
p 

condition is also necessary, and EUJ-LI(Ri)£(Ri)o:-l]p :::; CIiTlllls . 
p 

We next describe the results of [36], They involve the Nevanlinna counting func-
tion in both the Hardy space and the weighted Bergman spaces. For the latter, it 
is necessary to recall the generalized Nevanlinna counting function of [40], that is, 
for f3 2 1, 

Ncp,{3(w) = L (log ~)(3 
zEcp-'(w) Izl 

[36, Theorem 1] For a composition operator Ccp on 'H.2 (b.), and ° < p < 00, 

C E S ('H.2 ) {:} Ncp(w) E U/ 2 (d)"(w)) 
cp p -log Iwl 
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where d'\(z) = (1 -lzI2)-2dA(z) 

[36, Theorem 3] The composition operator C", belongs to Sp(A~) if and only if 

N",,0.+2(Z) (lOg I~I) -0.-2 E LP/2(d'\(z)). 

The special case of the Hilbert Schmidt composition operators is easier and can 
be found in [12, Exercise 3.3.2,p. 149). 

2.1.5 Weak compactness 

For 1 < p < 00, 1{P(O) and #(0) are reflexive Banach spaces, so any bounded 
operator is automatically weakly compact. For p = 1 and 0 =.6., we have the 
following result of Sarason, which uses real variable Hardy spaces and Fefferman 
duality, as expressed by V MO(.6.) * = Hl (.6.) and Hl (.6.)* = BMO(.6.). 

Since C", is automatically bounded on H1(.6.), so is its adjoint on BMO(.6.), 
and it becomes important to ask when C", is itself the adjoint of some operator on 
V MO(.6.), as expressed in the following diagram: 

BMO(.6.) 

Hl (.6.) 
VMO(.6.) 

c· 
~ BMO(.6.) 

~ Hl(.6.) 
~ VMO(.6.) 

This is the case if C;(BMO(.6.)) c VMO(.6.), which is one of the ingredients in 
the proof of 

[39] If C", is weakly compact on 1{1(.6.), then C", is compact. 

This result has been extended to higher dimensional Hardy and Bergman spaces 
([31),[6)), see subsections 3.2 and 3.3. 

2.2 Operators on the Hardy and Bergman spaces of the unit 
Ball 

2.2.1 Boundedness and Compactness Criteria 

The Carleson measure conditions on the unit ball are the same as the corresponding 
conditions on the unit disk noted above. 

For a function <p : BN ---t BN, let J1. be the pull-back measure defined as follows: 
J1.(E) = C7N(<p*-l(E)), where E C BN and C7N denotes the normalized surface 
measure on S := 8BN. In the following two results, <p is a holomorphic map from 
o into 0, and S((, h) denotes the Carleson region defined as follows: 

S((, h) = {z E BN : 11 - (zl()1 < h} 

[12, Theorem 3.35,p.161] C", is bounded on 1{P(BN) 0 < p < 00 if and only if 
J1.(S((, h)) = O(hN) for all ( E Sand 0 < h < 1. 

[12, Theorem 3.35,p.161] C", is compact on 1-fP(BN ) 0 < p < 00 if and only if 
J1.(S((, h)) = O(hN) as h ---t 0 uniformly for ( E S. 
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[12, Theorem 3.37,p.164] The analog of the previous two results holds for the 
weighted Bergman spaces AP a (B N ). In this case, J.l( E) = Va ( cp -1 (E)) for 
E C BN, where dVa(z) = (1 -lzI2)adVN. 

2.2.2 Some results on bounded ness and unboundedness 

[12, Theorem 3.39,p.166] If SUPzEBN Ilcp'(z)11 < 00 and sup{card{cp*-l(()} 
( E BBN} = 00, then C<.p is unbounded on 'Hl(BN)' 

[12, Theorem 3.41,p.167] If SUPZEBN Ilcp'(z)II/IJ<.p(z)1 < 00, then C<.p is bounded 
on 'H'p(BN)' 

[12, Theorem 6.5,p.227] C<.p('H.P(BN) c APN- 2(BN) and C<.p is automatically 
bounded as an operator from 'H.P(BN) to AP N-2(BN). 

2.2.3 Angular derivative 

Once again, we refer to [12] for the definition of angular derivative for the unit ball. 

[12, Theorem 3.43,p.I71] If C<.p is compact on 'H.P(BN) or AP a(BN), 0 < p < 00 

then cp has no finite angular derivative on B B N . 

[12, Exercise 6.1.2,p.228] If cp has no finite angular derivative on S, then C<.p : 
'H.P(BN) ---> APN- 2(BN) is compact. 

Some Geometric conditions for boundedness, compactness, and unboundedness 
for composition operators on the unit ball can be found in [12, Chapter 6], to which 
we refer for discussion, statements, and proofs. 

2.3 Operators on the Hardy and Bergman spaces of the unit 
Polydisk 

For the unit polydisk ~ n, the notions of Carleson measure, compact Carleson 
measure, a-Carleson measure, compact a-Carleson measure, a > -1, were intro-
duced and studied, along with angular derivatives, in [21],[22]. Let mn denote 
n-dimensional normalized Lebesgue measure on the torus Tn. 

[21] Let cp : ~ n ---> ~ n be holomorphic, 1 < p < 00, a > -l. 

• C<.p is bounded on 'H.P (~n) (resp. AP a (~n)) if and only if J.l( E) = 
m n(cp*-l(E)) is a Carleson measure (resp. an a-Carleson measure) . 

• C<.p is compact on 'H.p(~n) (resp. APa(~n)) if and only if J.la(E) 
Va( cp*-l (E)) is a compact Carleson measure (resp. a compact a-Carleson 
measure). 

3 Weak Compactness 

3.1 Fefferman duality in several complex variables 

It had been considered a part of the folklore for some time that the result of C. 
Fefferman identifying the dual of H1(Rn) as BMO(Rn) [43], can be extended (in 
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suitable form) to the unit ball in en. In order to understand Fefferman duality 
better, Coifman showed that the atomic structure of HI(R) was equivalent to the 
duality theorem. Fefferman duality and atomic decomposition (of 1{P 0 < p :::; 1) 
are now known to hold in the following cases: 

• The unit disk: Fefferman, Coifman ([15],[8]) 

• The unit ball: Coifman-Rochberg-Weiss ([10]) 

• The unit polydisk: Chang-Fefferman ([4]) 

• Strongly pseudoconvex domains: Krantz-Li ([28]) 
The unit ball in en and the unit polydisk are examples of bounded symmet-

ric domains, so this is an area of investigation which is wide open for bounded 
symmetric domains. 

3.1.1 Atomic decomposition and duality for the unit ball 

We state here the atomic decomposition and "Fefferman duality" for the case of the 
unit ball in en. Let B = BN be the unit ball in en, and let a denote Lebesgue area 
measure on S = aB. Recall that the Hardy space 1{1(B) consists of all holomorphic 
functions F : B -+ e satisfying 

IIFIII = sup r IF(rz)1 da(z) < 00. 
O<r<l JaB 

An atom is a function a : aB -+ e which is supported on a sphere S (with respect 
to the metric d(z,() = 11- (zl()II/2) and satisfying 

1 la(()I:::; 1ST foB ada = O. 

A holomorphic atom A is the image of an atom a under the Szego projection: 

r a(() 
A(z) = S(a)(z) = c JaB (1 _ (zl() )n da((). 

The space BMO(B) is defined as the space of functions b: aB :-+ e such that 

IlbllBMO = s~p ,~,1s Ib(y) - ms(b)1 da < 00 

where S is sphere and ms(b) = Isbda/ISI. The main results from [10], for our 
purposes, are 

[10] Atomic decomposition Every F E 1{1(B) can be written F = I:i AiAi, 
where the Ai are holomorphic atoms and I: IAil :::; CIIFIII. 

[10] Duality 1{1(B)* = BMOA(B), where BMOA consists of the holomorphic 
functions in BMO(B). 

As noted above, these two results have each been formulated and proved in the 
context of strongly pseudo convex domains [28], as well as for the unit polydisk [4]. 
In each case, nontrivial modifications are required. In the case of the polydisk, the 
methods of multiparameter harmonic analysis [5] are used. 
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3.2 Weak Compactness on Hardy spaces 

In 2.1.5 above, we discussed weak compactness of composition operators on the 
Hardy space of the unit disk. In this and the following section, we discuss this 
problem in higher dimensions. For f!= the unit ball or a strongly pseudoconvex 
domain, real variable Hardy spaces exist and Fefferman duality holds, [28]: 

The analog of the theorem on Sarason on weak compactness, as well as the 
standard criteria for boundedness and compactness on Hardy spaces was extended 
the to setting of a strongly pseudo convex domain in [31]. 

[31, Theorem 1) Let f! be a bounded strongly pseudo convex domain in en with 
smooth boundary. The following are equivalent for a composition operator 
C<p which is bounded on 1t2(f!): 

1. C; : LOO(af!) --+ VMO(af!) is bounded, that is, C'P : Hl(af!) --+ Ll(af!) 
is bounded and C;(LOO(af!)) c V MO(af!). 

2. C<p : HI (af!) --+ Ll(af!) is compact. 

3. C<p : 1t1 (f!) --+ 1t1 (f!) is compact. 
4. C<p : 1tP(f!) --+ 1tP(f!) is compact for some 0 < p < 00. 

5. C<p : U(af!) --+ U(af!) is compact for some 1 < p < 00. 

6. The pull-back measure dV<p is a vanishing Carleson measure. 
7. C<p : 1tP(f!) --+ 1tP(f!) is compact for all 0 < p < 00. 

The diagram for the equivalence of 1. and 2. which corresponds to the diagram 
in subsection 2.1.5 is 

BMO(af!) 
HI (af!) 

VMO(af!) 

c· 
~ LOO(af!) 
s... Ll(af!) 

Note that the bottom row of this diagram is incomplete since Ll has no predual in 
this case. For n = 1 and f! = .6., if C<p : Hl(af!) --+ Ll(af!) is compact, then it 
follows that c<p(HI(af!)) c HI (af!). In higher dimensions, it is more convenient 
to state the result in the form given above. 

3.3 Weak Compactness on Bergman spaces 

Motivated by the results of Sarason and Li-Russo, Lang Chen, in his 1994 thesis 
considered the weak compactness of composition operators on the Bergman space 
A l (f!) of both strongly pseudoconvex domains and bounded symmetric domains. 

In the following, we denote by B(f!) and Bo(f!) the Bloch and little Bloch spaces 
defined for a bounded strongly pseudo convex domain f!. According to [27),[29),and 
[6), Bo(f!)* = AI(f!) and AI(f!)* = B(f!). 

For a bounded symmetric domain f!, the dual and predual of Al (f!) were deter-
mined in [49]. There, certain Bloch type spaces fl(f!) and B~(f!) were defined in 
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terms of a differential operator depending on a (Jordan theoretic) real parameter s 
and were shown to satisfy B~(f2)* = Al(f2) and Al(f2)* = BS (f2). 

In each of the above cases, the Bergman projection was shown to map DXl(f2) 
(resp. Co(f2)) onto the Bloch space B(f2) in the case of a strongly pseudoconvex 
domain, and BS (f2) in the case of a bounded symmetric domain (resp. the little 
Bloch space Bo(f2) and B~(f2)). 

[6, Theorem 4.1,Theorem 4.5] Let f2 be a bounded strongly pseudoconvex 
domain (resp. a bounded symmetric domain) in en with smooth boundary. 
The following are equivalent: 

1. Ccp : Al(f2) ---+ Al(f2) is compact. 
2. Ccp : Al(f2) ---+ Al(f2) is weakly compact. 

3. C; : B(f2) ---+ Bo(f2) is bounded (resp C; : B8 (f2) ---+ B~(f2) is bounded). 

4 Trace Ideal Criteria 
4.1 Known Results 
We have already mentioned in subsection 2.1.4 the known results in the case of the 
unit disk. A thorough study of boundedness, compactness, and trace ideal criteria 
for Toeplitz operators on weighted Bergman spaces of bounded symmetric domains 
was done in [51]. Again, by appropriate choice of the symbol, the theory can be 
made to cover composition operators, namely C;Ccp = Tv.;. The theorem of Zhu 
which is of interest to us is stated below. The Toeplitz opemtor with symbol a 
measure /-L is defined by 

TJ1-f(z) = in KO(z, w)f(w) d/-L(w) , 

where K(o) := K(z, W)l-o is the Bergman reproducing kernel for the weighted 
Bergman space A2o(f2) C L2(f2, dVO), and dVo = C.;l K(z, z)OdV(z) is normalized 
weighted Lebesgue measure. The Berezin symbol of the measure /-L is defined by 

ji.O(z) = in Ikz (w)1 2(1-o) d/-L(w) , 

and kz(w) = K(w,z)jK(z,z)1/2. 

[51, Theorem C] For a finite positive Borel measure /-L on a bounded symmetric 
domain f2, and p ~ 1, the following are equivalent: 

1. The Toeplitz operator TJ1- belongs to Sp(A2o(f2)) 
2. The Berezin transform ji.o belongs to LP(f2, K(z, z)dV(z)) 
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4.2 More recent results 

We need the following definitions in the statements of the results of this section. For 
a composition operator with symbol cp, the Berezin transform B~ of cp is defined to 
be the Berezin symbol of the pullback measure V;(E) = Va(cp-l(E)) for E c n. 
More precisely, 

Another useful transform can be defined using the Bergman metric is 

b~(z, r) = V; (E(z, r))IE(z, r)la-l 

where (J(z, w) is the distance function on n arising from the Bergman metric, 
E(z,r) = {w En: (J(z,w) < r} is the ball in that metric, and lEI = IE dV. 

We let ,X denote the measure CaK(a)(z, z)dVa(z) = K(z, z)dV(z). 

[30, Theorem 1.1] Let n be a smoothly bounded strongly pseudo convex domain 
in en, and let 2n/(n + 1) < p < 00. Then C<p E Sp(A2(n)) if and only if 
B<p E LP(n, d'x). 

[32, Theorem 1.1] Let n be a bounded symmetric domain in en, and suppose 
a <an. 

1. For 0 < p < 00, C<p E S2p(A2 a(n)) if and only if b~ E LP(n, d'x). 
2. For 2(1 - an)/(1 - a) < p < 00, C<p E Sp(A2a(n)) if and only if 

B~ E LP(n, d'x). 

A very fertile area of proposed investigation would be to establish trace ideal 
criteria for composition operators in Hardy spaces of bounded symmetric domains 
and of strongly pseudoconvex domains. Nothing has been done about this even in 
the context of the unit ball or the unit polydisk. 

For the sake of completeness, we mention the following companion results on 
boundedness and compactness. 

[23, Theorem 3.1] Let n be a bounded symmetric domain in en, and suppose 
a < an. Then for 1 :::; p < 00, 

1. C<p is bounded on AP a(n)) if and only if b~ E LOO(n) 
2. C<p is compact on AP a(n)) if and only if b~ E Co(n) 

[23, Theorem 3.2] Let n be a bounded symmetric domain in en, and suppose 
a < an. Then for 1 :::; p < 00, 

1. C<p is bounded on AP a (n)) if and only if B~ E L OO (n) 
2. C<p is compact on AP a(n)) if and only if B~ E Co(n) 
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4.3 Techniques for bounded symmetric domains 

The following are some of the techniques used in the proofs of the above results on 
bounded symmetric domains. I refer to the indicated references for a statement and 
discussion of these techniques. 

[2) Asymptotic properties of the Bergman kernel and metric 

[13) Forelli-Rudin type inequalities for the quantity 

IQ,c(z) = In K(w, w)QIK(z, w)11-Q+c dV(w) 

[9) Atomic decomposition of Bergman spaces 

5 Epilogue 

The following four projects for further study are suggested by the discussion in 
this paper. The first three involve Schatten class operators on the Hardy spaces, 
and their execution would complete the table in 1.4.1, while the fourth involves 
boundedness and compactness on the Bergman spaces and would complete the 
table in 1.4.2. The author welcomes hearing of any progress which has been made 
on any of these problems. 

1. Study the boundedness, compactness, trace ideal criteria, and weak compact-
ness of holomorphic composition operators on the appropriate Hardy spaces of 
a bounded symmetric domain. Here the main tool would be the Jordan alge-
bra approach as set forth in [14] and as used in the study of Hankel operators, 
for example in [1]. 

2. Study the trace ideal criteria, and the weak compactness of holomorphic com-
position operators on the appropriate Hardy spaces of the unit polydisk. Here 
the main tool would be the multiparameter harmonic analysis, [4], [5], as used 
in the study of the small Hankel operator in [33]. 

3. Study the trace ideal criteria for holomorphic composition operators on the 
Hardy space 1i2(n) of a strongly pseudo convex domain, or of the unit ball. 
Here the main tool might be the analysis on the Heisenberg group, for example 
as in [16], and the duality of Bergman spaces, for example as in [50]. 

4. Study the boundedness and compactness for holomorphic composition opera-
tors on the Bergman spaces 1iP(n) of a strongly pseudoconvex domain, using 
the Carleson measure conditions, as in [7]. 
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