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Holomorphic Composition Operators
in Several Complex Variables

BERNARD RUSSO

Abstract: A survey of known results and open problems concern-
ing boundedness, compactness, and trace ideal membership of composi-
tion operators over the Bergman and Hardy spaces in several complex
variables, with special attention to strongly pseudoconvex domains and
bounded symmetric domains.

This expository paper attempts to give the state of the art of holomorphic com-
position operators in several complex variables insofar as it is concerned with certain
basic problems for operators associated with a symbol. Although it is exclusively
concerned with composition operators (which is a relatively new concept), also men-
tioned are Toeplitz and Hankel operators (which are each much older and have much
wider scope and applicability). These three types of operators are at the center of
the study of certain aspects of contemporary operator theory in function spaces and
the relations between them cannot be ignored.

As the author is relatively new to several complex variables, the exposition
will be influenced strongly by his affinity and bias for a special type of domain (a
bounded symmetric domain) and a special approach to their study (Jordan alge-
bras).

Another tool, besides Jordan theory, that is dear to the author is harmonic
analysis on Euclidean spaces, for which the book of Stein [43] is an excellent source
of information. Of greater impact is multiparameter harmonic analysis, as utilized
in the context of the unit polydisk in several complex variables. I quote from the
preface of the book by Stein:

The subject of harmonic analysis has undergone a vast development
in the last 25 years which has transformed the whole field. This has
had not only a profound effect on Fourier analysis itself, but has had
a major influence in such areas as partial differential equations, several
complex variables, and analysis on symmetric spaces (emphasis mine).

The unit polydisk and the unit ball are examples of bounded symmetric domains,
and a bounded symmetric domain is of course a special case of a symmetric space.
The above quotation indicates that any study of operator theory on function spaces
over bounded symmetric domains in several complex variables must rely heavily on
harmonic analysis.
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192 BERNARD RUSSO

Although there are a large number of works on operator theory over symmetric
domains, most of them (including the author’s) have not used the Jordan theory.
Notable exceptions are the study of Toeplitz operators by Upmeier [44],[47], and
the study of Hankel operators by Arazy [1]. An underlying theme of this paper is to
suggest that the two tools: multiparameter harmonic analysis, and Jordan algebra
theory, should be exploited in order to obtain results for composition operators over
the unit polydisk and more generally, over bounded symmetric domains.

This paper contains four main sections. Section 1 gives the background on
the types of function spaces, domains, and operators of interest, and poses the
problems to be discussed in later sections. It includes a rather heavy dose of Jordan
theory. In Section 2, the known results for what I call the classical domains (unit
disk, unit ball, unit polydisk) are given. All of these results are developed fully in
the recent monograph [12] so they are only mentioned briefly here without much
discussion. Sections 3 and 4 are concerned with two topics in which the author
had a hand in developing, namely, weak compactness of composition operators on
the Hardy spaces over a strongly pseudoconvex domain; and trace ideal criteria
for composition operators on the Bergman spaces of a bounded symmetric domain.
Some suggestions for further study are summarized in Section 5.

This paper follows closely the format of my talk at the Rocky Mountain Mathe-
matics Consortium Conference to which this volume is devoted. Details and discus-
sion are not always given, but references are provided for the reader (this includes
the author) who wishes to learn more about a particular topic.

Acknowledgements. The author thanks Don Sarason for introducing him to
composition operators, and Song-Ying Li for encouraging him to study them. The
author also thanks the editors for the invitation to contribute this paper.

1 Preliminaries

1.1 Function Spaces
1.1.1 Bergman and Hardy spaces

Let Q be a domain in C™. The Bergman space is the set of all holomorphic functions
on {2 which are p-integrable with respect to Lebesgue volume measure dV on C" =
R
AP(Q) C LP(Q2,dV) 0<p<oo.

AP(9) is a closed subspace of LP(Q2,dV). When n = 1, we use the notation dA for
dV . The Hardy space H?(2), 0 < p < 00, as well as the embedding HP(2) C LP(9N)
is a little more complicated. We begin with three familiar case. For any function f
and r > 0, let f.(2) = f(r2).

e O = the unit disk: for a holomorphic function f on the unit disk A = {z €
C:|z|<1}CcCand 0<p< oo, f€eHP(A)if

2w
I = sup [ 1) dof2m < 0
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HOLOMORPHIC COMPOSITION OPERATORS 193

e () = the unit ball: for a holomorphic function f on the unit ball B = {2z =
(21, ++,20) EC™: 3|2 <1} C C" and 0 < p < o0, f € HP(B) if

11 = s [ 18P do(c) <o

e () = the unit polydisk: for a holomorphic function f on the unit polydisk
A" CC" and 0 < p < oo, f € HP(A™) if

£ = sup [ 1) dBs -8, /2m" < oo,

In the above, df/2m denotes normalized Lebesgue measure on the unit circle T,
o denotes a unique rotation invariant measure on the unit sphere S = 8B, and in
the case of the unit polydisk, r = (ry,---,7r,) and 8 = (64,---,0,), with obvious
meanings for 0 < r < 1 and €% in this case.

In each of the above cases, any HP function f has nontangential boundary values
f* € LP(09) almost everywhere, and the map

HP S f f* € LP(BQ)

is norm preserving. In fact, for any bounded domain in C"™ with C2-boundary,
f* exists, see [26, Ch. 8]. Moreover, in the two cases considered below, that is,
bounded symmetric domains and strongly pseudoconvex domains, the embedding
HP(2) C LP(ON) is an isometry.

1.2 Domains of Interest

We shall limit our attention in this paper to two types of domains, namely, bounded
symmetric domains and strongly pseudoconvex domains. Before giving the precise
definitions, we show how the Hardy spaces are defined in each case. Then we shall
say a little more about each type of domain.

A bounded symmetric domain can be defined as a domain in C™ which is the
open unit ball of a Banach space structure on C™ and which also carries a cer-
tain type of algebraic structure known as a Jordan triple system. This approach is
followed in finite and infinite dimensions in [25],[34], and [24]. In the infinite dimen-
sional case, C" is replaced by any complex Banach space. In finite dimensions, the
bounded symmetric domains have been completely classified, first using Lie theory
[3], and afterwards using Jordan theory [25]. The latter method extends to the
infinite dimensional case [24],[45],(46).

The underlying Banach spaces of all bounded symmetric domains are obtained
by taking ¢°° direct sums of spaces in the following list. We shall not specify the
norms in the last three cases.

o M, »(C): rectangular m by n complex matrices with the operator norm
e 5,(C): symmetric n by n complex matrices with the operator norm
e A,(C): anti-symmetric n by n complex matrices with the operator norm

e Spin,: the complex “spin factor” of dimension n
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194 BERNARD RUSSO

e [15: the “exceptional” complex Jordan triple system of dimension 16
e [57: the “exceptional” complex Jordan algebra of dimension 27

In particular, we obtain the unit disk, unit ball, and unit polydisk, from M, 1,
M n,and M1 x My X -+ X M1, respectively.

An important tool in the above mentioned classification, which remains true
in infinite dimensions, is that the connected component G of the group Aut§2 of
all holomorphic automorphisms of Q is a (Banach) Lie group, and as such has a
Cartan decomposition G = K P, where K is the compact subgroup of all linear
isometries (called “rotations”) and P is the set (not a group) of automorphisms
(called “translations”) analogous to the Mobius transformations on the unit disk.
Indeed, in the case of the unit disk, the Cartan decomposition of an automorphism
o of A has the form

o(z) = eie‘Pa(z)v z € A,

where a € A and

z+a
= . 1
pal2) = £ 1)
For any bounded symmetric domain, there is a unique probability measure o on
the Silov boundary 9*§2, which is invariant under the action of K. For a holomorphic
function f on the bounded symmetric domain €2, €2 is the open unit ball for a norm
on C", so the following definition makes sense. For 0 < p < oo, f € HP(Q) if

11l = sup [ 15(OF do() < .

A strongly pseudoconvex domain 2 is given by a defining function p : C" —
(0, 00) with certain properties which will be mentioned in section 1.2.2: Q = {z €
C" : p(2) < 0}. With Q. defined by {p < —e}, the conditions on p guarantee
the existence of a surface area probability measure o, on 92, so the the following
definition makes sense. For 0 < p < o0, f € HP(Q) if

115 = it;}g/(‘me |f(2)[P doe(2) < oo.

The unit ball is an example of a bounded symmetric domain and of a strongly
pseudoconvex domain, the defining function given by p(z) = |2|* — 1.

1.2.1 Bounded Symmetric Domains

We now take a closer look at bounded symmetric domains. Because it doesn’t
cost anything, we will work occasionally in arbitrary dimensions, specializing to C™
when convenient or necessary.

An open connected subset (2 of a complex Banach space F is said to be a bounded
symmetric domain if for each a € Q there exists a unique element ¢ = g, € Aut2
such that o(a) = a and 0% = Id. It is known that this is equivalent to £ being
homogeneous, that is, the group Aut 2 acts transitively on (2, and symmetric at a
single point.
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HOLOMORPHIC COMPOSITION OPERATORS 195

For example, in the case of the unit disk A, 0, = p, 0 s 0 ¢, is involutive and

fixes a, where s(z) = —z and ¢, is the element of Aut given by (1), that is, with

©a(0) = a and @, = 9,7 !.

A great number of finite and infinite dimensional examples of bounded symmet-
ric domains are provided by the algebraic structure known as a JC*-triple. These
are defined as the open unit ball, in the operator norm, denoted ball (M) = {z €
M : ||z|| < 1}, of those norm closed subspaces M of £(H, K) which are stable for
the triple product

{abc} := (ab*c + cb*a)/2.

Since {abc} is the quadratization and linearization of {aaa} = aa*a, it is enough
to consider subspaces stable under the map a — aa*a. These objects were first
studied in [20] under the name “J*-algebra”. With hindsight, the “J” in JC*-triple
stands for Jordan as in Jordan algebra, and the “C” stands for “concrete”. The
following formula (from [20]), valid for JC*-triples, is a far reaching generalization
of the Mobius automorphisms of the unit disk:

9a(b) = (1 —aa*)"Y2(b+ a)(I + a*b)(1 — a*a)'/2.

For a € ball (M), ¢, € Aut (ball (M)) satisfies, ¢,(0) = a and ¢, = p, .

This work of Harris [20] was an outgrowth of his thesis, which contained a version
of the Schwarz lemma in normed linear spaces [19].

I want to mention two watershed results from the generalization of Harris’s work
carried out by the Tiibingen school of infinite dimensional holomorphy. The first is
“Kaup’s Riemann Mapping Theorem”, from [24], which states that every bounded
symmetric domain in a complex Banach space is holomorphically equivalent to
the open unit ball of a Banach space carrying the structure of a JB*-triple. The
latter are the appropriate abstract generalization of JC*-triple, the “B” standing
for Banach, as in Banach Jordan algebra.

The second is Upmeier’s structure theorem for the Toeplitz C*-algebra, that
is, the C*-algebra A generated by all Toeplitz operators with continuous symbol,
defined on the Hardy space H?(f2) of a bounded symmetric domain. In [44], see
also the book by Upmeier [47], it is shown that this C*-algebra is solvable in the
sense that there is a sequence of norm closed ideals I, j =0,1,...,7 4+ 1, where r
is the rank of the bounded symmetric domain, such that

0=I()C11C"'CIT+1=A,

and Ix41/Ix = C(Sk) ® K. Here K is the compact operators, and Sy certain
compact Hausdorff spaces defined using the Jordan triple structure associated with
the bounded symmetric domain in question. Moreover, the spectrum of A, that
is, the space of irreducible strongly continuous representations on Hilbert space are
in one-to-one correspondence with the set of tripotents of that Jordan structure,
which are the appropriate analog of the idempotents in binary algebras.

For a survey and history of some of the topics in this section, see [38].

1.2.2 Strongly pseudoconvex domains

We now take a closer look at strongly pseudoconvex domains. A domain Q = {z €
C" : p(z) < 0} C C™ with C? boundary is said to be pseudoconvez if there is a
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196 BERNARD RUSSO

defining function p which satisfies

for all P € 652 and for all w € C™ which satisfy ), 9p/0z;(P)w; = 0.

You get a strongly pseudoconvex domain if this last expression is positive for
every non-zero w (which implies that it is not less than C|w|? for some constant
C > 0 and all (P,w) € Q2 x C™).

The following domain is pseudoconvex:

Q={(2,22) € Cc?. |21 + |z2|4 <1}

Its defining function is p(z) = |21|2 + |22|* — 1. The domain in C? with defining
function p(z) = |21|2 + |22|? + 1 — 2|z1| — r? is strongly pseudoconvex if 0 < r < 1.

The pseudoconvex domains coincide with domains of holomorphy, that is, those
domains  which admit a holomorphic function which cannot be continued ana-
lytically to any domain Q' properly containing 2. The proof of this fact in one
direction uses Hormander’s solution to the O-problem on pseudoconvex domains
(See for example [37, p226]).

For the material in this subsection, as well as “22 equivalent characterizations of
the principal domains that are studied in several complex variables”, see the book
by Krantz, [26].

1.3 Operators of Interest
1.3.1 Toeplitz and Hankel operators

The Bergman space A%(f2) is a closed subspace of the Hilbert space L%(f2) and
its orthogonal projection (the Bergman projection) is given as an integral operator
with kernel K(z,w) (the Bergman kernel). We shall denote this projection by P,

Pf(z) = /Qf(w)K(z,w)dV(w) . ferXQ).

Similarly, the Hardy space H2(f2) is a closed subspace of the Hilbert space
L?(89) and its orthogonal projection (the Szegd projection) is given as an integral
operator with kernel S(z, w) (the Szegd kernel). We shall denote this projection by
S,

Si) = [ fw)S(zu)dou), € L2(29).
Although our main interest is in composition operators, we first define the other
two types of operators which are of interest in the field of operator theory in function
spaces. All three operators of interest are defined both for the Bergman spaces and

for the Hardy spaces, as well as many other holomorphic functions spaces.
Let f: Q2 — C and define formally the following:

Toeplitz Ty : A2 — A? ; Trg=P(fg), g€ A? fgelL?

Hankel Hf:A2——>A2L; Hpg= (I - P)(fg), g€ A2 fgelL?
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Small Hankel h; : A> - A% ; h;g= P(fg), g€ A? fgeL?

We make several remarks in connection with these definitions. The definitions
above are for the operators on the Bergman space. There is a corresponding Hardy
space operator in each case; simply replace A2 by H? and P by S. All of these
operators are densely defined, and the small Hankel operators are conjugate linear.
The small Hankel operator is essentially the same as the Hankel operator only in the
case of H2(A), because H2(A)* is one dimension away from H?(A). It is sometimes
convenient to consider these operators as acting from L? into L2.

1.3.2 The Bergman and Szeg6 projections

The Bergman and Szegd projections are important tools in the study of operator
theory in function spaces, and indeed are instrumental in the very definition of
Toeplitz and Hankel operators.

Let’s give some explicit formulas for the Bergman kernel in the cases of interest
to us. Similar formulas hold for the Szeg6 projections in each case.

unit ball In this case,
n! 1

K@w) = oG apm

strongly pseudoconvex domain In this case, there is no explicit formula, but
an asymptotic expansion due to C. Fefferman [18] allows one to transfer tech-
niques for the unit ball to this setting.

unit polydisk In this case,
S -
ik ol (1 —z]w]

bounded symmetric domain In this case, the Bergman kernel can be expressed
in terms of the Jordan algebraic structure associated with bounded symmetric
domains as follows:
K(z,w) = cdet B(z,w) ™"

where B(z,y) is the “Bergman operator” (see the next subsection). This
description of the Bergman kernel can be found in [34] and [14].

1.3.3 The Bergman operator of a JB*-triple

Recall that except for the two exceptional ones, all finite dimensional bounded
symmetric domains, as well as a great number of infinite dimensional ones, occur
as the open unit balls of norm closed subspaces M of £L(H, K) which are stable for
the triple product

{abc} := (ab*c + cb*a)/2. (2)

It is not difficult to check the following properties of the symmetrized triple
product (2).

1. {zyz} is jointly continuous, symmetric and bilinear in z,z, and conjugate
linear in y
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198 BERNARD RUSSO

2. Let é(z) be the map y — {zzy}. Then exp[ité(z)] is a surjective isometry of
M for each t € R, o M)(5(x)) > 0, and i6(z) is a derivation of the Jordan

triple product, that is, with § = (),
6{abc} = {ba,b,c} — {a, b, c} + {a,b, 6c} 3)

3. [{zzz}| = llz]|* (or 6()|l = ll=]*)

Note that (3) is the “Leibniz rule”, and that §(z) = Lyz« + Ryz«,, where L, for
example denotes left multiplication by a

The above three properties becomes the definition of a JB*-triple, that is, of
an abstract JC*-triple. More precisely, if A,{---},|| - || is a complex Banach space
equipped with a triple product which satisfies the above three properties, we call A
a JB*-triple. The analogy with this concept and that of the theory of C*-algebras,
B*-algebras, and W*-algebras cannot be resisted. In fact, a theory parallel to the
theory of operator algebras on Hilbert space has been developed, culminating in
a Gelfand-Naimark Theorem for JB*-triples, [17], see also [38]. What made this
ternary product theory difficult to develop is the complete lack of a global order
structure, which was a key tool in the case of a binary product.

We can now define the Bergman operator of a JB*-triple A. For z,y € A:

B(z,y) =1 -2D(z,y) + Q(z)Q(y),

where D(z,y) is the linear operator z — {zyz} and Q(a) is the conjugate linear
operator z — {aza}. In the case of JC*-triples, B(z,y)z = (I — zy*)z(I — y*z), or
B(xa y) = Ll—zy*Rl—y‘r'

As a reality check, if A is the complex numbers, where {zyz} = zz7, then
B(z,y) = (1 — 29)? so that K(z,y) = det B(z,y)~! = (1 — z7) 2.

1.3.4 Composition operators
For a function ¢ :  — 2, the composition operator C,, is defined by

Cof =foep.

We will always be interested in the case that the symbol ¢ is a holomorphic mapping
(transformation) and the operator C, will always be acting on spaces of holomorphic
functions.

Composition operators are not only of great intrinsic interest in pure operator
theory. They appear in the following contexts:

e commutants of multiplication operators
e dynamical systems

e deBranges-Bieberbach conjecture

e ergodic transformations

e isometries of Banach function spaces

e homomorphisms of algebras

The main references for the theory of composition operators are the three recent
monographs [12], [41],[42], and the two survey articles [11],[48].

Licensed to Univ of Calif, Irvine. Prepared on Tue Mar 2 14:41:56 EST 2021for download from IP 128.195.75.100.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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1.4 Problems of Interest

For holomorphic composition operators on the Hardy space HP(§2) or the Bergman
space AP(f2) we shall be interested in the following natural questions.

1. For 0 < p < oo, for which symbols ¢ is C, bounded?
2. For 0 < p < o0, for which symbols ¢ is C, compact?

3. For p = 2, for which symbols ¢ does C,, belong to some Schatten-von Neu-
mann class Sg, 0 < ¢ < 00? (A compact operator T" on a Hilbert space belongs
to S, if its sequence of singular numbers, that is, the eigenvalues of (T*T)'/2,
belongs to the sequence space £9)

4. For p = 1, for which symbols ¢ is C,, weakly compact? (An operator T on a
Banach space is weakly compact if it is bounded and maps bounded sets to
relatively weakly compact sets)

For a given domain, the above list implies that there are eight questions of
interest, 4 for the Hardy space and 4 for the Bergman space. As will be discussed in
the rest of this survey, in the case of the Bergman space, all of these problems have
been solved except for the boundedness and compactness criteria in the case of a
strongly pseudoconvex domain, see 1.4.2. In particular, all problems are solved for
the Bergman space of a bounded symmetric domain and therefore for the Bergman
space of the unit ball.

On the contrary, all 4 problems are completely open in the case of the Hardy
space of a bounded symmetric domain, and two of them (3. and 4.) are open in the
particular case of the unit polydisk. In addition, Problem 3 for the Hardy space is
still open in the case of the unit ball, or more generally, a strongly pseudoconvex
domain.

The above discussion is summarized in the following two tables, whose entries
are the appropriate literature references for the solution of the problem associated
with the entry. The author apologizes if there are some other references that should
have been included here which have been overlooked.

Although these tables demonstrate that serious progress haas been made on
the specified problems, many of the results present analytic conditions, such as
Carleson measure criteria, integrability criteria, growth of reproducing kernels, etc.
in terms of the symbol, for the operator to be of a specific type. However, it remains
to obtain more explicit geometric criteria, power series criteria, angular derivative
criteria, etc. for many of these settings.
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1.4.1 Problems on the Hardy space

bounded compact Schatten | weak compact
unit disk Littlewood26 Shapiro Luecking87 Sarason92
& Taylor73 | Luecking
& Zhu92
unit ball MacCluer & | MacCluer85 OPEN (Li-Russo95)
Shapiro86
MacCluer85
Cima-Wogen87
Wogen88
unit polydisk Jafari90 Jafari90 OPEN OPEN
SPCD Li-Russ095 Li-Russo95 OPEN Li-Russo095
BSD OPEN OPEN OPEN OPEN
1.4.2 Problems on the Bergman space
bounded compact Schatten weak compact
unit disk MacCluer & | MacCluer & | Luecking87 (Chen96)
Shapiro86 Shapiro86 Luecking
& Zhu92
unit ball MacCluer & | MacCluer85 (Li95) (Chen96)
Shapiro86
MacCluer85
MacCluer
& Mercer93
unit polydisk Jafarig0 Jafari90 (Zhu88, (Chen96)
Li-Russ096)
SPCD OPEN OPEN Li95 Chen96
BSD Jafari92 Jafari92 Zhu88, Chen96
Li-Russo96

2 The State of affairs for the Classical domains

The material in subsections 2.1.1 to 2.1.3 and 2.2.1 to 2.2.3 are from [12], to which

the reader is referred for discussion, precise statements and proofs.

2.1 Operators on the Hardy and Bergman spaces of the Unit

Disk

This seems like a good place to introduce the weighted Bergman spaces AE(A) C

LP(A, (1 — |2|?)*dA(z)) with 0 < p < 0o and @ > —1:

AP (A) = {f holomorphic on A : /A If(2)|P(1 — |2|?)* dA(2) < oo}
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2.1.1 Automatic Continuity

[12, Corollary 3.7,p.123] As a consequence of the Littlewood subordination
principle, C, is automatically bounded on HP(A) for p > 1.

[12, Exercise 3.1.3,p.127] Discussion of when C, is automatically bounded on
the weighted Bergman space 4%,(A), a > —1

2.1.2 Boundedness and Compactness Criteria

For a function ¢ : A — A, let u be the pull-back measure defined as follows:
w(E) = o(p*"1(E)), where E C A and o denotes the normalized Lebesgue measure
on T: o = df/2x. In the following two results, S(¢, h) denotes the Carleson region
defined below in subsection 2.2.1 for the unit ball in C".

[12, Theorem 3.12,p.129] C,, is bounded on HP(A) 0 < p < oo if and only if
w(S(¢,h))=0(h) forall(€e Tand0< h < 1.

[12, Theorem 3.12,p.129] C, is compact on HP(A) 0 < p < oo if and only if
1(S8(¢, h)) = o(h) as h — 0 uniformly for ¢ € T.

[12, Exercise 3.2.6,p.142] The analog of the previous two results holds for the
weighted Bergman spaces AP, (A).

The boundedness or compactness of C, on HP(A) or on AP(A) is thus indepen-
dent of p. Moreover, in the case of the Hardy space, the ‘big O’ Carleson measure
condition automatically holds.

2.1.3 More on compactness

Compactness can be described in terms of angular derivatives as well as the Nevan-
linna counting function N,(z). We refer to [12] for the definitions. However, see
the next subsection.

[12, Corollary 3.14,p.132] If C, is compact on HP(A) or AP,(A), 0 < p < ©
then ¢ has no finite angular derivative on T.

[12, Theorem 3.20,p.139] C,, is compact on H?(A) if and only if

N,
lim sup ——"& =
Jw|—1 — log |w|

[12, Theorem 3.22,p.141] C, is compact on AP,(A) if and only if ¢ has no
finite angular derivative on T.

2.1.4 Trace Ideal Criteria

There are two main results that deal with the membership of a composition operator
on the unit disk in a Schatten-von Neumann class S,. They appear in [35] and [36].
For the case of the Hardy space, this problem has not yet been extended beyond
the unit disk.
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For the unit disc in C, D. Luecking [35] initiated a systematic study of trace ideal
criteria (0 < p < 0o) for Toeplitz operators T, with measures as symbols on some
standard Hilbert spaces of holomorphic functions. His conditions are expressed in
terms of a dyadic hyperbolic decomposition of the unit disc. By an appropriate
choice of measure and weight, his result applies to composition operators on the
Hardy space and the weighted Bergman spaces. See section 4.1 for a discussion of
T, on the weighted Bergman spaces of bounded symmetric domains.

In order to describe the main result of [35] we need to introduce some notation
from that paper. For a < 1, H, will denote the space of analytic functions f(z) =
30 anz™ on A satisfying Y~ (n + 1)*|a,|? < co. The parameter values a = 0 and
a = —1 correspond, respectively, to the Hardy space H? and the Bergman space
A2, The norm is chosen so that the reproducing kernel k2 (z) = k®(z,w) for H, has
the form k%(z,w) = (1 — zw)*~!. For a < 0, H, is the weighted Bergman space
Az,

The dyadic hyperbolic decomposition is basically a decomposition of A into
disjoint sets of roughly equal (hyperbolic) size. A dyadic arc is an arc I C JA of
the form

5 2 2m(k + 1
I:{e"’:—;Tk50<L§n+—)}, k=0,1,...,2" =1, n=0,1,....

Given an arc I, let £(I) denote its length and let S(I) denote the corresponding
Carleson “square”: S(I) ={z € A: z/|z| € I,1~|z| < {(I)/2xn}. Also, let R(I)
denote the half of S(I) nearest the origin, that is R(I) = {z € S(I) : ¢(I)/4m <
1—|z| < 4(I}/2n}. The family {R(I)} where I runs over all dyadic arcs is pairwise
disjoint and covers A. Fix an enumeration of this family and call it {R;}.

[35) Let p > 0 and « < 1 be such that pa < 1, and let 4 be a measure on A. In
order that the Toeplitz operator

Tfw) = [ £:)(1-20)"" du(z), f € H
belong to the Schatten class Sp(H,) it suffices that

3l (Ra)e(R:)* 1P < oo

In this case “T/‘HPS < CY(Ipl(R:)e(R:)*~1P. If p is a positive measure, this
P
condition is also necessary, and 3 [ju|(R;)¢(R;)* 1P < C’HTNHPS .
P
We next describe the results of [36], They involve the Nevanlinna counting func-

tion in both the Hardy space and the weighted Bergman spaces. For the latter, it
is necessary to recall the generalized Nevanlinna counting function of [40], that is,

for 8 > 1, 5
1
Ny p(w) = Z (log TzT) .

z2€p~Hw)
[36, Theorem 1] For a composition operator C, on H?(A), and 0 < p < oo,

No(w)

p/2
“log [u] € LP*(dA(w))

C, € Sp(H?) &
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where d)\(z) = (1 — |2]?)"2dA(2)
[36, Theorem 3] The composition operator C,, belongs to S,(A2) if and only if

—a—2
Nyat2(2) (log l71|) € LP/2(d)(2)).

The special case of the Hilbert Schmidt composition operators is easier and can
be found in [12, Exercise 3.3.2,p. 149).

2.1.5 Weak compactness

For 1 < p < oo, HP(§)) and AP(f2) are reflexive Banach spaces, so any bounded
operator is automatically weakly compact. For p = 1 and Q = A, we have the
following result of Sarason, which uses real variable Hardy spaces and Fefferman
duality, as expressed by VMO(A)* = H;(A) and H;1(A)* = BMO(A).

Since C,, is automatically bounded on H;(A), so is its adjoint on BMO(A),
and it becomes important to ask when C,, is itself the adjoint of some operator on
VMO(A), as expressed in the following diagram:

BMO(A) <2 BMO(A)
Hi(A)  —  Hi(4)
VMO(A) — VMO(A)

This is the case if Cj,(BMO(A)) C VMO(A), which is one of the ingredients in
the proof of

[39] If C,, is weakly compact on H!(A), then C,, is compact.

This result has been extended to higher dimensional Hardy and Bergman spaces
([31],[6]), see subsections 3.2 and 3.3.

2.2 Operators on the Hardy and Bergman spaces of the unit
Ball

2.2.1 Boundedness and Compactness Criteria

The Carleson measure conditions on the unit ball are the same as the corresponding
conditions on the unit disk noted above.

For a function ¢ : By — By, let u be the pull-back measure defined as follows:
w(E) = on(¢* Y(E)), where E C By and oy denotes the normalized surface
measure on S := JdBy. In the following two results, ¢ is a holomorphic map from
2 into 2, and S(¢, h) denotes the Carleson region defined as follows:

S(¢ k) ={2z€ By : |1 ~ (2[¢)| < h}

[12, Theorem 3.35,p.161] C,, is bounded on HP(By) 0 < p < oo if and only if
w(S(¢,h)) =0RN) forall( € Sand 0 < h < 1.

[12, Theorem 3.35,p.161] C,, is compact on HP(By) 0 < p < oo if and only if
w(S(¢, h)) = o(h™N) as h — 0 uniformly for ¢ € S.
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[12, Theorem 3.37,p.164] The analog of the previous two results holds for the
weighted Bergman spaces AP,(By). In this case, u(E) = Vo(p }(E)) for
E C By, where dV,(z) = (1 — |2|?)®dVy.

2.2.2 Some results on boundedness and unboundedness

(12, Theorem 3.39,p.166] If sup,. g, |l¢'(2)|]] < oo and sup{card{p*~1({)} :
¢ € BN} = 00, then C, is unbounded on HP(By).

[12, Theorem 3.41,p.167] If sup,c g, [l¢'(2)ll/|J,(2)| < oo, then C,, is bounded
on HP(BN)

[12, Theorem 6.5,p.227] C,(H?(Bn) C APn_3(Bn) and C, is automatically
bounded as an operator from HP(By) to AP y_o(By).

2.2.3 Angular derivative
Once again, we refer to [12] for the definition of angular derivative for the unit ball.

[12, Theorem 3.43,p.171] If C,, is compact on HP(By) or AP(Bn), 0 <p < ©
then ¢ has no finite angular derivative on dBy.

[12, Exercise 6.1.2,p.228] If ¢ has no finite angular derivative on S, then C,, :
HP(By) — APN_2(By) is compact.

Some Geometric conditions for boundedness, compactness, and unboundedness
for composition operators on the unit ball can be found in {12, Chapter 6}, to which
we refer for discussion, statements, and proofs.

2.3 Operators on the Hardy and Bergman spaces of the unit
Polydisk

For the unit polydisk A", the notions of Carleson measure, compact Carleson

measure, a-Carleson measure, compact a-Carleson measure, o > —1, were intro-

duced and studied, along with angular derivatives, in [21],[22]. Let m, denote
n-dimensional normalized Lebesgue measure on the torus T".

[21] Let ¢ : A™ — A™ be holomorphic, 1 < p < o0, o > —1.

e C, is bounded on HP(A™) (resp. AP,(A™)) if and only if u(E) =
mn(p*~1(E)) is a Carleson measure (resp. an a-Carleson measure).

e C, is compact on HP(A") (resp. AP,(A"™)) if and only if ua(E) =
Va(p*1(E)) is a compact Carleson measure (resp. a compact a-Carleson
measure).

3 Weak Compactness

3.1 Fefferman duality in several complex variables

It had been considered a part of the folklore for some time that the result of C.
Fefferman identifying the dual of H*(R") as BMO(R"™) [43], can be extended (in
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suitable form) to the unit ball in C". In order to understand Fefferman duality
better, Coifman showed that the atomic structure of H!(R) was equivalent to the
duality theorem. Fefferman duality and atomic decomposition (of H? 0 < p < 1)
are now known to hold in the following cases:

e The unit disk: Fefferman, Coifman ([15],[8])
The unit ball: Coifman-Rochberg-Weiss ([10])
The unit polydisk: Chang-Fefferman ([4])

[ ]

Strongly pseudoconvex domains: Krantz-Li ([28])

The unit ball in C™ and the unit polydisk are examples of bounded symmet-
ric domains, so this is an area of investigation which is wide open for bounded
symmetric domains.

3.1.1 Atomic decomposition and duality for the unit ball

We state here the atomic decomposition and “Fefferman duality” for the case of the
unit ball in C". Let B = By be the unit ball in C", and let ¢ denote Lebesgue area
measure on S = 8B. Recall that the Hardy space H!(B) consists of all holomorphic
functions F': B — C satisfying

Fl; = F d < 00.
I1Fl = sup [ 1Pl da(z) < o0

An atom is a function a : 3B — C which is supported on a sphere S (with respect
to the metric d(z,¢) = |1 — (2|¢)|*/?) and satisfying

1
2O1< g7 - /aB“d" —0,

A holomorphic atom A is the image of an atom a under the Szegd projection:

_ B a(¢)
Al) = Sla)lz) = C/BB T 0"

The space BMO(B) is defined as the space of functions b : 3B :— C such that

dor(¢).

ol o = sup |—;—| /S [b(y) — ms(b)|do < 0o

where S is sphere and mg(b) = [gbdo/|S|. The main results from [10], for our
purposes, are

[10] Atomic decomposition Every F € H!(B) can be written F = Y, \;4;,
where the A; are holomorphic atoms and Y |A;| < C||F||;.

[10] Duality H!(B)* = BMOA(B), where BMOA consists of the holomorphic
functions in BMO(B).

As noted above, these two results have each been formulated and proved in the
context of strongly pseudoconvex domains [28], as well as for the unit polydisk [4].
In each case, nontrivial modifications are required. In the case of the polydisk, the
methods of multiparameter harmonic analysis [5] are used.
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3.2 Weak Compactness on Hardy spaces

In 2.1.5 above, we discussed weak compactness of composition operators on the
Hardy space of the unit disk. In this and the following section, we discuss this
problem in higher dimensions. For Q= the unit ball or a strongly pseudoconvex
domain, real variable Hardy spaces exist and Fefferman duality holds, [28]:

HY(0Q)* = BMO(8Q) , H'Y(0Q) =VMO(8Q)*.

The analog of the theorem on Sarason on weak compactness, as well as the
standard criteria for boundedness and compactness on Hardy spaces was extended
the to setting of a strongly pseudoconvex domain in [31].

[31, Theorem 1] Let Q2 be a bounded strongly pseudoconvex domain in C™ with
smooth boundary. The following are equivalent for a composition operator
C,, which is bounded on H?(Q):

1. C; : L>®(89) — VMO(9Q) is bounded, that is, C,, : H'(092) — L'(8Q)
is bounded and Cj;(L*°(992)) C VMO(99).

C, : H'(0Q) — L*(89) is compact.

C, : H(Q2) — H*(Q) is compact.

C, : HP(2) — HP(Q) is compact for some 0 < p < oco.

C, : LP(0Q) — LP(09) is compact for some 1 < p < 00.

The pull-back measure dV,, is a vanishing Carleson measure.

C, : HP(2) — HP(R2) is compact for all 0 < p < oo.

NSOk N

The diagram for the equivalence of 1. and 2. which corresponds to the diagram
in subsection 2.1.5 is

BMO@89Q) <& L>(89)
HOQ) <5 L'89)
VMO@9) —

Note that the bottom row of this diagram is incomplete since L! has no predual in
this case. For n = 1 and Q = A, if C, : H'(6Q) — L(89) is compact, then it
follows that C,(H'(89Q)) C H'(d2). In higher dimensions, it is more convenient
to state the result in the form given above.

3.3 Weak Compactness on Bergman spaces

Motivated by the results of Sarason and Li-Russo, Lang Chen, in his 1994 thesis
considered the weak compactness of composition operators on the Bergman space
A(€) of both strongly pseudoconvex domains and bounded symmetric domains.

In the following, we denote by B(£2) and By () the Bloch and little Bloch spaces
defined for a bounded strongly pseudoconvex domain §2. According to [27],[29],and
6], Bo(2)* = A1(R2) and A'(Q)* = B().

For a bounded symmetric domain 2, the dual and predual of A'(Q2) were deter-
mined in [49]. There, certain Bloch type spaces B°(€) and By () were defined in
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terms of a differential operator depending on a (Jordan theoretic) real parameter s
and were shown to satisfy Bp(€)* = A'(Q) and A (Q)* = B’ ().

In each of the above cases, the Bergman projection was shown to map L*(f2)
(resp. Cp(f2)) onto the Bloch space B(Q2) in the case of a strongly pseudoconvex
domain, and B’ () in the case of a bounded symmetric domain (resp. the little
Bloch space By(§2) and By (2)).

[6, Theorem 4.1,Theorem 4.5] Let Q be a bounded strongly pseudoconvex
domain (resp. a bounded symmetric domain) in C™ with smooth boundary.
The following are equivalent:

1. C, : AY(Q) — A'(R) is compact.
2. C, : AY() — A'(R) is weakly compact.
3. C : B(§2) — Bo(f?) is bounded (resp C7, : B’(Q) — By(9) is bounded).

4 Trace Ideal Criteria

4.1 Known Results

We have already mentioned in subsection 2.1.4 the known results in the case of the
unit disk. A thorough study of boundedness, compactness, and trace ideal criteria
for Toeplitz operators on weighted Bergman spaces of bounded symmetric domains
was done in [51]. Again, by appropriate choice of the symbol, the theory can be
made to cover composition operators, namely C;,C, = Tv;- The theorem of Zhu
which is of interest to us is stated below. The Toeplitz operator with symbol a
measure y is defined by

T,f() = /Q K(z,w) (1) du(w),

where K(®) := K(z,w)'~® is the Bergman reproducing kernel for the weighted
Bergman space A2, () C L?(R2,dV?), and dV® = C; K (z,2)*dV (2) is normalized
weighted Lebesgue measure. The Berezin symbol of the measure u is defined by

ia(z) = /Q e (1) 20 dp(w),

and k,(w) = K(w,2)/K(z,2)'/2.

[51, Theorem C] For a finite positive Borel measure x on a bounded symmetric
domain 2, and p > 1, the following are equivalent:

1. The Toeplitz operator T, belongs to S,(A?,(?))
2. The Berezin transform fi, belongs to LP(Q, K(z,2)dV (z))
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4.2 More recent results

We need the following definitions in the statements of the results of this section. For
a composition operator with symbol ¢, the Berezin transform B2 of ¢ is defined to
be the Berezin symbol of the pullback measure V3 (E) = V¢ (¢~ Y(E)) for E C Q.
More precisely,

(B2 = [ K@) K )P V().
Another useful transform can be defined using the Bergman metric is
(e I ¢de a—1
bq,(z,r) =V (E(z,1))|E(2,7)|
where ((z,w) is the distance function on §2 arising from the Bergman metric,
E(z,7) = {w € Q: B(z,w) <r} is the ball in that metric, and |E| = [, dV.
We let A denote the measure Co K(?)(z,2)dV%(2) = K(z,2)dV(z).
[30, Theorem 1.1] Let  be a smoothly bounded strongly pseudoconvex domain

in C", and let 2n/(n +1) < p < co. Then C, € S,(A%(Q)) if and only if
B, € LP(Q, d)).

[32, Theorem 1.1] Let 2 be a bounded symmetric domain in C", and suppose
a < ag.
1. For 0 < p < 00, C,, € S2,(A%,()) if and only if b € LP(Q,d)).
2. For 2(1 —aq)/(1—a) < p < oo, C, € 8,(A%,()) if and only if
B2 € LP(Q,d)).

A very fertile area of proposed investigation would be to establish trace ideal
criteria for composition operators in Hardy spaces of bounded symmetric domains
and of strongly pseudoconvex domains. Nothing has been done about this even in
the context of the unit ball or the unit polydisk.

For the sake of completeness, we mention the following companion results on
boundedness and compactness.

[23, Theorem 3.1] Let Q2 be a bounded symmetric domain in C", and suppose
a < aq. Then for 1 < p < oo,

1. C, is bounded on AP, (?)) if and only if b3 € L>(f2)
2. C, is compact on AP, (f)) if and only if b} € Co(f)

[23, Theorem 3.2] Let Q be a bounded symmetric domain in C", and suppose
a < aq. Then for 1 <p < oo,

1. C, is bounded on AP, (Q?)) if and only if B3 € L>(f)
2. C, is compact on AP,(f2)) if and only if B3 € Co(02)
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4.3 Techniques for bounded symmetric domains

The following are some of the techniques used in the proofs of the above results on
bounded symmetric domains. I refer to the indicated references for a statement and
discussion of these techniques.

[2] Asymptotic properties of the Bergman kernel and metric

[13] Forelli-Rudin type inequalities for the quantity

Ia,c(z)=/QK(w,w)alK(z,w)Il_a+°dV(w)

[9] Atomic decomposition of Bergman spaces

5 Epilogue

The following four projects for further study are suggested by the discussion in
this paper. The first three involve Schatten class operators on the Hardy spaces,
and their execution would complete the table in 1.4.1, while the fourth involves
boundedness and compactness on the Bergman spaces and would complete the
table in 1.4.2. The author welcomes hearing of any progress which has been made
on any of these problems.

1. Study the boundedness, compactness, trace ideal criteria, and weak compact-
ness of holomorphic composition operators on the appropriate Hardy spaces of
a bounded symmetric domain. Here the main tool would be the Jordan alge-
bra approach as set forth in [14] and as used in the study of Hankel operators,
for example in [1].

2. Study the trace ideal criteria, and the weak compactness of holomorphic com-
position operators on the appropriate Hardy spaces of the unit polydisk. Here
the main tool would be the multiparameter harmonic analysis, [4], [5], as used
in the study of the small Hankel operator in [33].

3. Study the trace ideal criteria for holomorphic composition operators on the
Hardy space H?(f2) of a strongly pseudoconvex domain, or of the unit ball.
Here the main tool might be the analysis on the Heisenberg group, for example
as in [16], and the duality of Bergman spaces, for example as in [50].

4. Study the boundedness and compactness for holomorphic composition opera-
tors on the Bergman spaces H”(2) of a strongly pseudoconvex domain, using
the Carleson measure conditions, as in [7].
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