
J. London Math. Soc. (2) 65 (2002) 85–102 Cf2002 London Mathematical Society
DOI: 10.1112/S002461070100271X

DERIVATIONS ON REAL AND COMPLEX JB ∗-TRIPLES

TONY HO, JUAN MARTINEZ-MORENO, ANTONIO M. PERALTA
AND BERNARD RUSSO

1. Introduction

At the regional conference held at the University of California, Irvine, in 1985 [24],
Harald Upmeier posed three basic questions regarding derivations on JB ∗-triples:

(1) Are derivations automatically bounded?

(2) When are all bounded derivations inner?

(3) Can bounded derivations be approximated by inner derivations?

These three questions had all been answered in the binary cases. Question 1
was answered affirmatively by Sakai [17] for C∗-algebras and by Upmeier [23] for
JB -algebras. Question 2 was answered by Sakai [18] and Kadison [12] for von
Neumann algebras and by Upmeier [23] for JW -algebras. Question 3 was answered
by Upmeier [23] for JB -algebras, and it follows trivially from the Kadison–Sakai
answer to question 2 in the case of C∗-algebras.

In the ternary case, both question 1 and question 3 were answered by Barton and
Friedman in [3] for complex JB ∗-triples. In this paper, we consider question 2 for
real and complex JBW ∗-triples and question 1 and question 3 for real JB ∗-triples.
A real or complex JB ∗-triple is said to have the inner derivation property if every
derivation on it is inner. By pure algebra, every finite-dimensional JB ∗-triple has the
inner derivation property. Our main results, Theorems 2, 3 and 4 and Corollaries 2
and 3 determine which of the infinite-dimensional real or complex Cartan factors
have the inner derivation property.

2. Background

We recall that a JB ∗-algebra is a complete normed Jordan complex algebra (say
A) endowed with a conjugate-linear algebra involution ∗ satisfying ‖Ux(x

∗)‖ = ‖x‖3

for every x ∈ A. Here, for every Jordan algebra A, and every x ∈ A, Ux denotes
the operator on A defined by Ux(y) := 2x ◦ (x ◦ y)− x2 ◦ y, for all y ∈ A.

A JB -algebra is a complete normed Jordan real algebra (say A) satisfying the
following two additional conditions for a, b ∈ A:

(i) ‖a2‖ = ‖a‖2.

(ii) ‖a2‖ 6 ‖a2 + b2‖.
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It is due to Wright (see [25]) that the complexification of a JB -algebra is a
JB ∗-algebra under a unique norm extending the given norm on the JB -algebra.
Conversely, the self-adjoint part of a JB ∗-algebra is a JB -algebra under the restricted
norm.

If H is a complex Hilbert space, then the real Banach spaceH(H) of all bounded
hermitian operators on H is a JB -algebra with respect to the Jordan product

x ◦ y := 1
2
(xy + yx).

A uniformly (respectively weakly) closed unital real subalgebra ofH(H) is called
a JC -algebra (respectively JW -algebra) on H . A norm (respectively weakly) closed
(complex) Jordan∗-subalgebra of a C∗-algebra (respectively von Neumann algebra)
is called a JC ∗-algebra (respectively JW ∗-algebra). For more details on JB -algebras
and JB ∗-algebras we refer the reader to [9].

We recall that a (complex) JB ∗-triple is a complex Banach space J with a
continuous triple product {·, ·, ·} : J×J×J −→ J that is bilinear and symmetric
in the outer variables and conjugate linear in the middle variable, and that satisfies
the following conditions.

(i) (Jordan identity)L(a, b){x, y, z}={L(a, b)x, y, z}−{x, L(b, a)y, z}+{x, y, L(a, b)z}
for all a, b, x, y, z in J, where L(a, b)x := {a, b, x}.

(ii) For all a ∈ J, the map L(a, a) from J to J is a hermitian operator with
non-negative spectrum.

(iii) ‖{a, a, a}‖ = ‖a‖3 for all a in J.

It is worth mentioning that every C∗-algebra is a (complex) JB ∗-triple with respect
to {a, b, c} = 1

2
(ab∗c+ cb∗a). Also, every JB ∗-algebra is a JB ∗-triple with respect to

{a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗. Conversely, every JB ∗-triple with
a unitary element u (that is, {u, u, z} = z for every z) is a unital JB ∗-algebra with
product a ◦ b = {a, u, b}, involution a∗ = {u, a, u}, and unit u. We refer to [5, 15, 16]
for recent surveys on the theory of JB ∗-triples.

Following [11], we recall that a real JB ∗-triple is a norm-closed real subtriple of
a complex JB ∗-triple. Given a real JB ∗-triple J , there exists a unique complex JB ∗-
triple structure on the complexification Ĵ = J⊕ iJ , and a unique conjugation (that is,
conjugate-linear isometry of period 2) τ on Ĵ such that J = Ĵr := {x ∈ Ĵ : τ(x) = x}.
From this point of view, the real JB ∗-triples are real forms of complex JB ∗-triples.

The class of real JB ∗-triples includes all JB -algebras [9], all real C∗-algebras [8],
and all J∗B-algebras [2].

A triple derivation or simply a derivation δ on a real or complex JB ∗-triple U is
a linear operator satisfying

δ{a, b, c} = {δa, b, c}+ {a, δb, c}+ {a, b, δc}
for all a, b, c ∈ U.

If U is a real or complex JB ∗-triple, we can conclude from the Jordan identity
that δ(a, b) := L(a, b) − L(b, a) is a derivation, for every a, b ∈ U. An inner triple
derivation δ on U is a finite sum of derivations of the form δ(a, b) (a, b ∈ U), that is,

δ =

n∑
i=1

δ(aj , bj). (2.1)

The degree of an inner derivation is the least number of terms in a representation
of the form (2.1). Any derivation that is not inner is called outer.
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Remark 1. Let E be a real JB ∗-triple and δ a derivation on E. Then δ can be
extended to a derivation δ̂, on the complexification of E, defined by δ̂(x + iy) :=
δ(x) + iδ(y).

It is due to Barton and Friedman [3] that every derivation on a complex JB ∗-triple
is automatically continuous, and so, by the previous comment, every derivation on
a real JB ∗-triple is also continuous.

3. Inner derivation property

We say that a real or complex JB ∗-triple U has the inner derivation property if
every derivation on U is inner.

By [14, Chapter 8], every finite-dimensional real or complex JB ∗-triple has the
inner derivation property. The next proposition shows that a real JB ∗-triple has
the inner derivation property whenever its complexification satisfies this property.

Proposition 1. Let E be a real JB ∗-triple. Suppose that the complexification Ê

of E has the inner derivation property. Then E has the inner derivation property.
Moreover, if M is a bound of the degree of all inner derivations of Ê, then 2M is a
bound of the degree of all inner derivations of E.

Proof. Suppose that E is a real JB ∗-triple such that Ê has the inner derivation
property. Let δ be a derivation of E. We denote by δ̂ the derivation on Ê, extending
δ to Ê. Since Ê has the inner derivation property, then δ̂ is an inner derivation of
degree n, that is,

δ̂ =

n∑
k=1

δ(ak, bk),

where ak , bk ∈ Ê. Since Ê = E ⊕ iE, it follows that ak = ak,1+iak,2 and bk = bk,1+ibk,2
for suitable ak,l , bk,l ∈ E, l = 1, 2 and k = 1, . . . , n.

Consider now x ∈ E. We can compute

δ(ak, bk)x = δ(ak,1 + iak,2, bk,1 + ibk,2)x

= {ak,1 + iak,2, bk,1 + ibk,2, x} − {bk,1 + ibk,2, ak,1 + iak,2, x}
= {ak,1, bk,1, x}+ {ak,2, bk,2, x}+ i({ak,2, bk,1, x} − {ak,1, bk,2, x})
−{bk,1, ak,1, x} − {bk,2, ak,2, x} − i({bk,2, ak,1, x} − {bk,1, ak,2, x})

= δ(ak,1, bk,1)(x) + δ(ak,2, bk,2)(x)

+ i({ak,2, bk,1, x} − {ak,1, bk,2, x} − {bk,2, ak,1x}+ {bk,1, ak,2, x}).
Therefore

E 3 δ(x) = δ̂(x) =

n∑
k=1

δ(ak,1 + iak,2, bk,1 + ibk,2)x

=

(
n∑
k=1

(δ(ak,1, bk,1) + δ(ak,2, bk,2)

)
x

+ i

n∑
k=1

(L(ak,2, bk,1)− L(ak,1, bk,2)− L(bk,2, ak,1) + L(bk,1, ak,2))(x)
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Since the elements ak,l , bk,l ∈ E, we have(
n∑
k=1

(δ(ak,1, bk,1) + δ(ak,2, bk,2))

)
(E) ⊂ E

and (
i

n∑
k=1

(L(ak,2, bk,1)− L(ak,1, bk,2)− L(bk,2, ak,1) + L(bk,1ak,1))

)
(E) ⊂ iE.

Therefore(
n∑
k=1

(L(ak,2, bk,1)− L(ak,1, bk,2)− L(bk,2, ak,1) + L(bk,1, ak,1))

)
(x) = 0

for all x ∈ E. Thus

δ(x) = δ̂(x) =

n∑
k=1

(δ(ak,1, bk,1) + δ(ak,2, bk,2))(x)

for all x ∈ E, which proves that δ is an inner derivation with degree at most 2n. q

From Proposition 1, it is easy to see that if E is a real JB ∗-triple which does not
satisfy the inner derivation property, then its complexification also does not satisfy
the inner derivation property.

3.1. Reversible unital JB ∗-algebras

We recall that the (complex) type 1 Cartan factor can be defined as the complex
Banach space BL(H,K) of all bounded linear operators between two complex
Hilbert spaces H and K , with triple product given by

{a, b, c} = 1
2
(ab∗c+ cb∗a).

Next we give a brief description of the (complex) Cartan factors of type 2 and
3. Let H be a complex Hilbert space equipped with a conjugation (conjugate-linear
isometry of period 2) j : H −→ H; then for any z ∈ B(H) we can define its transpose
as zt := jz∗j. The type 2 Cartan factor coincides with the Banach space of all t-skew
symmetric elements in B(H) (zt = −z), and the type 3 Cartan factor is defined as
the Banach space of all t-symmetric elements of B(H) (zt = z). The triple product
of these Cartan factors is the restriction of the triple product in B(H).

We recall that a JC -algebra (or a JC ∗-algebra) A is said to be reversible if
x1x2 . . . xn + xnxn−1 . . . x1 ∈ A, for all n ∈ N and x1, . . . , xn ∈ A.

Proposition 2. Cartan factors of type 1 with dimH = dimK , Cartan factors of
type 2 with dimH even, or infinite, and all Cartan factors of type 3 are reversible
JW ∗-algebras.

Proof. Let C3 be a type 3 Cartan factor. Since xt = x for all x ∈ C3, we have
(x1 . . . xn + xn . . . x1)t = xn . . . x1 + x1 . . . xn ∈ C3.

Let C2 be a type 2 Cartan factor with dimH even or infinite. Then C2 contains a
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distinguished unitary

u =



0 1 0 0 0 · ·
−1 0 0 0 0 · ·

0 0 0 1 0 · ·
0 0 −1 0 0 · ·
0 0 0 0 0 · ·
· · · · · · ·
· · · · · · ·


.

In this case we can provide a new C∗-algebra structure for B(H) with product
a · b = au∗b and involution a‖ = ua∗u in which C2 becomes a JC ∗-subalgebra under
a ◦ b = (a · b+ b · a)/2. With this Jordan product, C2 is reversible since

(x1u
∗x2 . . . u

∗xn + xnu
∗ . . . x2u

∗x1)t

= (−1)n+(n−1)(xnu
∗xn−1 . . . x2u

∗x1 + x1u
∗x2 . . . xn−1u

∗xn)
= −(x1u

∗x2 . . . u
∗xn + xnu

∗ . . . x2u
∗x1). q

We recall that if A is an algebra, then a derivation D of A is a linear mapping
D : A −→ A satisfying D(ab) = D(a)b + aD(b), for all a, b ∈ A. If A is a Jordan
algebra, an inner algebra derivation ofA is a finite sum of commutators of the form
[La, Lb] for some a, b ∈ A, where Lax := a ◦ x. For an inner algebra derivation D,
the degree of D is the least natural number n satisfying D =

∑n
i=1[Lai , Lbi].

Lemma 1. Let Z be a JB ∗-algebra, with unit u, regarded as a complex JB ∗-triple.
If δ is a triple derivation of Z , then Lδ(u) is an inner triple derivation of Z of degree 1.

Proof. Simply note that for every triple derivation δ of Z , we have

δu = δ{u, u, u} = {δu, u, u}+ {u, δu, u}+ {u, u, δu}
= 2{δu, u, u}+ {u, δu, u} = 2δu ◦ u+ (δu)∗

and hence

(δu)∗ = −δu.
Now consider

Lδuz = δu ◦ z = 1
2
(δu ◦ z − (−δu) ◦ z)

= 1
2
(δu ◦ z − (δu)∗ ◦ z) = 1

2
({δu, u, z} − {u, δu, z});

it follows that Lδu is an inner triple derivation of degree 1. q

Lemma 2 [3, p. 263]. Let Z be a unital JB ∗-algebra and D be an algebra
derivation of Z that commutes with the involution of Z . Then D is a triple derivation
of Z .

Conversely, if Z is a JB ∗-triple with a unitary element u and δ is a triple derivation
of Z , then δ−Lδu is an algebra derivation of Z that commutes with the involution on
Z . In particular, if δ is an inner derivation of degree 1, that is, δ = δ(x, y), then

δ − Lδ(u) = 1
2
([Lx+x∗ , Ly+y∗ ] + [L−i(x−x∗), L−i(y−y∗)]).

Proof. The first statement is clear. To prove the second one, let δ be a triple
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derivation of Z . It is easy to check that

(δ − Lδu)(x ◦ y) = δ{x, u, y} − {δu, u, {x, u, y}}
= {δx, u, y}+ {x, δu, y}+ {x, u, δy} − {δu, u, {x, u, y}}
= {δx, u, y}+ {x, δu, y}+ {x, u, δy}
− {{δu, u, x}, u, y}+ {x, {u, δu, u}, y} − {x, u, {δu, u, y}}

= δx ◦ y + {x, δu, y}+ x ◦ δy
− (δu ◦ x) ◦ y + {x, (δu)∗, y} − x ◦ (δu ◦ y)

(applying (δu)∗ = −δu)
= (δ − Lδu)(x) ◦ y + {x, δu, y}+ x ◦ (δ − Lδu)(y)− {x, δu, y}
= (δ − Lδu)(x) ◦ y + x ◦ (δ − Lδu)(y).

Thus δ − Lδu is an algebra derivation.
The verification of the last formula is left to the reader. q

By [22, Theorem 13] (see also [1, p. 255], each JW -algebra A admits a decompo-
sition into weakly closed ideals of the form

A = Ifin ⊕ I∞ ⊕ II1 ⊕ II∞ ⊕ III.

See [22] and [1] for the meaning of these symbols. A JW -algebra A is called properly
non-modular if its modular part Ifin ⊕ II1 vanishes.

In 1980, Upmeier showed that each algebra derivation on a properly non-modular
JW -algebra is the sum of six commutators of the form [La, Lb] [23, Theorem 3.8],
and each algebra derivation on a reversible JW -algebra of type Ifin is the sum of
five commutators [23, Theorem 3.9].

The proof of the following theorem is implicitly contained in [23], and we include
it here for completeness.

Theorem 1. Let A be a reversible JW -algebra of type II1. Then each derivation
of A is a sum of at most 140 commutators of the form [La, Lb].

Proof. Let A be a reversible JW -algebra of type II1. We denote by U(A)
its complex enveloping von Neumann algebra (the smallest von Neumann alge-
bra containing A). By [1, Theorem 8], U(A)+ (that is, U(A) with the Jordan
product w1 ◦ w2 = (w1w2 + w2w1)/2) is also of type II1. Thus if we follow the
proof of [23, Theorem 3.10], it follows that each derivation of A has the form
D(x) = ad(w)(x) := [w, x] (x ∈ A), where w = −w∗ ∈ U(A). Moreover, since U(A)+

is of type II1, w is the sum of ten commutators in U(A) (see [7, Theorem 2.3]), so
that each derivation of A has the form

D =

10∑
j=1

ad([w1,j , w2,j]).

Since A is the self-adjoint part of R(A) [19], where R(A) is the real enveloping
algebra of A, we have, by [20, Lemma 6.1; 21, Lemma 2.3, Theorem 2.4], U(A) =
R(A) + iR(A).

Hence every element wl,j is the sum wl,j = ul,j + ivl,j , where ul,j , vl,j ∈ R(A).
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Since, for every ul , vl ∈ R(A), the equalities

[u1 + iv1, u2 + iv2] = [u1, u2]− [v1, v2] + i([u1, v2] + [v1, u2])

[u1 + iu2, x] = [u1, x] + i[u2, x]

hold for all x ∈ A, and since D maps A in A, we have
10∑
j=1

[[u1,j , v2,j] + [v1,j , u2,j], x] = 0

for all x ∈ A. Thus

D = ad(w) =

10∑
j=1

ad([u1,j , u2,j]− [v1,j , v2,j]) =

20∑
j=1

ad([z1,j , z2,j]),

where zi,j ∈ R(A) and w =
∑20

j=1[z1,j , z2,j].
Our next goal is to prove that every element [z1,j , z2,j] is a finite sum of commu-

tators of elements in A.
Let z1,j , z2,j ∈ R(A), and l ∈ {1, 2}. We denote by zsl,j (respectively zal,j) the

symmetric part (respectively the skew-symmetric part) of zl,j . Since, for every j,
[za1,j , z

s
2,j] and [zs1,j , z

a
2,j] are symmetric elements and w∗ = −w, we deduce that

w =

20∑
j=1

[zs1,j , z
s
2,j] + [za1,j , z

a
2,j].

Again, since A is the self-adjoint part of R(A), we have zs1,j , z
s
2,j ∈ A. Therefore it

is enough to show that every commutator [za1,j , z
a
2,j] is a finite sum of commutators

of elements in A.
By [4, p. 121], R(A) is isomorphic to the matrix algebra M2(B), where B is a

suitable real associative ∗-algebra.
If we follow the proof of [23, Lemma 3.11], it follows that each commutator of

skew-symmetric elements in M2(B) has the form(
a −c∗
c b

)
,

with

a+ b = [a1, a2] + [b1, b2] + [c1, c2] + [d1, d2],

where aj , bj and cj are skew-symmetric elements in B, while d1 and d2 are symmetric
elements in B.

On the other hand, since for a, b, c, αj and βj ∈ B, with a∗ = −a, b∗ = −b, α∗j = αj
and β∗j = −βj , the following identities hold,(

0 −c∗
c 0

)
=

[(
0 0
0 1

)
,

(
0 c∗
c 0

)]
,

2

(
a− b 0

0 b− a
)

=

[(
0 a− b

b− a 0

)
,

(
0 1
1 0

)]
,(

[α1, α2] 0
0 [α1, α2]

)
=

[(
α1 0
0 α1

)
,

(
α2 0
0 α2

)]
,(

[β1, β2] 0
0 [β1, β2]

)
=

[(
0 −β2

β2 0

)
,

(
0 −β1

β1 0

)]
,(

a −c∗
c b

)
=

(
0 −c∗
c 0

)
+ 1

2

(
a− b 0

0 b− a
)

+ 1
2

(
a+ b 0

0 a+ b

)
,
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it can be concluded that each commutator [za1,j , z
a
2,j] is the sum of six commutators

of elements in A. Therefore we have proved that

w =

140∑
j=1

[x1,j , x2,j],

where xl,j ∈ A, for all l, j, which proves that

D =

140∑
j=1

ad([x1,j , x2,j]) =

140∑
j=1

[Lx1,j
, Lx2,j

]. q

Recall that a derivation on a JB -algebra is automatically continuous and that a
JB -algebra has an approximate unit [9, 3.5.4]. Thus a derivation leaves each closed
ideal invariant. By combining Theorem 1 with the comments preceding it, we have
the following corollary.

Corollary 1. Each derivation on a reversible JW -algebra is a sum of at most
151 commutators of the form [La, Lb].

The next theorem is the main result of this section.

Theorem 2. Cartan factors of type 1 with dimH = dimK , Cartan factors of type
2 with dimH even or infinite, and all Cartan factors of type 3 have the inner derivation
property. Moreover, every derivation of the above Cartan factors has degree at most
153.

Proof. By Proposition 2, such factors are unital reversible JW ∗-algebras. Thus it
is enough to prove the statement for a unital reversible JW ∗-algebra Z .

It is well known that Z decomposes in the form Z = X + iX, where X is the
symmetric part of Z , and hence X is a reversible JW -algebra.

If δ is a triple derivation of Z , then, by Lemma 2, δ − Lδu is a derivation of the
JB ∗-algebra Z that commutes with the involution, and hence its restriction to X is
a derivation of X. From the identity

(δ − Lδu)(z) = (δ − Lδu)(x+ iy) = (δ − Lδu)|X(x) + i(δ − Lδu)|X(y),

it follows that (δ − Lδu)|X determines (δ − Lδu). Now, Corollary 1 gives (except for
summing the 0 commutator)

(δ − Lδu)(z) =

152∑
j=1

[Laj , Lbj ](x) + i

152∑
j=1

[Laj , Lbj ](y)

=

152∑
j=1

[Laj , Lbj ](x+ iy) =

152∑
j=1

[Laj , Lbj ](z).

Now, applying the identity

[La, Lb] + [Lc, Ld] = 2(δ̃ − Lδ̃u),
for all a, b, c and d in X, where

δ̃ = δ

(
a+ ic

2
,
b+ id

2

)
,
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we obtain

(δ − Lδu)(z) =

152∑
j=1

[Laj , Lbj ](z) = 2

76∑
j=1

(δ(cj , dj)− Lδ(cj ,dj )u)(z).

Finally, if we apply Lemma 1, it follows that

δ = 2

76∑
j=1

(δ(cj , dj)− Lδ(cj ,dj )u) + Lδu

is an inner derivation with degree at most 153. q

Following [13], we define a real Cartan factor to be a real form of a complex
Cartan factor. Combining Theorem 2 and Proposition 1, we obtain the following
result for real Cartan factors.

Corollary 2. If E is a real form of a type 1 Cartan factor with dimH = dimK ,
or a real form of a Cartan factor of type 2 with dimH even or infinite, or a real form
of a Cartan factor of type 3, then every derivation on E is inner with degree at most
306.

3.2. Real or complex spin factors

In this subsection, we prove that no infinite-dimensional real spin factor satisfies
the inner derivation property. Thus, by Proposition 1, it can be concluded that no
complex spin factor satisfies the inner derivation property.

We recall that a complex spin Cartan factor is a JB ∗-triple that can be equipped
with a complete inner produce (.|.) and a conjugation ∗ such that the triple product
satisfies

{x, y, z} = (x|y)z + (z|y)x− (x|z∗)y∗,
and the norm is given by

‖x‖2 := (x|x) + ((x|x)2 − |(x|x∗)|2)1/2.

By a real spin factor, we mean any real form of a complex spin factor. By [13,
Theorem 4.1], we know that every real spin factor E is an l1-sum

E = X1 ⊕`1 X2,

where X1 and X2 are closed subspaces of a real Hilbert space X satisfying X2 = X⊥1 ,
and the triple product on E is given by

{x, y, z} = (x|y)z + (z|y)x− (x|z̄)ȳ,
where (.|.) is the inner product of X and the map x 7−→ x̄ is given by x̄ = (x1,−x2)
for all x = (x1, x2) ∈ E.

Our goal is to build a derivation that is not inner in the case of an infinite-
dimensional real spin factor E = X1 ⊕`1 X2. Without loss of generality, we can
assume that X1 is also infinite-dimensional.

First we suppose that E is separable. Let {en : n ∈ N} be a countable ortho-
normal basis of X1. Since en = en, it is easy to check that {en, en, en} = en and
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‖δ(e2k−1, e2k)‖ 6 2, and hence the operator

δ0 :=

∞∑
k=1

1

2k
δ(e2k−1, e2k)

is a well defined derivation on E. Our goal is to show that δ0 is not inner. Suppose
that δ0 is inner; then

δ0 =

P∑
j=1

δ(aj , bj)

for suitable aj , bj ∈ E, with aj = aj,1 + aj,2 and bj = bj,1 + bj,2, where aj,i and bj,i are
in Xi (j = 1, . . . , P , i = 1, 2). Hence

δ0 =

P∑
j=1

δ(aj , bj)

=

P∑
j=1

δ(aj,1, bj,1) + δ(aj,1, bj,2) + δ(aj,2, bj,1) + δ(aj,2, bj,2).

It is easy to check that, for all x1 ∈ X1,

δ(aj,2, bj,2)(x1) = δ(aj,1, bj,2)(x1) = δ(aj,2, bj,1)(x1) = 0

and δ0(X2) = 0. Therefore

δ0(x1) =

P∑
j=1

δ(aj,1, bj,1)(x1)

for all x1 ∈ X1.
Now we define K as the linear span of {aj,1, bj,1 : j = 1, . . . , P }. Let x1 ∈ K⊥ ∩X1;

then

0 =

P∑
j=1

δ(aj,1, bj,1)(x1) = δ0(x1) =

∞∑
k=1

1

2k
δ(e2k−1, e2k)(x1)

=

∞∑
k=1

1

2k
({e2k−1, e2k, x1} − {e2k, e2k−1, x1})

=

∞∑
k=1

1

2k
((e2k−1|e2k)x1 + (x1|e2k)e2k−1 − (e2k−1|x1)e2k

−(e2k|e2k−1)x1 − (x1|e2k−1)e2k + (e2k|x1)e2k−1)

=

∞∑
k=1

1

2k−1
((x1|e2k)e2k−1 − (e2k−1|x1)e2k).

Thus (x1|e2k) = (e2k−1|x1) = 0 for all k ∈ N, and so x1 = 0 since {en} is a basis
of X1. Therefore K⊥ ∩ X1 = 0, and hence X1 = K is finite-dimensional, which is
impossible.

This proves that δ0 is not an inner derivation. Suppose now that dimX1 > ℵ0,
and let {en}N be a countable set of orthonormal vectors in X1. Let us denote by H
the real separable Hilbert space generated by {en}N, and by δ0 the derivation on E
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given by

δ0 :=

∞∑
k=1

1

2k
δ(e2k−1, e2k).

Since δ0(H) ⊆ H , it follows that δ0|H is a derivation of the real spin factor H ,
which is not inner by the previous case. Actually, we claim that δ0 is not an inner
derivation on E. Suppose, contrary to our claim, that δ0 is inner on E; then

δ0 =

P∑
j=1

δ(aj , bj)

with aj , bj ∈ E. Since

E = (H ⊕`2 H⊥)⊕`1 X2,

the elements aj and bj can be expressed as aj = hj + xj,3 and bj = kj + yj,3, where
hj and kj are in H and xj,3, yj,3 ∈ H⊥ ⊕`1 X2 (j = 1, . . . , P ). Thus

δ0 =

P∑
j=1

δ(aj , bj)

=

P∑
j=1

δ(hj , kj) + δ(hj , yj,3) + δ(xj,3, kj) + δ(xj,3, yj,3).

It is easy to check that

δ(hj , yj,3)h = −(hj |h)yj,3 − (h|hj)yj,3 ∈ H⊥ ⊕`1 X2

δ(xj,3, kj)h = (h|kj)xj,3 + (kj |h)xj,3 ∈ H⊥ ⊕`1 X2

and

δ(xj,3, yj,3)(h) = 0

for all h ∈ H . From the last identity, we have

δ0(h) =

P∑
j=1

δ(hj , kj)(h) +

P∑
j=1

(δ(hj , yj,3) + δ(xj,3, kj))(h)

for all h ∈ H . Since δ0(H) ⊆ H and
∑P

j=1(δ(hj , yj,3) + δ(xj,3, kj))(H) ⊆ H⊥ ⊕`1 X2,
we have

δ0(h) =

P∑
j=1

δ(hj , kj)(h)

for all h ∈ H . Therefore δ0|H is an inner derivation on H , which is impossible, and
hence δ0 is not an inner derivation on E.

We have thus proved the following theorem.

Theorem 3. Every infinite-dimensional real or complex spin factor has a derivation
that is not inner, that is, none of the infinite-dimensional real or complex spin factors
has the inner derivation property.
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3.3. Non-square type 1

As in the case of a real or complex spin factor, we are going to build an outer
derivation in every real form of an infinite-dimensional and non-square (dimH 6=
dimK) type 1 Cartan factor. Again, using Proposition 1, we will conclude that
no complex infinite-dimensional non-square type 1 Cartan factor satisfies the inner
derivation property.

By [13, Theorem 4.1], we know that the real forms of a complex type 1 Cartan
factor are precisely the real Banach spaces BL(X,Y ) of all bounded linear operators
between two real Hilbert spaces X and Y or the real Banach spaces BL(P ,Q) of all
bounded linear operators between two Hilbert spaces P ,Q over the quaternion field.
Thus it is enough to prove that BL(X,Y ), with +∞ = dim(X) > dim(Y ), possesses
an outer derivation. We will divide the proof into several steps. In a first step, we
suppose that Y = R. In this case, BL(X,R) is isometrically isomorphic, as a real
JB ∗-triple, to X equipped with the triple product

{x, y, z} = 1
2
((x|y)z + (z|y)x)

for all x, y, z ∈ X.
Let δ be a derivation on X; then

δ{x, y, z} = {δx, y, z}+ {x, δy, z}+ {x, y, δz} (∗)
for all x, y, z ∈ X. Now from the expression of the triple product, we have

δ{x, y, z} = 1
2
((x|y)δz + (z|y)δx),

{δx, y, z} = 1
2
((δx|y)z + (z|y)δx),

{x, δy, z} = 1
2
((x|δy)z + (z|δy)x),

{x, y, δz} = 1
2
((x|y)δz + (δz|y)x).

Thus it follows from (∗) that

1
2
(((δx|y) + (x|δy))z + ((z|δy) + (δz|y))x) = 0

for all x, y, z ∈ X. In particular, we have

(x|δy) = −(δx|y)

for all x, y ∈ X, that is, δ∗ = −δ. Therefore every derivation on X, regarded as the
real type 1 Cartan factor BL(X,R), is a skew-symmetric operator on X. Conversely,
the following holds.

Lemma 3. If X is a real Hilbert space, regarded as the real Cartan factor BL(X,R),
then the derivations on X coincide with the skew-symmetric operators on X.

Proof. Suppose that T is a skew-symmetric operator on X. The identities

T {x, y, z} = 1
2
((x|y)Tz + (z|y)Tx),

{Tx, y, z} = 1
2
((Tx|y)z + (z|y)Tx)),

{x, Ty, z} = − 1
2
((Tx|y)z + (Tz|y)x),

{x, y, Tz} = 1
2
((x|y)Tz + (Tz|y)x),

show that T is a derivation on X. q
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The next proposition characterizes the inner derivations on X.

Proposition 3. The inner derivations on X, regarded as the real Cartan factor
BL(X,R), coincide with the finite rank operators on X that are skew-symmetric.

Proof. Let

δ =

P∑
j=1

δ(aj , bj)

be an inner derivation on X. Since

δ(aj , bj)(x) = 1
2
((x|bj)aj − (x|aj)bj),

it follows that δ is a finite rank operator. The other implication follows from
Lemma 3. q

Remark 2. Since for every infinite-dimensional Hilbert space X there exists a
skew-symmetric operator T on X satisfying T 2 = −Id, we conclude from Lemma 3
and Proposition 3 that T is an outer derivation on X. It follows that BL(X,R) does
not satisfy the inner derivation property.

Our next goal is to build derivations on BL(X,Y ) from derivations onX= BL(X,R).

Lemma 4. Let δ be a derivation on a real Hilbert space X (regarded as the real
Carton factor BL(X,R)), and let Y be another real Hilbert space. Then the operator

δ̃ : BL(X,Y ) −→ BL(X,Y )

δ̃a = aδ

is a derivation on BL(X,Y ).

Proof. Since δ is a derivation on X, δ∗ = −δ (see Lemma 3). Given a, b, c ∈
BL(X,Y ), we have

{δ̃a, b, c}+ {a, δ̃b, c}+ {a, b, δ̃c}
= 1

2
(aδb∗c+ cb∗aδ + aδ∗b∗c+ cδ∗b∗a+ ab∗cδ + cδb∗a)

= 1
2
(aδb∗c+ cb∗aδ − aδb∗c− cδb∗a+ ab∗cδ + cδb∗a)

= 1
2
(cb∗aδ + ab∗cδ) = {a, b, c}δ = δ̃{a, b, c},

which proves that δ̃ is a derivation. q

At this moment, we need the following identification. Let us fix a norm one
element y0 ∈ Y . In the sequel, we will identify each h ∈ X, with the operator

fh : X −→ Y

fh(x) := (x|h)y0 x ∈ X.
In this way, X can be regarded as the subspace of BL(X,Y ) formed by all operators
of the form fh with h ∈ X. Using this identification, it is easy to check that if δ and
δ̃ are as in Lemma 4, then δ̃(X) ⊆ X. In fact,

δ̃(fh)(x) = fh(δx) = (δx|h)y0

= (x|δ∗h)y0 = (x| − δh)y0 = f−δh(x).

The next lemma is the key tool of the main result of this subsection.
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Lemma 5. Let δ and δ̃ be as in Lemma 4, and suppose that δ̃ is an inner derivation.
Then δ has rank less than or equal to the hilbertian dimension of Y .

Proof. Since δ̃ is an inner derivation on BL(X,Y ), δ̃ is the sum

δ̃ =

P∑
j=1

δ(aj , bj)

for suitable aj , bj ∈ BL(X,Y ). As we have seen previously for each h ∈ X, δ̃fh =
f−δh ∈ X. On the other hand,

f−δh = δ̃(fh) =

P∑
j=1

δ(aj , bj)(fh)

=

P∑
j=1

1
2
(ajb

∗
j fh + fhb

∗
j aj − bja∗j fh − fha∗j bj)

=

 P∑
j=1

1
2
(ajb

∗
j − bja∗j )

 fh + fh

 P∑
j=1

1
2
(b∗j aj − a∗j bj)


= Rfh + fhT ,

where

R =

P∑
j=1

1
2
(ajb

∗
j − bja∗j ) : Y −→ Y

T =

P∑
j=1

1
2
(b∗j aj − a∗j bj) : X −→ X

are two skew-symmetric operators. Moreover,

fhT (x) = (Tx|h)y0 = (x| − Th)y0 = f−Th(x)

for all x ∈ X, so that fhT = f−Th, and

Rfh = δ̃fh − fhT = f−δh−Th = fh′ ∈ X.
Therefore, for all x, h ∈ X, the equality

Rfh(x) = (x|h)R(y0) = (x|h′)y0

holds. Thus we have R(y0) = λy0 for a suitable λ ∈ R. Since R is a skew-symmetric
operator and λ is a real eigenvalue of R, λ = 0.

In this way, since Rfh = 0, we have

f−δh = δ̃(fh) = fhT = f−Th

for all h ∈ X, and hence T = δ.

Since each b∗j aj and each a∗j bj are operators that factorize through Y , they have
rank at most the hilbertian dimension of Y . Therefore so does

δ = T =

P∑
j=1

1
2
(b∗j aj − a∗j bj). q
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Theorem 4. Let X be an infinite-dimensional real Hilbert space, and Y be a real
Hilbert space with hillbertian dimension less than the hilbertian dimension of X. Then
BL(X,Y ) does not satisfy the inner derivation property.

Proof. We recall that, since X is infinite-dimensional, there exists a bounded
linear operator T on X such that T 2 = −IdX and T ∗ = −T . Hence T has rank
equal to the hilbertian dimension of X. Since T ∗ = −T , Lemma 3 states that T
is a derivation on X. Moreover, by Lemma 4, the operator T̃ given by T̃ a = aT

(a ∈ BL(X,Y )) is a derivation on BL(X,Y ). If T̃ is an inner derivation, then
Lemma 5 states that T has rank at most the hilbertian dimension of Y , which is
impossible, since dim(X) > dim(Y ). q

Again combining Theorem 3 and Proposition 1, we obtain the following corollary.

Corollary 3. The complex infinite-dimensional non-square type 1 Cartan factors
and their real forms do not satisfy the inner derivation property.

By virtue of the previous results, we know that there exist real and complex
JB ∗-triples having outer derivations. Therefore it is natural to ask if any derivation
can be approximated (in a convenient topology) by inner derivations. Upmeier
[23] proved that there exists a unital JB -algebra X and a derivation D on X that
cannot be approximated in norm by inner algebra derivations. Let X̂ denote the
complexification of X, and D̂ the complex linear extension of D to X̂. Then X̂ is a
unital JB ∗-algebra with unit u, and hence a JB ∗-triple, and D̂ is a triple derivation,
since D̂ is an algebra derivation that commutes with the involution (see Lemma 2).
We claim that D̂ cannot be approximated in norm by inner triple derivations.
Otherwise, for ε > 0, there would exist an inner triple derivation

δ =

P∑
j

δ(ej , fj)

such that

‖D̂ − δ‖ < ε.

Now, by Lemma 2,

δ − Lδ(u) =

P∑
j

δ(ej , fj)− Lδ(ej ,fj )(u)

= 1
2

P∑
j

[Laj , Lcj] + [Lbj , Ldj],

where ej = 1
2
(aj + ibj), fj = 1

2
(cj + idj) with aj , bj , cj , dj in X. Therefore δ − Lδ(u) is

an inner derivation on X such that

‖D − (δ − Lδ(u))‖ = ‖D − LD(u) − (δ − Lδ(u))‖
6 ‖D̂ − δ‖+ ‖LD(u) − Lδ(u)‖
6 ‖D̂ − δ‖+ ‖LD(u)−δ(u)‖
6 ‖D̂ − δ‖+ ‖(D̂ − δ)(u))‖ 6 2ε,

which is impossible, since D cannot be approximated in norm by an inner derivation.
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On the other hand, D is also a derivation on the real JB ∗-triple X. If D could be
approximated in norm by inner triple derivations on X, then, for every ε > 0, there
exists

δ =

P∑
j

δ(ej , fj)

with ej , fj ∈ X such that ‖D − δ‖ 6 ε. In this case, δ =
∑P

j δ(ej , fj) is an inner

derivation on X̂ and

‖(D̂ − δ)‖ 6 2ε.

This is impossible.
Upmeier [23], also proved that every algebra derivation on a JB -algebra can

be approximated in the strong operator topology by inner derivations. In [3,
Theorem 4.6], Barton and Friedman proved that the set of all inner derivations
on a JB ∗-triple is dense in the set of all derivations with respect to the strong
operator topology. This result can be extended to real JB ∗-triples.

Theorem 5. The set of all inner derivations on a real JB ∗-triple is dense in the
set of all derivations with respect to the strong operator topology.

Proof. Let E be a real JB ∗-triple and δ a derivation on E. We consider

δ̂ : Ê −→ Ê

δ̂(x+ iy) := δ(x) + iδ(y)

the natural extension of δ to Ê. Since Ê is a complex JB ∗-triple, by [3, Theorem 4.6],
it follows that for every x1, . . . , xn ∈ E ⊂ Ê and every ε > 0 that there exists an inner
derivation

δ1 =

P∑
j=1

δ(aj , bj)

on Ê such that ‖δ̂(x1)− δ1(x1)‖ 6 ε for all l = 1, . . . , n.
Since aj = aj,1 + iaj2 and bj = bj,1 + ibj,2, where aj,k and bj,k are in E, it is easy to

check that

δ1(xl) =

P∑
j=1

(δ(aj,1, bj,1) + δ(aj,2, bj,2)

+i(L(aj,2, bj,1) + L(bj,1, aj,2)− L(aj,1, bj,2)− L(bj,2, aj,1)))xl.

Since aj,k, bj,k and xl are elements in E, it follows that

P∑
j=1

i(L(aj,2, bj,1) + L(bj,1, aj,2)− L(aj,1, bj,2)− L(bj,2, aj,1))xl ∈ iE.

Thus

‖δ(xl)−
P∑
j=1

(δ(aj,1, bj,1) + δ(aj,2, bj,2))(xl)‖

6 ‖δ(xl)−
P∑
j=1

(δ(aj,1, bj,1) + δ(aj,2, bj,2))(xl))
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− i
P∑
j=1

(L(aj,2, bj,1) + L(bj,1, aj,2)− L(aj,1, bj,2)− L(bj,2, aj,1))(xl))‖

= ‖δ̂(xl)−
P∑
j=1

(δ(aj,1, bj,1) + δ(aj,2, bj,2)

+ i(L(aj,2, bj,1) + L(bj,1, aj,2)− L(aj,1, bj,2)− L(bj,2, aj,1)))(xl)‖
= ‖δ̂(xl)− δ1(xl)‖ 6 ε

for all l = 1, . . . , n. q

Problem 1. If we could obtain a universal bound for the degree of all derivations
in a type 2 Cartan factor with dimH odd, we could try to determine all JBW ∗-triples
of type I satisfying the inner derivation property following the techniques contained
in Ho’s dissertation [10].
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