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DERIVATIONS ON REAL AND COMPLEX JB “-TRIPLES

TONY HO, JUAN MARTINEZ-MORENO, ANTONIO M. PERALTA
AND BERNARD RUSSO

1. Introduction

At the regional conference held at the University of California, Irvine, in 1985 [24],
Harald Upmeier posed three basic questions regarding derivations on JB *-triples:
(1) Are derivations automatically bounded?
(2) When are all bounded derivations inner?
(3) Can bounded derivations be approximated by inner derivations?

These three questions had all been answered in the binary cases. Question 1
was answered affirmatively by Sakai [17] for C*-algebras and by Upmeier [23] for
JB-algebras. Question 2 was answered by Sakai [18] and Kadison [12] for von
Neumann algebras and by Upmeier [23] for JW -algebras. Question 3 was answered
by Upmeier [23] for JB-algebras, and it follows trivially from the Kadison—Sakai
answer to question 2 in the case of C*-algebras.

In the ternary case, both question 1 and question 3 were answered by Barton and
Friedman in [3] for complex JB*-triples. In this paper, we consider question 2 for
real and complex JBW “-triples and question 1 and question 3 for real JB *-triples.
A real or complex JB-triple is said to have the inner derivation property if every
derivation on it is inner. By pure algebra, every finite-dimensional JB *-triple has the
inner derivation property. Our main results, Theorems 2, 3 and 4 and Corollaries 2
and 3 determine which of the infinite-dimensional real or complex Cartan factors
have the inner derivation property.

2. Background

We recall that a JB *-algebra is a complete normed Jordan complex algebra (say
/) endowed with a conjugate-linear algebra involution * satisfying || U.(x")|| = [x|?
for every x € .«/. Here, for every Jordan algebra .«Z, and every x € ./, U, denotes
the operator on .o/ defined by U,(y) :=2xo0(xoy)—x?oy, forall y € .o7.

A JB-algebra is a complete normed Jordan real algebra (say A) satisfying the
following two additional conditions for a,b € A4:

(i) lla*] = [lal*.

(i) @] < [la*+ 2.
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It is due to Wright (see [25]) that the complexification of a JB-algebra is a
JB"-algebra under a unique norm extending the given norm on the JB-algebra.
Conversely, the self-adjoint part of a JB "-algebra is a JB -algebra under the restricted
norm.

If H is a complex Hilbert space, then the real Banach space 5 (H) of all bounded
hermitian operators on H is a JB-algebra with respect to the Jordan product

xoy = 1(xy+ yx).

A uniformly (respectively weakly) closed unital real subalgebra of J#(H) is called
a JC-algebra (respectively JW -algebra) on H. A norm (respectively weakly) closed
(complex) Jordan®*-subalgebra of a C*-algebra (respectively von Neumann algebra)
is called a JC "-algebra (respectively JW “-algebra). For more details on JB -algebras
and JB *-algebras we refer the reader to [9].

We recall that a (complex) JB"-triple is a complex Banach space ¢ with a
continuous triple product {-,-,-} : # X ¢ x # —> ¢ that is bilinear and symmetric
in the outer variables and conjugate linear in the middle variable, and that satisfies
the following conditions.

(i) (Jordan identity) L(a, b){x,y,z}={L(a,b)x,y,z}—{x, L(b,a)y,z}+{x,y, L(a,b)z}
for all a,b,x,y,z in #, where L(a,b)x = {a,b, x}.

(ii) For all a € ¢, the map L(a,a) from # to # is a hermitian operator with
non-negative spectrum.

(iii) [{a,a,a}| = ||a|? for all a in #.

It is worth mentioning that every C*-algebra is a (complex) JB *-triple with respect
to {a,b,c} = L(ab*c + cb*a). Also, every JB "-algebra is a JB"-triple with respect to
{a,b,c} = (ao b Yoc+ (cob*)oa— (aoc)ob’. Conversely, every JB"-triple with
a unitary element u (that is, {u,u,z} = z for every z) is a unital JB"-algebra with
product a o b = {a,u,b}, involution a* = {u,a,u}, and unit u. We refer to [5, 15, 16]
for recent surveys on the theory of JB*-triples.

Following [11], we recall that a real JB"-triple is a norm-closed real subtriple of
a complex JB"-triple. Given a real JB” -triple J, there exists a unique complex J B*-
triple structure on the complexification J= JoiJ, and a unlque conJugatlon (that is,
conjugate-linear isometry of period 2) t on J such that J = J" : ={xe J: 7(x) = x}.
From this point of view, the real JB*-triples are real forms of complex JB”* trlples

The class of real JB "-triples includes all JB-algebras [9], all real C*-algebras [8],
and all J*B-algebras [2].

A triple derivation or simply a derivation 6 on a real or complex JB"-triple U is
a linear operator satisfying

o{a,b,c} = {6a,b,c} + {a,db,c} + {a,b,dc}

for all a,b,c € U.

If U is a real or complex JB*-triple, we can conclude from the Jordan identity
that 6(a,b) := L(a,b) — L(b,a) is a derivation, for every a,b € U. An inner triple
derivation 0 on U is a finite sum of derivations of the form d(a, b) (a,b € U), that is,

5= 6(aj.b)) (2.1)
i=1

The degree of an inner derivation is the least number of terms in a representation
of the form (2.1). Any derivation that is not inner is called outer.
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REMARK 1. Let E be a real JB -triple and 6 a derivation on E. Then é can be
extended to a derivation J, on the complexification of E, defined by s(x +iy) =
o(x) +i6(y).

It is due to Barton and Friedman [3] that every derivation on a complex JB *-triple
is automatically continuous, and so, by the previous comment, every derivation on
a real JB"-triple is also continuous.

3. Inner derivation property

We say that a real or complex JB"-triple U has the inner derivation property if
every derivation on U is inner.

By [14, Chapter 8], every finite-dimensional real or complex JB “-triple has the
inner derivation property. The next proposition shows that a real JB"-triple has
the inner derivation property whenever its complexification satisfies this property.

PROPOSITION 1. Let E be a real IB -triple. Suppose that the complexification E
of E has the inner derivation property. Then E has the inner derivation property.
Moreover, if M is a bound of the degree of all inner derivations of E, then 2M is a
bound of the degree of all inner derivations of E.

Proof. Suppose that E is a real JB*-triple such that E has the i inner derivation
property. Let (3 be a derivation of E. We denote by 5 the derivation on E, extending
d to E. Since E has the inner derivation property, then 5 is an inner derivation of
degree n, that is,

6 =">" dlar,by),
k=1

where ay, by € E.Since E=E @ iE, it follows that ax = ay1+iay, and by = by 1 +ibi»
for suitable ay, by € E,l=1,2and k =1,...,n
Consider now x € E. We can compute
O(ak, b)x = d(ar1 + iago, by + iby)x
= {aky + iaks, bk + ibko, x} — {bx1 + ibk o, ax 1 + iaks, X}
= {ar1, b1, X} + {ar2, bk, X} + i({ak2, b1, x} — {ak.1, br2, x})
— {bi1s a1, X} — {bra, aro, xp — i({bra, ar1, X} — {bi1, ax2, X))
= 0(a,1, bi,1)(x) + d(ak2, bi2)(x)
+i({ak2, b1, X} — {ar1, bros x} — {bka, ak1x} + {bi.1, aka, X}).

Therefore

E 30(x) = S(X) = Z o(axy + iag, br1 + ibk2)x
k=1

= (Z(5(ak,1,bk,1) + 5(ak,2abk,2)> x

k=1

1Y (L(@k2, ber) — @i, bra) — Libia, ai) + Libes, a2))(x)
k=1
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Since the elements ax;, by € E, we have

<Z<5<ak,1, bre1) + (a2, bk,z>)> (E) = E

k=1
and

(i (L(ar, b1) — L(ak,1, bip) — L(bga, ax) + L(bk,lak,l))> (E) = iE.
=1

Therefore

(Z(L(ak,z, bi,1) — L(ak,1, bk2) — L(bk2, ax,1) + L(by.1, ak,l))) (x)=0

k=1
for all x € E. Thus

3(x) = 8(x) = > (3(a1. bicr) + 82, bi2))(x)

k=1

for all x € E, which proves that ¢ is an inner derivation with degree at most 2n. ]

From Proposition 1, it is easy to see that if E is a real JB "-triple which does not
satisfy the inner derivation property, then its complexification also does not satisfy
the inner derivation property.

3.1. Reversible unital JB *-algebras

We recall that the (complex) type 1 Cartan factor can be defined as the complex
Banach space BL(H,K) of all bounded linear operators between two complex
Hilbert spaces H and K, with triple product given by

{a,b,c} = L(ab*c + cb”a).

Next we give a brief description of the (complex) Cartan factors of type 2 and
3. Let H be a complex Hilbert space equipped with a conjugation (conjugate-linear
isometry of period 2) j : H — H; then for any z € B(H) we can define its transpose
as z' := jz"j. The type 2 Cartan factor coincides with the Banach space of all t-skew
symmetric elements in B(H) (z' = —z), and the type 3 Cartan factor is defined as
the Banach space of all t-symmetric elements of B(H) (z' = z). The triple product
of these Cartan factors is the restriction of the triple product in B(H).

We recall that a JC-algebra (or a JC*-algebra) 4 is said to be reversible if
X1X2...Xp + XyXp—1...X1 € A, for all n € N and xy,...,x, € 4.

PROPOSITION 2. Cartan factors of type 1 with dim H = dim K, Cartan factors of
type 2 with dim H even, or infinite, and all Cartan factors of type 3 are reversible
IW *-algebras.

Proof. Let C? be a type 3 Cartan factor. Since x' = x for all x € C3, we have
(X1 Xn F Xpo o X)) =Xy X+ X1 ..., € C3.
Let C? be a type 2 Cartan factor with dim H even or infinite. Then C? contains a
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distinguished unitary

N eNelelel
el N eNeRel
SO = OO
O OO OO

In this case we can provide a new C~-algebra structure for B(H) with product
a-b = au*b and involution a! = ua*u in which C? becomes a JC *-subalgebra under
aob = (a-b+b-a)/2. With this Jordan product, C? is reversible since

(X" Xy . U Xy 4 Xau” XU X)),
= (=)D (U Xy . XU X A XX XU X))

= —(xu'xy...u"x, + xu" ... xu"x1). O

We recall that if .o/ is an algebra, then a derivation D of .o/ is a linear mapping
D : o/ — o/ satistying D(ab) = D(a)b + aD(b), for all a,b € /. If o/ is a Jordan
algebra, an inner algebra derivation of </ is a finite sum of commutators of the form
[Lg, Lp] for some a,b € o7, where L,x := a o x. For an inner algebra derivation D,
the degree of D is the least natural number n satisfying D = Y """ [Lq,, Lp,].

LEMMA 1. Let Z be a JB™-algebra, with unit u, regarded as a complex JB"-triple.
If 6 is a triple derivation of Z, then Ls, is an inner triple derivation of Z of degree 1.

Proof. Simply note that for every triple derivation ¢ of Z, we have
ou = o{u,u,u} = {ou,u,u} + {u, ou,u} + {u,u,ou}
= 2{0u,u,u} + {u,du,u} = 20uou+ (éu)*
and hence
(du)" = —du.
Now consider
Lsyz =0uoz = %(5u oz —(—du)oz)
= %(514 oz—(0u)' oz)= %({5u, u,z} — {u,6u,z});

it follows that Ls, is an inner triple derivation of degree 1. O

LEMMA 2 [3, p. 263]. Let Z be a unital JB"-algebra and D be an algebra
derivation of Z that commutes with the involution of Z. Then D is a triple derivation
of Z.

Conversely, if Z is a B "-triple with a unitary element u and 6 is a triple derivation
of Z, then 6 — L, is an algebra derivation of Z that commutes with the involution on
Z. In particular, if 0 is an inner derivation of degree 1, that is, d = d(x, y), then

0 — Lsw) = %([Lx-&-x‘,Ly—Fy*] + [L—i(x—x*)?L—i(y—y*)])'

Proof. The first statement is clear. To prove the second one, let § be a triple
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derivation of Z. It is easy to check that

(0 — Lsy)(x 0 y) = o{x,u,y} — {ou,u, {x,u, y}}
= {0x,u,y} + {x,0u,y} + {x,u,0y} — {ou,u, {x,u, y}}
= {0x,u,y} + {x,0u,y} + {x,u,dy}
—{{ou,u,x},u, y} + {x, {u, ou,u}, y} — {x,u, {ou,u,y}}
=oxoy+{x,0u,y} +x00dy
—(duox)oy+{x,(ou)",y} —xo(duoy)
(applying (Su)" = —ou)
= (0 — Lou)(x) 0 y + {x,0u,y} +x 0 (8 — Lsu)(y) — {x,0u,y}
= (0 — Lsu)(x) 0y +x0(6 — Lsu)(y).

Thus 6 — Lg, is an algebra derivation.
The verification of the last formula is left to the reader. O

By [22, Theorem 13] (see also [1, p. 255], each JW -algebra A admits a decompo-
sition into weakly closed ideals of the form

A=Inpel, oIl @I, @ IIL

See [22] and [1] for the meaning of these symbols. A JW -algebra A is called properly
non-modular if its modular part I, @ II; vanishes.

In 1980, Upmeier showed that each algebra derivation on a properly non-modular
JW -algebra is the sum of six commutators of the form [L,, L] [23, Theorem 3.8],
and each algebra derivation on a reversible JW -algebra of type Ig, is the sum of
five commutators [23, Theorem 3.9].

The proof of the following theorem is implicitly contained in [23], and we include
it here for completeness.

THEOREM 1. Let A be a reversible JW -algebra of type 11y. Then each derivation
of A is a sum of at most 140 commutators of the form [Lg,, Lp].

Proof. Let A be a reversible JW -algebra of type II;. We denote by (/)
its complex enveloping von Neumann algebra (the smallest von Neumann alge-
bra containing A4). By [1, Theorem 8], % (/)" (that is, %(</) with the Jordan
product wy; o wy = (wiwy + wowy)/2) is also of type IIy. Thus if we follow the
proof of [23, Theorem 3.10], it follows that each derivation of A has the form
D(x) = ad(w)(x) := [w,x] (x € A), where w = —w" € %(.</). Moreover, since %(.o/)"
is of type II;, w is the sum of ten commutators in %(=7) (see [7, Theorem 2.3]), so
that each derivation of A has the form

10
D =" "ad([wi, w2,]).
j=1
Since A4 is the self-adjoint part of #(.<7) [19], where #(.«7) is the real enveloping
algebra of 4, we have, by [20, Lemma 6.1; 21, Lemma 2.3, Theorem 2.4], %(</) =
R(A )+ iR(AL).
Hence every element wy; is the sum wy; = u;; + iv; j, where u j, v ; € #(H).

2
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Since, for every u;,v; € %(</), the equalities
[y + ivy, uy +iva] = [ug, uz] — [v1,02] + i([ur,v2] + [v1, u2])
[ty + iua, x] = [ug, x] +i[uz, x]

hold for all x € A, and since D maps 4 in A, we have
10

> Murjova ] + o1 u2,1.x] =0
j=1
for all x € A. Thus

10 20
D =ad(w) =Y ad([uyj,us;] — [o1ov2]) = Y ad([z1,/.22,),
=1 =1

where z;; € #(/) and w = Ef.il[z],,,zz,j].

Our next goal is to prove that every element [zyj,z;] is a finite sum of commu-
tators of elements in A.

Let z1j,z0; € #(</), and | € {1,2}. We denote by zj; (respectively zj;) the
symmetric part (respectively the skew-symmetric part) of z;. Since, for every j,
[z{ ;25 ;] and [z] ;,z5 ;] are symmetric elements and w™ = —w, we deduce that

20
w= Z[Zij’ 23+ [z, 23]
j=1
Again, since A is the self-adjoint part of %(.«/), we have zj ;,z3 ; € /. Therefore it
is enough to show that every commutator [z{ ;,z5,] is a finite sum of commutators
of elements in A.

By [4, p. 121], #(«/) is isomorphic to the matrix algebra M,(B), where B is a
suitable real associative #-algebra.

If we follow the proof of [23, Lemma 3.11], it follows that each commutator of
skew-symmetric elements in M,(B) has the form

a —c"
¢c b ’

a+b = [a,a2] + [b1,bs] + [c1, 2] + [d1, da],

where a;, bj and c; are skew-symmetric elements in B, while d; and d, are symmetric
elements in B.

On the other hand, since for a,b,c,o; and f; € B, with a” = —a, b* = —b, o} = 0;
and [3; = —p;, the following identities hold,

(70 )= )2 %))
w2 0" )0 o))

with

a —"\ (0 = 1 a—2>b 0 41 a+b 0
c b “\ec O 2 0 b—a 2 0 a+b )’
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it can be concluded that each commutator [z{ ;, z5,] is the sum of six commutators
of elements in 4. Therefore we have proved that

140

W= Z[Xu, x2,7l,
=1

where x;; € A4, for all [, j, which proves that
140 140

D =" ad([xjx2j]) = > [Lx,. Ly, ]- O

Jj=1 J=1
Recall that a derivation on a JB-algebra is automatically continuous and that a
JB -algebra has an approximate unit [9, 3.5.4]. Thus a derivation leaves each closed
ideal invariant. By combining Theorem 1 with the comments preceding it, we have
the following corollary.

COROLLARY 1. Each derivation on a reversible JW -algebra is a sum of at most
151 commutators of the form [Lg, Lp].

The next theorem is the main result of this section.

THEOREM 2. Cartan factors of type 1 with dim H = dim K, Cartan factors of type
2 with dim H even or infinite, and all Cartan factors of type 3 have the inner derivation
property. Moreover, every derivation of the above Cartan factors has degree at most
153.

Proof. By Proposition 2, such factors are unital reversible JW “-algebras. Thus it
is enough to prove the statement for a unital reversible JW *-algebra Z.

It is well known that Z decomposes in the form Z = X + iX, where X is the
symmetric part of Z, and hence X is a reversible JW -algebra.

If § is a triple derivation of Z, then, by Lemma 2, 6 — L, is a derivation of the
JB *-algebra Z that commutes with the involution, and hence its restriction to X is
a derivation of X. From the identity

(0 — Lou)(2) = (0 — Lou)(x +iy) = (0 — Leu)lx(x) + i(d — Lsu)|x(y),

it follows that (6 — Ls,)|x determines (6 — Ls,). Now, Corollary 1 gives (except for
summing the 0 commutator)

152 152
(6 = Lou)(z) = > [Lap Ly J(x) +1 > _[La L (»)
j=1 j=1
152 ! 152
= Ly Ly J(x +iy) = Y [Laj Ly, )(2).
j=1 j=1

Now, applying the identity
[La> Lb] + [Le> La] = 2(6 — Lg,),
for all a,b,c and d in X, where

~ a+ic b+id
5_5( Hie bt )
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we obtain
152 76
(0 — Lsu)(z) = Z[La,, Ly)(z) = 22(5(6’], dj) — Ls(c;du)(2).
j=1 j=1

Finally, if we apply Lemma 1, it follows that
76
6 =2 (8(cj»dj) = Le,ap) + Lo
j=1
is an inner derivation with degree at most 153. O

Following [13], we define a real Cartan factor to be a real form of a complex
Cartan factor. Combining Theorem 2 and Proposition 1, we obtain the following
result for real Cartan factors.

COROLLARY 2. If E is a real form of a type 1 Cartan factor with dim H = dimK,
or a real form of a Cartan factor of type 2 with dim H even or infinite, or a real form
of a Cartan factor of type 3, then every derivation on E is inner with degree at most
306.

3.2. Real or complex spin factors

In this subsection, we prove that no infinite-dimensional real spin factor satisfies
the inner derivation property. Thus, by Proposition 1, it can be concluded that no
complex spin factor satisfies the inner derivation property.

We recall that a complex spin Cartan factor is a JB *-triple that can be equipped
with a complete inner produce (.|.) and a conjugation * such that the triple product
satisfies

(X y.z} = (x[y)z + (z]y)x — (x]27)y",
and the norm is given by
X[ 2= (x]x) 4 ((x]x)* = [(x]x")P) 2.

By a real spin factor, we mean any real form of a complex spin factor. By [13,
Theorem 4.1], we know that every real spin factor E is an [;-sum

E=X, 0" X,,

where X; and X, are closed subspaces of a real Hilbert space X satisfying X> = X7,
and the triple product on E is given by

{x.3,2} = (x[y)z + (z|y)x — (x[2)7,

where (.|.) is the inner product of X and the map x — X is given by X = (x1, —X3)
for all x = (x1,x,) € E.

Our goal is to build a derivation that is not inner in the case of an infinite-
dimensional real spin factor E = X; ®"' X,. Without loss of generality, we can
assume that X is also infinite-dimensional.

First we suppose that E is separable. Let {e, :n € N} be a countable ortho-
normal basis of X;. Since g, = e,, it is easy to check that {e,,e,,e,} = e, and
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[0(eak—1,ex)| < 2, and hence the operator
1
S =Y srd(en1,ex)

is a well defined derivation on E. Our goal is to show that Jy is not inner. Suppose
that Jy is inner; then

P
o= d(aj.b;)

for suitable a;,b; € E, with a; = a;; +a;»> and b; = b;; + b;», where a;; and b;; are
inX;(j=1,...,P,i=1,2). Hence

p
Z (a],

P
25(011, 1) +0(aj1,bja) +0(aj2,.bj1) +0(aja,bjn).

It is easy to check that, for all x; € X,
0(ajo, bja)(x1) = d(aj1,bj2)(x1) = d(aja, bj1)(x1) =0
and 9y(X,) = 0. Therefore

P
Z 5 a/ 1: J» 1)(X1
j=1

for all x; € X;.
Now we define K as the linear span of {a;1,b;; : j=1,...,P}. Let x; € K+ N Xy;
then

P
0= dlas, b)) = dof xl)—zzka(ezk 1 eax)(x1)

.
Il
_

({exk—1,eam, x1} — {€x, ex—1,x1})

[l
NE
2 —

»
Il
_

7 ((ex—tlear)xt + (xilea)exn—1 — (ear—1]x1)exn

I
NE
02—

»
Il

1
—(exlea—1)x1 — (x1]eaw—1)exn + (ex|x1)exn—1)

8

1 (x1lea)ear—1 — (ear—1]x1)ex).

[\)

=1

>~

Thus (x]ex) = (ex—1|x1) = 0 for all k € N, and so x; = 0 since {e,} is a basis
of X;. Therefore K+ N X; = 0, and hence X; = K is finite-dimensional, which is
impossible.

This proves that Jy is not an inner derivation. Suppose now that dim X; > N,
and let {e,}n be a countable set of orthonormal vectors in X;. Let us denote by H
the real separable Hilbert space generated by {e,}n, and by dy the derivation on E
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given by
1
o= e O(e2k—1, €xx).
k=1

Since do(H) = H, it follows that Jy|y is a derivation of the real spin factor H,
which is not inner by the previous case. Actually, we claim that dy is not an inner
derivation on E. Suppose, contrary to our claim, that d¢ is inner on E; then

with a;,b; € E. Since
=(H e H ) @' X,

the elements a; and b; can be expressed as a; = h; + x;3 and b; = k; + y;3, where
h; and k; are in H and x;3,y;3 € H- @1 X, (j = 1,...,P). Thus

P
o= _d(aj.b))
j=1

P
Zé(h,,k +(hj,i3) + 0(xj3.kj) + 3(xj3, V73)-

It is easy to check that
8(hj.yja)h = —(hjlh)yi5 = (hlhy)y;s € H* @7 X

3(xj3,kj)h = (hlkj)x;5 + (kj|h)Xj5 € H- @' X»
and
0(xj3,j3)(h) =0

for all h € H. From the last identity, we have

P P

So(h) =" 3(hj, k;)(h) + Z hj, y73) + 0(x;3,k))(h)
j=1

for all h € H. Since do(H) = H and Zj=1(5(hj,yj,3) + 0(x;3,kj)(H) = H' @ X,
we have

P
hy =" 5(hj, k;)(h)
j=1

for all h € H. Therefore do|y is an inner derivation on H, which is impossible, and
hence dy is not an inner derivation on E.
We have thus proved the following theorem.

THEOREM 3. Every infinite-dimensional real or complex spin factor has a derivation
that is not inner, that is, none of the infinite-dimensional real or complex spin factors
has the inner derivation property.
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3.3. Non-square type 1

As in the case of a real or complex spin factor, we are going to build an outer
derivation in every real form of an infinite-dimensional and non-square (dim H #
dimK) type 1 Cartan factor. Again, using Proposition 1, we will conclude that
no complex infinite-dimensional non-square type 1 Cartan factor satisfies the inner
derivation property.

By [13, Theorem 4.1], we know that the real forms of a complex type 1 Cartan
factor are precisely the real Banach spaces BL(X, Y') of all bounded linear operators
between two real Hilbert spaces X and Y or the real Banach spaces BL(P, Q) of all
bounded linear operators between two Hilbert spaces P, Q over the quaternion field.
Thus it is enough to prove that BL(X, Y), with 400 = dim(X) > dim(Y'), possesses
an outer derivation. We will divide the proof into several steps. In a first step, we
suppose that Y = R. In this case, BL(X,R) is isometrically isomorphic, as a real
IB *-triple, to X equipped with the triple product

x5,z = 3((xy)z + (z]y)x)

for all x,y,z € X.
Let 0 be a derivation on X ; then

o{x,y, 2} = {0x, 3,2} + {x,0y,2} + {x,y,0z} (*)
for all x,y,z € X. Now from the expression of the triple product, we have
3{x,y,2} = §((x|y)dz + (2])dx),
{0x,,2} = 3((0x|y)z + (z]y)dx),
{x,0y,2} = 3((x16y)z + (2[0y)x)
{(x,,02} = 3((xy)0z + (9z(y)x).
Thus it follows from (*) that
3(((0x1y) + (x[0y))z + ((2[6y) + (9z[y))x) = 0
for all x,y,z € X. In particular, we have
(x]oy) = —(dx]y)

for all x,y € X, that is, 6 = —J. Therefore every derivation on X, regarded as the
real type 1 Cartan factor BL(X,R), is a skew-symmetric operator on X. Conversely,
the following holds.

>

LEmMMA 3. If X is a real Hilbert space, regarded as the real Cartan factor BL(X,R),
then the derivations on X coincide with the skew-symmetric operators on X.

Proof. Suppose that T is a skew-symmetric operator on X. The identities
T{x,y,2} = 3(x[y)Tz + (z|y) Tx),
{Tx,y,2} = 3((Tx|y)z + (z[y) Tx)),
{(x, Ty, z} = —3((Tx|y)z + (Tz|y)x),
{x, 9, Tz} = 3((x[y)Tz + (Tz|y)x),

show that T is a derivation on X. O
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The next proposition characterizes the inner derivations on X.

PROPOSITION 3.  The inner derivations on X, regarded as the real Cartan factor
BL(X,R), coincide with the finite rank operators on X that are skew-symmetric.

Proof. Let
P

5= dajb))
j=1
be an inner derivation on X. Since
8(a,bj)(x) = 3((x|bj)a; — (x|a;)b;),

it follows that 6 is a finite rank operator. The other implication follows from
Lemma 3. ]

REmARK 2. Since for every infinite-dimensional Hilbert space X there exists a
skew-symmetric operator T on X satisfying T? = —Id, we conclude from Lemma 3
and Proposition 3 that T is an outer derivation on X. It follows that BL(X,R) does
not satisfy the inner derivation property.

Our next goal is to build derivations on BL(X,Y ) from derivations on X = BL(X,R).

LEMMA 4. Let 0 be a derivation on a real Hilbert space X (regarded as the real
Carton factor BL(X,R)), and let Y be another real Hilbert space. Then the operator

5 :BL(X,Y) — BL(X,Y)
da = ad
is a derivation on BL(X,Y).

Proof. Since 6 is a derivation on X, 6 = —0 (see Lemma 3). Given a,b,c €
BL(X, Y), we have

{0a,b,c} + {a,db,c} + {a,b,dc}
= 2(aé)b c+chb*ad +ad*b*c+cd"b*a+ ab"cd + cdb*a)
= i(aéb c+cb"ad —adb*c — cdb*a+ ab"cd + cdéb*a)
= 1(cb’ad + ab*cd) = {a,b,c}6 = d{a,b,c},

which proves that 5 is a derivation. O

At this moment, we need the following identification. Let us fix a norm one
element yy € Y. In the sequel, we will identify each h € X, with the operator

fh X —Y
fu(x) = (xlh)yo  x€X.
In this way, X can be regarded as the subspace of BL(X, Y') formed by all operators

of the form fj with h € X. Using this identification, it is easy to check that if 6 and
o are as in Lemma 4, then 6(X) < X. In fact,

S(fn)(x) = fu(dx) = (5x|h)yo
= (x|0"h)yo = (x| — dh)yo = f_sn(x).

The next lemma is the key tool of the main result of this subsection.
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LEMMA 5. Let d and § be as in Lemma 4, and suppose that o is an inner derivation.

Then 6 has rank less than or equal to the hilbertian dimension of Y.

Proof. Since § is an inner derivation on BL(X,Y), o is the sum

P
5= dab))

for suitable a;j,b; € BL(X,Y). As we have seen previously for each h € X, Sfn =
f_sn € X. On the other hand,

fon=3(fn) = Zé(a,, )(f)

j=1

[
E

%(ajb;fh + fhb;aj - bja;-fh - fha;bj)
1

> 3(ahy = ba) | futfu | D 3(bja;j—a

Jj=1 Jj=1

~.
I

Il
w/—\

where

P
Zja] Y — Y
P

are two skew-symmetric operators. Moreover,
JuT(x) = (Tx|h)yo = (x| = Th)yo = f—1i(x)
for all x € X, so that f,T = f_r5, and
Rfw="0fn—fuT = f-sn—1n=fw € X.
Therefore, for all x,h € X, the equality
Rfn(x) = (x[M)R(yo) = (x[h)yo

holds. Thus we have R(yo) = 4y, for a suitable 2 € R. Since R is a skew-symmetric
operator and / is a real eigenvalue of R, 1 = 0.
In this way, since Rf, = 0, we have

feon="0(fw)=fuT = f—1u

for all h € X, and hence T = 6.
Since each bja; and each a}b; are operators that factorize through Y, they have
rank at most the hilbertian dimension of Y. Therefore so does

P
5=T=> 1(bja;—ajb)). 0
j=1
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THEOREM 4. Let X be an infinite-dimensional real Hilbert space, and Y be a real
Hilbert space with hillbertian dimension less than the hilbertian dimension of X. Then
BL(X,Y) does not satisfy the inner derivation property.

Proof. We recall that, since X is infinite-dimensional, there exists a bounded
linear operator T on X such that T?> = —Idy and T* = —T. Hence T has rank
equal to the hilbertian dimension of X. Since T* = —T, Lemma 3 states that T
is a derivation on X. Moreover, by Lemma 4, the operator T given by Ta = aT
(a € BL(X,Y)) is a derivation on BL(X,Y). If T is an inner derivation, then
Lemma 5 states that T has rank at most the hilbertian dimension of Y, which is
impossible, since dim(X) > dim(Y). O

Again combining Theorem 3 and Proposition 1, we obtain the following corollary.

COROLLARY 3. The complex infinite-dimensional non-square type 1 Cartan factors
and their real forms do not satisfy the inner derivation property.

By virtue of the previous results, we know that there exist real and complex
JB *-triples having outer derivations. Therefore it is natural to ask if any derivation
can be approximated (in a convenient topology) by inner derivations. Upmeier
[23] proved that there exists a unital JB-algebra X and a derivation D on X that
cannot be approximated in norm by inner algebra derivations. Let X denote the
complexification of X, and D the complex linear extension of D to X. Then X is a
unital JB *-algebra with unit u, and hence a JB"-triple, and Disa triple derivation,
since D is an algebra derivation that commutes with the involution (see Lemma 2).
We claim that D cannot be approximated in norm by inner triple derivations.
Otherwise, for ¢ > 0, there would exist an inner triple derivation

P
5= (e f))
j

such that
ID -3¢ <e.

Now, by Lemma 2,

P
0 — L) = Z o(ej, 1) — Lo, f)w)

P
= %Z[LajaL Lbj:Ldj]

j
where e¢; = %(aj +ibj), fj = %(Cj +id;) with aj, b, ¢, d; in X. Therefore 6 — Ls, is
an inner derivation on X such that

ID = (6 = Low)ll = 1D — Lpw) — (6 — L)
< ID =81l + I Low — Lsw|
< 1D =51 + [ Low-sw|
<UD =5+ (D —8)w)| <2e

which is impossible, since D cannot be approximated in norm by an inner derivation.
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On the other hand, D is also a derivation on the real JB -triple X. If D could be
approximated in norm by inner triple derivations on X, then, for every ¢ > 0, there

exists
P

0= 1))
J
with ej, f; € X such that |D —J|| < ¢ In this case, 6 = Z o(ej, f;) is an inner
derivation on X and

A

I(D = d)|| < 2e.

This is impossible.

Upmeier [23], also proved that every algebra derivation on a JB-algebra can
be approximated in the strong operator topology by inner derivations. In [3,
Theorem 4.6], Barton and Friedman proved that the set of all inner derivations
on a JB'-triple is dense in the set of all derivations with respect to the strong
operator topology. This result can be extended to real JB *-triples.

THEOREM 5. The set of all inner derivations on a real JB"-triple is dense in the
set of all derivations with respect to the strong operator topology.

Proof. Let E be a real JB"-triple and 6 a derivation on E. We consider
S E—E
o(x +iy) :=d(x)+io(y)

the natural extension of & to E. Since E is a complex JB *-triple, by [3, Theorem 4.6],
it follows that for every xi,...,x, € E < E and every ¢ > 0 that there exists an inner

derivation
P
5= 6(aj.b;)
Jj=1

on E such that Hé(xl) —di(x)<eforalll=1,.
Since aj = aj; +iajp and bj = b;; +ib;», where aj,k and bjx are in E, it is easy to
check that
P

d1(x1) = D (0(aj1bj) + (2. bj2)
=
+i(L(aja,bj1) + L(bj1,a;2) — L(aj1,bj2) — L(bj2,aj1)))x;.

Since a j,k,b ik and x; are elements in E, it follows that

Zl (L(ajo, bj1) + L(bj1,aj2) — L(aj,bj2) — L(bja, aj1))x; € iE.
j=1
Thus

~

16Ce) = > (S(aj1,bj1) + 6(aja, bj2))(x)|
j=1

P
< [6(x) =Y (8(ajnbjn) + 8(aj2,bj2))(x1))
j=1
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P

— i (L(aj2,bj1) + L(bj1,aj2) — L(aj1,bj2) — L(bja. aj1))(x:)|
j=1

P
= [60er) = > (8(aj1.bj1) + 3(aza. bja)
j=1

+i(L(aja,bj1) + L(bj1,a;2) — L(aj1,bj2) — L(bj2,aj1)))(x1) ||
= [o(x1) —di(x)l < e

foralll=1,...,n. O

ProBLEM 1. If we could obtain a universal bound for the degree of all derivations
in a type 2 Cartan factor with dim H odd, we could try to determine all JBW *-triples
of type I satisfying the inner derivation property following the techniques contained
in Ho’s dissertation [10].

References

1. S. A. Asupov, ‘Extension of traces and type criterions for Jordan algebras of self-adjoint operators’,
Math. Z. 181 (1982) 253-268.
2. K. ALVERMANN, ‘Real normed Jordan algebras with involution’, Arch. Math. 47 (1986) 135-150.
3. T.J. BArRTON and Y. FRIEDMAN, ‘Bounded derivations of JB *-triples’, Quart. J. Math. Oxford Ser. (2)
41 (1990) 255-268.
4. S. K. BERBERIAN, Baer *-rings, Grundlehren der Mathematischen Wissenschaften 195 (Springer,
1972).
5. C-H Cnu and P. MELLON, ‘Jordan structures in Banach spaces and symmetric manifolds’, Expo.
Math. 16 (1998) 157-180.
6. S. DINEEN, ‘The second dual of a JB-triple system’, Complex analysis, functional analysis and
approximation theory (North-Holland, 1986).
7. T. Fack and P. DE LA HARPE, ‘Sommes de commutateurs dans les algebres de von Neumann finies
continues’, Ann. Inst. Fourier (Grenoble) 30 (1980) 49-73.
8. K. R. GOODEARL, Notes on real and complex C*-algebras (Shiva, 1982).
9. H. HANCHE-OLSEN and E. STeRMER, Jordan operator algebras, Monographs and Studies in Mathe-
matics 21 (Pitman, 1984).
10. T. Ho, ‘Derivations of Jordan Banach triples’, Dissertation, University of California, Irvine, 1992.
11. J. M. Isibro, W. KaUP and A. RODRIGUEZ, ‘On real forms of JB"-triples’, Manuscripta Math. 86
(1995) 311-335.
12. R. KADISON, ‘Derivations of operator algebras’, Ann. of Math. 83 (1966) 280-293.
13. W. Kaup, ‘On real Cartan factors’, Manuscripta Math. 92 (1997) 191-222.
14. O. Loos, ‘Bounded symmetric domains and Jordan pairs’, Mathematics Lectures, University of
California, Irvine, 1977.
15. A. RODRIGUEZ, ‘Jordan structures in analysis’, Jordan algebras. Proceedings of Oberwolfach Confer-
ence, August 9-15, 1992 (ed. W. Kaup, K. McCrimmon and H. Petersson, de Gruyter, Berlin,
1994) 97-186.
16. B. Russo, ‘Structure of JB *-triples’, Jordan algebras. Proceedings of Oberwolfach Conference, August
9-15, 1992 (ed. W. Kaup, K. McCrimmon and H. Petersson, de Gruyter, Berlin, 1994) 209-280.
17. S. Sakal ‘On a conjecture of Kaplansky’, Tohoku Math. J. 12 (1960) 31-33.
18. S. Sakal, ‘Derivations of W*-algebras’, Ann. of Math. 83 (1966) 273-279.
19. E. STORMER, ‘On the Jordan structure of C*-algebras’, Trans. Amer. Math. Soc. 120 (1965) 438-447.
20. E. STORMER, ‘Jordan algebras of type I’, Acta Math. 115 (1966) 165-184.
21. E. STORMER, ‘Irreducible Jordan algebras of self-adjoint operators’, Trans. Amer. Math. Soc. 130
(1968) 153-166.
22. D. ToPPING, ‘Jordan algebras of self-adjoint operators’, Mem. Amer. Math. Soc. 53 (1965).
23. H. UPMEIER, ‘Derivations of Jordan C*-algebras’, Math. Scand. 46 (1980) 251-264.



102 DERIVATIONS ON REAL AND COMPLEX JB "-TRIPLES

24. H. UPMEIER, ‘Jordan algebras in analysis, operator theory, and quantum mechanics’, CBMS Regional
Conference Series in Mathematics 67 (Conference Board for Mathematical Sciences, Washington

DC, 1987).

25. J. M. WRIGHT, ‘Jordan C*-algebras’, Michigan Math. J. (1977) 291-302.

Tony Ho

Bernard Russo

Department of Mathematics
University of California
Irvine

CA 92697-3875

USA

brusso@math.uci.edu

Juan Martinez-Moreno

Antonio M. Peralta

Departamento Andlisis Matematico
Facultad de Ciencias

Universidad de Granada

18071 Granada

Spain

jmmoreno@goliat.ugr.es
aperalta@goliat.ugr.es



