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ABSTRACT. The operator spaces Hﬁ, 1 < k < n, generalizing the row and
column Hilbert spaces, and arising in the authors’ previous study of contrac-
tively complemented subspaces of C'*-algebras, are shown to be homogeneous
and completely isometric to a space of creation operators on a subspace of the
anti-symmetric Fock space. The completely bounded Banach-Mazur distance
from Hfi to a row or column space is explicitly calculated.

INTRODUCTION AND PRELIMINARIES

A well-known result of Friedman and Russo ([4, Theorem 2]) states that if a
subspace X of a C*-algebra A is the range of a contractive projection on A, then X
is isometric to a JC*-triple, that is, a norm closed subspace of B(H, K') stable under
the triple product ab*c 4 ¢b*a. If X is atomic (in particular, finite dimensional),
then it is isometric to a direct sum of Cartan factors of types 1 to 4.

The authors showed in [7] that this latter result fails, as it stands, in the category
of operator spaces. In that paper, we defined a family of n-dimensional Hilbertian
operator spaces Hﬁ, 1 < k < n, generalizing the row and column Hilbert spaces R,
and C,, and showed that in the above result, if X is atomic, the word “isometric”
can be replaced by “completely semi-isometric,” provided the spaces H¥ are allowed
as summands along with the Cartan factors (|7, Theorem 2]). It is pointed out in [7]
that the space HF is contractively complemented in some B(K), and for 1 < k < n,
is not completely (semi-)isometric to either of the Cartan factors B(C,C") = H}
or B(C",C) = H, and that these spaces appeared in a slightly different form
and context in [I]. It is also shown in [7}, Theorem 3] that finite-dimensional JC*-
triples which are contractively complemented in a C*-algebra can be classified up
to complete isometry.

In this paper, we study the operator space structure of the spaces H*. Besides
being a generalization of the row and column Hilbert spaces, as shown in Lemma 2]
below, they are completely isometric to the span of creation operators on a sub-
space of the anti-symmetric Fock space. Thus they are related to the operator
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476 MATTHEW NEAL AND BERNARD RUSSO

space denoted by @, in [9] section 9.3], which is the span of the creation operators
on the full anti-symmetric Fock space. ®,, is the unique operator space which is
completely isometric to the span of n operators satisfying the canonical anticom-
mutation relations (CAR), [9, Theorem 9.3.1], and (;_, HY is completely isometric
to ®,,. We show in Theorem 2] below that all finite-dimensional Hilbertian operator
spaces X which are contractively complemented in some C*-algebra are completely
isometric to the diagonal of two spaces, one space being an intersection of some of
the spaces H* and the other space lying in the kernel of the projection which maps
onto X. Since any intersection of the spaces HF is also completely isometric to a
space of creation operators on a subspace of the full anti-symmetric Fock space,
Theorem ] can be interpreted as saying that every contractively complemented
Hilbertian operator space is, up to complete isometry, essentially a space of cre-
ation operators. This result is analogous to the result of Robertson, [10], which
states that every completely contractively complemented Hilbertian operator space
is completely isometric to either row or column space.

The operator space structures of the row and column Hilbert spaces R, and
C,, have been well studied, and in particular it is known that they are homoge-
neous, dual to each other in the operator space sense, and have completely bounded
Banach-Mazur distance n between them. We show here that HY is homogeneous
(Theorem [Il), and we give an explicit formula for the completely bounded Banach-
Mazur distance from it to R,, = H? and C,, = H} (Theorem [B]). This answers a
question we posed in [7] and shows, interestingly, that the points R,,, C,, and H*
lie on a straight line in the metric space of all operator spaces of dimension n.

Recall that a Cartan factor of type 1 is B(H, K) for complex Hilbert spaces H
and K. To define the Cartan factors of types 2 and 3, fix a conjugation J on a
complex Hilbert space H, that is, a conjugate-linear isometry of order 2, and for
x € B(H), let #t = Ja*J. A Cartan factor of type 2 (respectively of type 3) is
A(H,J) ={x € B(H) : 2t = —2} (respectively S(H,J) = {x € B(H) : 2t = —z}).
A Cartan factor of type 4 is the spin factor (cf. [7, Subsection 3.1]).

An operator space is a subspace X of B(H), the space of bounded linear operators
on a complex Hilbert space. Its operator space structure is given by the sequence
of norms on the set of matrices M, (X) with entries from X, determined by the
identification M, (X) C M, (B(H))=B(H® H ®---® H). See [9] for the general
theory of operator spaces, which is now extensive and covered in several other
monographs, for example [3], []], and [2]. Let us just recall that a linear mapping
@ : X — Y between two operator spaces is completely bounded if the induced
mappings ¢, : M, (X) — M, (Y) defined by ¢, ([zi;]) = [p(xi;)] satisfy [|¢[lcn =
sup,, |len|l < oo. A completely bounded map is a completely bounded isomorphism
if its inverse exists and is completely bounded. Two operator spaces are completely
isometric if there is a linear isomorphism T between them with | T||cp, = |77 ||ch =
1. We call T' a complete isometry in this case.

In the matrix representation for B(¢?) consider the column Hilbert space C =
sp{ei1 : 4 > 1} and the row Hilbert space R = sp{ei; : j > 1} and their finite-
dimensional versions C,, = sp{e;1 : 1 < i < n} and R, = sp{ey; : 1 < j < n}.
Here of course e;; is the operator defined by the matrix with a 1 in the (g, j)-
entry and zeros elsewhere. Although R and C are Banach isometric, they are
not completely isomorphic; and R,, and C,,, while completely isomorphic, are not
completely isometric.
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HILBERTIAN OPERATOR SPACES ON THE FOCK SPACE 477

An operator space is said to be homogeneous if every bounded linear map on
it is completely bounded with the norm and completely bounded norm coinciding
(see [9, 9.2]), and it is Hilbertian if it is isometric to a Hilbert space. A linear
map of one operator space into another is said to be a complete semi-isometry if
it is isometric and completely contractive. The completely bounded Banach-Mazur
distance between two (completely isomorphic) operator spaces F, F' is defined by

den(E, F) = inf{||ulleb|[v"||eb : w : E — F complete isomorphism}.

This paper is organized as follows. In section [ we show that the spaces H¥
are homogeneous operator spaces. Although we use some multilinear algebra, our
proof is direct and does not make use of the identification of H* with a space of
creation operators. In section ] we establish the complete isometry of HF with a
space of creation operators and use it to describe the fine structure of the range
of a contractive projection on a C*-algebra in case said range is isometric to a
Hilbert space. We also establish some spectral properties of creation operators. In
section B] we explicitly compute the completely bounded Banach-Mazur distance
from the space HF to the column and row Hilbert spaces H! and H? and state
some problems for further study.

1. HOMOGENEITY OF THE SPACES HF

We begin by recalling from [7, Sections 6,7] the construction of the spaces HE,
1 < k < n. Let I denote a subset of {1,2,...,n} of cardinality |I| = k — 1.
The number of such I is ¢ := (kfl) Let J denote a subset of {1,2,...,n} of
cardinality |J| = n — k. The number of such J is p := (nﬁk) Unless otherwise
noted, we shall assume that each I = {iy,...,ix—1} is such that i; < -+ < ig_q,
and that the collection {Iy,...,I;} of all such subsets is ordered lexicographically.

Similarly, if J = {j1,...,Jn—k}, then j1 < -+ < jp—k and {J1,...,J,} is ordered

lexicographically.

We shall use the notation e; to denote the column vector with a 1 in the P
position and zeros elsewhere. Thus ey, ..., e, denotes the canonical basis of column
vectors for C", and for example e;,,...,e;, denotes the canonical basis of column

vectors for CP.
The space HY is the linear span of matrices b?’k, 1 < i <n, given by

bk = > e(I,i,J)esr,
INJ=0,(IuJ)c={:}
where e = ey ®e; = ejet € M, ,(C) = B(C%,CP), and €(I,14, J) is the signature
of the permutation taking (i1,...,0k—1,%,1,-sJn—k) to (1,... ,n) Since the
b?’k are the image under a triple isomorphism (actually ternary isomorphism) of a
rectangular grid in a JW*-triple of rank one, they form an orthonormal basis for
HE (cf. the beginning of subsection 5.3 and the beginning of section 7 of [7]).
In the rest of this section, we shall use the following lemma about determinants,
whose proof can be found, for example, in [I1].

Lemma 1.1. Let X = [§;;] be an n x m matriz. Let H C {1,...,n} and K C
{1,...,m} both have cardinality r < min{n, m}. Let Xy x denote the correspond-
ing r X r submatriz.

In [7], €(1,i,J) is also denoted by e(I,J). However, in this paper, e(I,J) will denote the
signature of the permutation taking (41,...,%—1,J1,-.-,Jn—k) to (1,..., ... ,n).
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478 MATTHEW NEAL AND BERNARD RUSSO

(i) Ifx; = Z?Zl §jiej € C" forl <p < n, thenxA---Axp =) g det Xy req,
where the sum is over all H of cardinality p, L = {1,...,p}, and X is the
n X p matriz [§;;]. (Prop. 3.3, page 84 of [I1].)

(ii) If X is an n x n matriz and H C {1,...,n}, let H' denote the complement
of H. Then det X = e(H,H')Y pe(R, R")det X g det X/ v, where the
sum is over all sets R having the same cardinality of H. (Prop. 3.4(1) page
87 of [11].)

(i) If H,K C {1,...,n} have cardinality v and n — v, and HN K # 0, then
Y p€(R,R')det X g det Xp/ g = 0, where the sum is over all sets R hav-
ing cardinality r. (Prop. 3.4(2), page 87 of [11].)

Let ey, ..., ey be the canonical basis for the column Hilbert space C,, = M, 1(C)
= B(C,C") and define an isometry v : C,, — HE via ¢(e;) = b?’k, 1<i<n. Let

u=/[u --- u, |beaunitary matrix so that us,...,u, is an orthonormal basis
for C,,. Then, with u; = Z?=1 uj;e;, we have
Uip -+ Uln
u =
Un1 e Unn

and

QZ)(UZ) = Zujib?’k = Zuji Z E(I,i, J)eJ,[.
j=1 j=1

INJ=0,(IuJ)e={i}
Lemma 1.2. The (J',I')-entry of the p X q¢ matriz ¢¥(u;) is given by

(1) (w(ui))J/,I’ = Z 6(Iai’ J)

INJ=0,(IuJ)c={:}

detwy jdetup r
detu

)

where w is the complex conjugate of u.
Proof. Let us first calculate the left side of ([II):
((ui))yrr = epip(uier

Zuﬁ Z e(1,j,J)eeseter
=1 InJ=0,(IuJ)c={5}
{ 0, JNI £,
we(l', L), J Nl =0, (I'uJ) ={i}.
Before calculating the right side of (), note that e(I,i, J)e(I, J) = (—1)"T*; indeed,
e(Ii, )e(I,J) = (=1)*Le(i, I,J)e(I,J)
(=D Ye(I, J)e(i,1,2,...,2,...,n— 1)e(I,J)
= (C1)FTY(1)itl = (m1)Et
Therefore, the right side of () is equal to

detwy  jdet uy g
detw

> e(I,i, (I, JYe(I', J)e(I, J)e(I, J)
INJ=0,(JuJ)e={}

= (=D)kFier, ") > e(I', Je(I,J)
INJ=0,(IuJ)c={i}

detﬂJ')J det urr g
detw
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HILBERTIAN OPERATOR SPACES ON THE FOCK SPACE 479

According to Lemma [[IIiii), the above sum is 0 if J' NI’ # (. Otherwise, if
J'NI' =0 so that (I’ UJ')¢ = {i}, the right side of () equals

-1 k—1 I I (=1 i+l
(=1 65:1 ;_)( ) Z e(I', J")e(I,J)detuy ydetup g.
evu INJ=0,(IuJ)e={:}

Now by Lemma [[Iii), the above sum is the determinant of the (,4)-minor of
the matrix u, call this My;. Thus, for J' NI’ = (), the right side of () is equal to

—1)"* det M,
()#} = ¢(I',1,J") x [ the (i,1)-entry of the inverse of 1]

(I’ L.T) [ detu

= eI, 1, J ). ]
Theorem 1. HF is a homogeneous operator space.

Proof. Let o be a unitary operator on H¥. To prove the theorem, it suffices,
by [9, Prop. 9.2.1], to show that « is a complete isometry. We shall show that
a(z) = dwzw for suitable unitary matrices v and w, and A € C, with |[A\| = 1, which
will complete the proof.

Recall that ¢ : C,, — HY is the isometry defined by 9 (e;) = b?’k. Let ¢~ to)
have matrix ©~! on C,, with respect to the basis ey, ..., e,. As in Lemma [[2] let
Ui, ..., U, be the columns of u. We shall show that a(x) = Avzw holds for every
z € H, where A =detW, w = [ Njer,ui -+ Aier,ui |, and

(Njeaug)t

(Njes,u;)t
(The fact that v and w are unitary matrices follows from the definition of the inner
product on A"C": (z1 A--- Azplyr A--- Ayy) = det[(z;]y;)].)
In the first place, ¥ tat)(u;) = u=t(u;) = e;, so that ap(u;) = P(e;) = b?’k.
Thus it suffices to prove

(2) v (ug)w = b"F / det 7.
Let us first show that
(3) P(u;) = (detw) ™" > e(1,i,J) (Njesu;) (Nierts)" .

INJ=0,(JuJ)e={}

By Lemma [[L2] the proof of ([B) amounts to

(4) (/\jEJUj) (/\ie[ui)t:| T = det ujr,Jj det ur 1.

s

The left side of @) is given by €%, (Ajesu;j) (Aicrui)’ er. By Lemma [LI(i),

/\jEJUj: E detuLJeL,
L

where L runs over the subsets of cardinality n — k. Hence

e (Njeguy) = E detuy, jely e, =detuy ;.
L

Similarly, (/\ie['uz')t ep = detup 1, which proves (@) and hence (3.
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480 MATTHEW NEAL AND BERNARD RUSSO

We now use ([B) to prove (). Note that since e;; = ey ® ef = ey(er)’ =
(Njesej) (Aiere:)', we may write

(5) b?’k = Z e(1,i,J) (Njese;) (Niere:) -
INJ=0,(IuJ)e={i}

By (@) and (), it suffices to prove
v (AjesT;) (Niert) w = (Ajese;) (Niere:) .
This is a simple calculation. Suppose for definiteness that J = J, and I = I5. Then
— — \t t
v(Njest;) = ez, and (Aier;) w = e, - O

Remark 1.3. In [1, page 2230], we defined an operator space construction denoted
by Diag(H¥,..., H*¥") which depended on a choice of orthonormal basis for each of
the spaces H,Iij . Because of the homogeneity of the spaces H¥ proved in Theorem T}
this space is independent of these choices up to complete isometry and is now seen
to be the intersection H¥* N ... N HEm in the sense of operator space theory ([9}
page 55]).

2. ANTI-SYMMETRIC FOCK SPACES

Let C;"* denote the wedge (or creation) operator from A¥~1C" to AFC™ given
by
ClF(hy A ANhg_1) =hAhy A= Ahy_y.

Many properties of these classical operators on the full anti-symmetric Fock
space are given in [ Exercises 12.4.39-40]. See also Lemma [Z3]

As in section[]], let eq, ..., e, be the usual column vector orthonormal basis for
C", and let {er,,...,er,} and {ey,,...,es,} be the column vector orthonormal
bases for C? and C? respectively, and define the unitary operators U} Gj=k-1
and j =n—k), W, V" in the diagram below as follows:

o Ul (er)=ey, N---Ne;,_,, where T = {iy < -+ <ip_1}.
 ler)=e; N Nej, ., where J = {j1 < -+ < jn_p}
o V(e Ao Ney) =€, A= ANej, ., where {ji < -+ < jn_p} is the
complement of {i; < -+ < ig}.
o Wi(ej, N---Nej, ) =¢€(i,D)e(I,i,J)ej, A---Nej, , for any ¢ and I such
that INJ =0 and (I U J)¢ = {i} (which is independent of the choice of i

or I).
bk
C¢ i, CP
Uial LUZ
/\kflcn /\nfkcn
Cert Ly
/\kcn V_kn) /\n—kcn

Note that since b?’k is a p X ¢ matrix, it is viewed as an operator from C? to CP.
In the definition of W', €(i, I) is the signature of the permutation (¢,41,...,45_1) —
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HILBERTIAN OPERATOR SPACES ON THE FOCK SPACE 481

(i1,..-y4...,ix—1). To prove the non-dependence on i, suppose 4,7’ ¢ J. Then
G(I,i,J) = G(il,...,ikfl,i,jl,...,jn,k)
= (_]—)kile(i/élw'~7ik717j17"'7jn7k)
= (_1)]6716(7:’ I)e(ila e 77:7 e 7ik‘—1aj1; e ajn—k)v
where 47 < -+ <@ < -+ <ip_1. Similarly,
E(I/a ZJ? ‘]) = (71)]6716(2./’ Il)e(ill’ s 72.,7 cee 7i;c—1ﬂj1’ ce 7jn—k)7
where ¢} < --- <’ <--- < }_,. Hence, €(i,I)e(1,3,J) = €', I')e(I’, 7, J).

It is now a simple matter to check that W;’U;}_kb?’k = Vk”Cg‘i’kU,’;_l. Indeed,
for any I', WU, b"F(ep) = WUn_,e(I'i, J)(es) = Wile(I'yi, J)ej, A -+ A
e, =€(i,I")ej, N---Nej, _,, and Vk"C;’i’kUg_l(ep) =Vi(eiNey N~ Ney )=
Vi (e(i, IM)ey Aoo- Neg A--e A el-;c_l) =e(i,I)ej, N---Nej,_,.

Hence, letting C™* denote the space sp{C;’i”C } yields the following lemma.

Lemma 2.1. HE is completely isometric to C™F.

By [, Theorem 2, Corollary 2.8], every atomic contractively complemented sub-
space X of a C'*-algebra is isometrically completely contractive to a direct sum of
Cartan factors of types 1 to 4 and some of the spaces H*. The following theorem
gives more detailed information on what can be said up to complete isometry in
the case of a Hilbertian X.

Recall that a linear map of one operator space into another is said to be a
complete semi-isometry if it is isometric and completely contractive.

Theorem 2. Let X be the range of a contractive projection P on a C*-algebra A,
and suppose that X is isometric to a Hilbert space. Then there exist projections
p,q € A** such that

(a) X ={prg+(1-plz(l—q):z€ X}

(b) The map Eox = pxq is a complete semi-isometry of X onto pXgq.

(¢) If X is finite dimensional, then pXq is completely isometric to an intersec-
tion of the spaces C™*. If X is infinite dimensional, then pXq is completely
semi-isometric to either row or column Hilbert space.

(d) Both X and pXq are completely isometric to the range of a contractive
projection on B(K) for an appropriate Hilbert space K.

(e) P*(pxq) = = and P**((1 — p)x(1 — q)) = 0, for x € P(A). Hence P** :
pXq — X is the inverse of & and (1 — p)X (1 — q) C ker P**.

Proof. (a) Since P(A) is reflexive,
X =P(A) =P (A™) =pXq+ (1 -p)X(1—q),
with the last equality following from [4, Prop. 4].

(b) By [7, Lemma 2.2].

(¢) By Lemma 2.1l and [7, Prop. 2.6].

(d) For X this follows directly from [7, Corollary 2.8], and for pXgq it follows
directly from [7, Theorem 3(b) and Corollary 7.3]

2The authors take this opportunity to point out the following correction to [7, Lemma 7.2 and
Corollary 7.3]. The term (Z:i)lm should be replaced by (Z:i) in the statements of Lemma 7.2
and Corollary 7.3, and in the proof of Lemma 7.2. Accordingly, in the proof of Corollary 7.3,

m1/2 should be replaced by m.
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482 MATTHEW NEAL AND BERNARD RUSSO

(e) For x € P(A), P**(pxq) € P**(A**) = P(A), say P*(pxq) =y € P(A)
and by [4, Prop. 4], y = pyq + (1 — p)y(1 — ¢). Thus p(P**(pzq))q =
pyq. Now it follows from [4, Prop. 1], that p(P**z)q = z for all z €
pP**(A**)q. With z = pzq, we have prq = pyq and by (b) = y, proving
that P**(pzq) = x. Moreover, P**((1 — p)z(1 — q)) = P**(z — pzq) =
x— P*(prq) =z —y=0. O

Remark 2.2. For any subset S C {1,...,n}, ﬂkeSC”’k is exactly the space of
creation operators on the direct sum @, g AF=1C™. So Theorem [ says that
all finite-dimensional contractively complemented Hilbertian operator spaces are
essentially a space of creation operators in the anti-symmetric Fock space. In
particular, if S = {1,...,n}, this is the space ®,, discussed in [9], section 9.3].

The following properties of the wedge operators follow easily from the definition.
They will be used, together with Lemma [2.3] in section

o CPF (R A ABy) = Zle(—l)j“(hﬂh)hl Ao Nhj_1 Ahjer A Ay
for h € C™. In particular, Cﬁ’lc}?’l* =h®h.

o ROt = nIPT - CptTiep Y for he €.

Lemma 2.3. (a) tr(CpFCp®y = (PZH|I?. In particular, CP Ot =
]2
(b) The eigenvalues of > .-, C’Zi’kCﬁi’k* are precisely the sums of k eigenvalues
of ML, Cril O
(c) The eigenvalues of Y v, C’,Z’k*C,?;k are precisely the sums of n — k + 1
eigenvalues of Y70 C)V" Oy
Proof. In the first place, we have
te(Cprety = (ot opt)
= Z (Cly;’k*c}?’k(eil /\.../\eik—l)‘eil /\"'/\eik—1)

i1,-<~7ik—1
= Z (h/\eil/\"'/\eik—1|h/\ei1/\'”/\eik—l)
B1yeeyll—1
(hlh)  (hles,) -+ (hlei_,)
— Y aw| @10
Bl yeeyil—1 (eik_1|h) 0 1

k—1
S - Z |(hfes,)]?

D1y esbl—1

k—1
n
(S IS DD WIS
i1yeeyin_1 j=1

n

(" Jwaz =5 (25 lenr?

=1
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HILBERTIAN OPERATOR SPACES ON THE FOCK SPACE 483

- (QZ) B <Z_§)> 1Al = (Z_ 1)||h|2.

To prove the second statement, let the (repeated) eigenvalues of Y., CZ;IC,?;”
be Ay > --- > A\, and let &,...,&, be an orthonormal basis of C™ consisting of
eigenvectors of Y ;" | C’Zi’lC’Zi’l* so that >, (&x|hi)hi = A&k Then

m

k
ZC’Zi’kCZi’k*(fn N NEy) = ZZ(fijVLi)fu AN Nhy N N,

i=1 i j=1

DG A lZ (5i,.|hi>hi] Aoy

K2

ZA@- Eiy N NGy
J

Conversely, if £ = Y, i, &y A--+ A&, is an eigenvector of > 1" C’,?i’kC;fi’k*,
with eigenvalue A, then

)‘Zai1>~~,ik€i1 ARRRNA €1k
m
= D CRECET Y o ik A A
i=1
Z Qi ...y Z Z (&ij1hi)&iy Avos Nhi N NGy
i g

m

Z Qi Zgu TARSRNA [Z C;Ll,’lC}TLL;l*&]‘| TARRRNA 521\
J

i=1

Zaz‘l,i..,z‘k Z)\ij Sir N Ny
J

From this, the second statement follows.
Since C;"™ = O™ and ||h|? = tr(C;" CP™), (c) follows from the third bullet
above and (b). O

3. COMPLETELY BOUNDED BANACH-MAZUR DISTANCE

Recall that the completely bounded Banach-Mazur distance between two (com-
pletely isomorphic) operator spaces E, F' is defined by

den(E, F) = inf{||ulle|[v"||eb : w : E — F complete isomorphism}.

We shall explicitly compute de,(H¥, H!) and de,(HF, H?). By Lemma 2]
we can identify HY with C™*. For a fixed k, let ¢ : H. — HF be the isome-
try given by ¢(C') = C2*. Recall from [6, Prop. 4] that, since ¢ is a map-
ping from the column Hilbert space H}, ||t||cb = [|¥]lrow-cb, Where ||¥0]|row-cb :=
sup{||(¢¥(h1),...,%¥(hm))||}, where the supremum is extended over all m > 1 and
all row vectors with [|(h1,...,hy)|| < 1. Similarly, by [6 Prop. 2], [[¢ |l =

1™ |colch, Where [|t)]|corch := sup{||(¥)(h1), ..., ¥ (hm))t||}, where the supremum
is extended over all m > 1 and all column vectors with ||(hq, ..., hy,)t] < 1.
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484 MATTHEW NEAL AND BERNARD RUSSO

Lemma 3.1. [[¢)row-ch = Vk and 19~ leol-cb = \/ n—Lk—s—l

Proof. Let A = (CZ{I,...,C;Z;;) and B = (C,’;l’k, . ,C;Zj) We show first that
IB| < VE|A|. We have AA* = 7, CiviCpt = Y7 by ® by and BB* =
ity Cp Gy

Let the (repeated) eigenvalues of AA* be A\; > -+ > \,. By Lemma 23|(b), we
have

IBII* = I1BB*[| = A1 + - + A < ki = k[ AA™|| = K[| AJI*.

Taking m = n and h; = e;, we have AA* = I and BB* = kI, proving the first
statement of the lemma.
Let D= At = (C}"',...,C;"" )t and €' = Bt = (C2F, ..., C""). We show next

that | D] < ,/7=%7ICll- By Lemma Z3{(a), we have D*D = 37", CZ;”C’,’ZI =

S kill?; and C*C = S0 C’,?Lk*C;;k Since C*C' is a square matrix of size
("), again by Lemma 23(a),

* n * _ n—1 - 112
e, ")) zwerer= (3 75) S

Therefore,

DI _ 32 hall? ;;11 o> _
Icl? cxel — %ZZI Ak n—k+1
Taking m = n and h; = e;, we have D*D = n. On the other hand,
C;Li’k*cgi’k(eil A A eik_l) =0

ifi € {i1,...,ik—1} and equal to e;, A- - -Ae;, _, otherwise. Hence C*C = (n—k+1)I,
proving the second statement. O

Theorem 3. d.,(HE H}) = n_k,?H, for1 <k<n.

Proof. By [12, Theorem 3.1], and the first paragraph of its proof, de,(HY, H!) =
1¥]lebl|1o ™|l eb. Now apply Lemma Bl and the remarks just preceding it. O

Not surprisingly, we obtain the result published first by Mathes ([0, Prop. 7], [9,
p. 21)).

Corollary 3.2. d.,(R,,Cp) =n.

Symmetry considerations in Theorem Blsuggest de, (HY, H) =d, (H? k1 HY),
which is proved by exactly the same methods. Hence we obtain the following
corollary, which is the answer to Problem 1 in [7].

Corollary 3.3. d.,(HF, H?) = W, for 1 <k<n.

Proof. For a fixed k, let £ : H! — HE be the isometry given by {(C") = CIok.
From [6, Prop. 4], [|€|lcb = [|€]lcol-cb- Arguing exactly as in Lemma Bl we have

l€llcocb = VR —k+1 and || |lrow-cb = /n/k. By [12, Theorem 3.1] and the
first paragraph of its proof, dcb(Hff,Hﬁ) = Hchb||§_1||cb. O
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Remark 3.4. It is curious to note that by Theorem [3] and its two corollaries,
dew(HE, H)de (HE, HY) = dep(H?, HY), so that in the metric space of all op-
erator spaces of dimension n ([9, page 335]), the three points H*, H! H" form a
degenerate triangle.

Since HY is distinct from row or column Hilbert space, new ideas will be needed
to solve the following problem.

Problem 1. Find do,(HF, HE2) for 1 < ky < ky < n.

We have already mentioned in the Introduction that C} = R, and R}, = C,
in the category of operator spaces. Hence H} and H! are operator space duals of
each other. The following problem is therefore of interest, and its solution would
certainly lead to insight into Pisier’s question on the operator space dual of ®,,, [9,
page 175].

Problem 2. Find the operator space dual of HY.
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